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Résumé : 

Cet article traite de la question des effets des coûts sur les types de régularités temporelles que les Méthodes 
d’Appariement Optimal (MAO) permettent de mettre au jour en sciences sociales. L'équilibre entre les coûts 
d'insertion et suppression (indel) et de substitution détermine le type de régularité temporelle. Alors que les 
insertions-suppressions privilégient les états codés identiquement à leur timing, les substitutions respectent le 
timing des événements au prix de leur simplification lorsqu'ils sont différents. Plus le ratio du coût de 
substitution sur le coût d'insertion-suppression est faible, plus les MAO sont portées vers la distance de 
Hamming où seules les substitutions sont utilisées. Plus il est élevé, plus les MAO s'approchent de la distance 
de Levenshtein II qui consiste à trouver la sous-séquence commune la plus longue. Quand le timing des 
séquences est de toute première importance, les opérations de substitution doivent être privilégiées aux 
insertions-suppressions et leurs coûts déterminés avec soin. Idéalement, les coûts de substitution devraient 
varier avec le temps de manière à mieux prendre en compte le timing des séquences étudiées. Comme les 
opérations d'insertion-suppression déforment le temps, donc le timing des séquences, il est suggéré de n'utiliser 
que des substitutions avec des coûts qui varient avec le temps inversement proportionnels aux fréquences de 
transitions toutes les fois que le timing des séquences est central pour l'analyse. Variante des MAO proche de 
la distance de Hamming, le Dynamic Hamming Matching est appliqué à la question des horaires de travail en 
France en 1985 et 1999 (N = 7 908) et comparé à trois variantes des MAO (Hamming et Levenshtein I et II). 
Conformément à ce que l'on pouvait attendre, les deux variantes de Hamming apparaissent meilleures, en 
termes d'entropie, pour identifier les types de journées de travail que les deux distances de Levenshtein. 
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 Abstract:  

This article addresses the question of the effects of cost setting on the kind of temporal patterns Optimal 
Matching (OM) can uncover when applied to social science data. It is argued that the balance between indel 
(insertion and deletion) and substitution costs determines what kind of socio-temporal pattern can be brought to 
light. Insertion and deletion operations favor identically coded states irrespective of their locations whereas 
substitutions ones focus on contemporaneous similarities. The lower the ratio of substitution to indel costs, the 
closer OM is to the Hamming distance where only substitutions are used. The higher this ratio, the closer OM is 
to the Levenshtein II distance, which amounts to finding the longest common subsequence. When the timing of 
sequences is crucial, substitutions should be favored over indels and their costs should be carefully fixed. 
Ideally, substitution costs should vary with time to better take into account the timing of the sequences studied. 
As indels warp time, hence the timing of sequences, it is suggested to use only substitution operations with 
time-dependent costs inversely proportional to transition frequencies whenever the timing of sequences is 
central. This OM variant, coined Dynamic Hamming Matching, is applied to the question of the scheduling of 
paid work where timing is critical (1985 and 1999 French time-use surveys, N = 7908) along with three classical 
OM variants (Hamming and Levenshtein I and II). As expected, the two Hamming dissimilarity measures fare 
better to identify patterns of workday schedules, as measured by entropy, than the two Levenshtein ones. 
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1. Introduction 

Dynamic statistical models appeared in the social sciences at the dawn of the 1980s. In the first 

review dedicated to these models, Nancy Tuma, Michael Hannan and Lyle Groeneveld (1979) 

enjoined social scientists to incorporate these new tools made available by the development of 

personal computers. In view of the widespread use and growing sophistication of dynamic 

regressions and other duration models this “dynamic model turning point” can be considered as 

successful. Even though statistical models are not always used in a true hypothesis testing 

perspective but also very often as “descriptive tools” (Abbott 1998) their greater explanatory power 

rely on additional assumptions which make them also more fragile. It is long known that, in order to 

be faithful to facts, simplification should be progressive (Simiand 1922, p. 48). However, until 

recently, applying this precept on sequence data proved challenging, as it required expertise in 

emerging methods only available in exotic statistical packages or programs. This was all the more 

unfortunate as dynamic models often rely on strong assumptions on causality and on the order of 

observed events (Bocquier 2006) and as a consequence, describing sequences before any causal 

analysis is attempted is essential (Abbott 1990). 

So far, two kinds of statistical descriptive methods have been used to describe sequence data. 

The first one is related to the geometric data analysis (GDA) paradigm. GDA is particularly prominent 

in France where there is a long tradition, if not a “French school”, of building empirical typologies of 

sequences using these techniques (Deville et Saporta 1980 ; Deville 1982 ; Degenne, Lebeaux et 

Mounier 1996). However, as the crux of these methods is multiple correspondence analysis (for a 

comprehensive presentation of MCA, see Le Roux et Rouanet 2004) they do not take advantage of 

the extra information contained in the ordering of events. Optimal Matching (called OM in the rest of 

this paper), introduced into the social sciences approximately at the same time by Andrew Abbott 

and colleagues (Abbott et Forrest 1986 ; Abbott et Hrycak 1990 ; Abbott 1995), is a family of 

descriptive methods adapted to sequences that make full use of the ordered dimension of 

longitudinal data. 

In OM, the degree of dissimilarity between two sequences is determined by the least number 

of weighted edit operations that are necessary to turn one sequence into the other (i.e. to match the 

two sequences). Three kinds of edit operations are generally used: insertion, deletion, and 

substitution. OM’s output is a dissimilarity matrix between all sequences that must be combined with 

cluster analysis, multidimensional scaling, or any other data reduction procedure handling 

dissimilarity objects. In the ancestor of OM, the Levenshtein distance (Levenshtein 1966 [1965]), the 

three basic operations are given equal weights: each operation cost one unit. 

In theory, the choice of a cost system determines how sequences are matched, hence how 

sequence similarity is defined. In the social sciences, most early OM adopters claimed that results 

were little affected by changes in the relative weights of the three basic operations (for a review see 
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Abbott et Tsay 2000). OM detractors in this field have been interpreting this as a sign, not of 

robustness, but—often mistaking OM for a model—of weakness (Levine 2000). However, OM is a 

quite flexible family of methods that have been used in numerous fields to capture different kind of 

patterns depending on the material and question: computer science, coding theory, speech 

recognition, bird songs studies, gas chromatography, geology, human depth perception, biology, etc. 

And of course nowin the social sciences. 

As underlined by Abbott (2000), “pattern search algorithms in general do not assume anything 

about the way the data are generated […but] They rather make assumptions about the kinds of 

patterns we expect to see”. For instance, it is well known that when substitution operations are not 

allowed, or, this is exactly the same, when their cost is equal to or greater than the cost of an 

insertion and a deletion, then the Levenshtein distance between two sequences is equivalent to 

finding their longest common subsequence, whatever their location in the two sequences (Kruskal et 

Liberman 1983). But exactly which kind of patterns go with which combination of costs remains 

nonetheless to be explored in the social sciences. 

As a result, it seems that there are two ways of using OM in the social sciences, either to “fish 

[…] for patterns” (Abbott 1990), that it to say to explore sequence data without any strong 

assumptions about the kind of patterns they may contain, or to find specific temporal patterns 

previously found and/or predicted by theory. As OM is used in the social sciences to uncover 

temporal patterns, the need to have precise ideas about the kinds of patterns looked for is not as 

pressing as it can be in some other fields, as for instance biology. However, this does not mean that 

social scientists can avoid reflecting on the relationships between edit operations and their costs and 

the kind of patterns that they can brought to light. Not knowing what kind of pattern a dataset conceal 

is one thing; disregarding how different parameterizations of OM lead to the uncovering of different 

sorts of patterns is another.  

Sequences in the social sciences are not made of amino acids but express successions of 

social states or events1. The timing of event is often crucial in the social sciences as very often what 

matters is not only the events but when they occur. In this regard, it would be better to speak of 

episodes instead of events, that is of events occurring at specific moments within sequences2. 

Events coded identically but happening at distinct moments will be generally considered in the social 

sciences as different: “a particular value of [a variable] may have no absolute meaning independent 

of time […] A given value may acquire significance because it is the first reversal of a long, steady 

fall, or because it initiates a long steady state. In either case, it is the general temporal context, not 

                                                        

1
 An event is “something that is happening” (Merriam Webster) and can be represented by a change of state. States 

and events can be considered as different formulations of social processes see for instance the reply of Andrew 

Abbott to Lawrence Wu (2000). 
2
 The Merriam Webster dictionary defines an episode as “an event that is distinctive and separate although part of a 

larger series”. 
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the immediate change, that matters.” (Abbott 1990). Whether OM is used as a sequence data mining 

tool or as a technique to capture different kinds of temporal patterns, more consideration should be 

paid to the link between costs and temporal patterns. 

This article aims at addressing this concern. First I look into the consequences of the basic 

edit operations on the kind of temporal pattern that can be uncovered. Then I examine how it is 

possible to improve substitution costs in order to better capture the timing of sequences. Lastly, I 

contend that only substitution operations with time-dependent costs inversely proportional to 

transition frequencies should be used whenever the timing of sequences is central. This OM variant, 

coined Dynamic Hamming Matching, is applied to the question of the scheduling of paid work in 

France and compared with the three historical OM parameterizations. 

2. Costs and temporal patterns 

Optimal Matching is a family of dissimilarity measures between sequences derived from the distance 

originally proposed in the field of information theory and computer science by Vladimir Levenshtein 

(1966 [1965]). What is known in the social sciences as Optimal Matching comes in fact from research 

on coding theory and string editing. Coding theory refers to the body of research dealing with the 

reception of coded information through noisy channels such as radio and telegraph. Strings are basic 

components of computer science and the indispensable ‘find’ or ‘replace’ functions of text processing 

software are probably the most obvious implementation of such algorithms. 

The Levenshtein or edit distance between two sequences (or strings in the computer science 

vocabulary) is given by the smallest number of operations needed to turn one sequence into the 

other (i.e. to match them). The different edit operations allowed—insertion, deletion, or substitution—

are penalized by a cost, which is equal to one in the original version of OM3. Levenshtein also 

suggested using only insertion and deletion operations to match strings. These two Levenshtein 

distances are usually considered as a refinement of the distance proposed by Richard Hamming 

(1950). The Hamming distance between two sequences is the number of substitutions required to 

change one sequence into the other. As a result, and contrary to the Levenshtein distance, the 

Hamming distance can only be applied to sequences of equal length. Consequently, OM refers to the 

more general solution proposed by Levenshtein to the problem of sequence comparison and 

encompasses two particular cases: where the comparison is restricted to either substitution or 

insertion-deletion operations (see Table 1). 

 

                                                        

3
 Kruskal suggests a substitution penalty equal to 2, arguing that if the substitution cost is greater than 2 then “it is 

always shorter for a listing to use a deletion-insertion pair in place of a substitution, and if [it is equal to 2] it is as 

short” (1983, p. 18) 
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Table 1 — The three historical OM variants and their costs 

 Operations used 

 Substitution Insertion and deletion 

Hamming Yes (cost=1) No 

Levenshtein I Yes (cost=1) Yes (cost=1) 

Levenshtein II No Yes (cost=1) 

OM techniques were born in computer sciences and were subsequently imported into other 

scientific fields, especially biology. As OM was imported into the social sciences through biology, this 

scientific field is the de facto reference in terms of its integration into pre-existing theories. Indeed, 

Levine (2000), Wu (2000), and Elzinga (2003) all refer to biology to assess the use of OM in the 

social sciences and claim that in biology the edit operations used in OM are linked to chemical 

properties and transformations of sequences of DNA, RNA and proteins. It can be said here and now 

that if that were so, several of the fundamental biological operations involved in these 

transformations, such as swaps and larger transpositions, would be missing (Abbott 2000). 

In actuality, sequence analysis is used in biology as an approximation to avoid costly and 

lengthy experimentations. This is not to say that sequence analysis is a computational reproduction 

of biological experimentations but it is precisely the opposite, a way to solve the question of the 

identification of the structure and/or functions of DNA or proteins without what is considered as the 

most reliable way to do so, experimentation (Durbin et al. 1998). To achieve this, the key process is 

homology, where information about structure and/or function of sequences already known by 

experimentation is transferred to sequences with which significant similarities are found. In biology, 

indel and substitution operation do not have substantive meaning. Costs, however, are defined 

according to biological theories. 

Substitution costs usually reflect evolutionary preferences for certain evolutions over others4. 

Computational biologists believe that indel costs should reflect the probability of inserting a gap in a 

sequence, possibly depending on the kind of “residue” (event) inserted. Insertion and deletion 

operations are mainly used in biology to take into account possible evolutionary processes involving 

the introduction of some unimportant residues between related alignments. However, even though it 

is also possible to turn the question of setting insertion and deletion costs into probability estimation, 

in practice this possibility is often disregarded and indel costs are usually set empirically relatively to 

substitution costs (Durbin et al. 1998, p. 16-17 and 44-45). Therefore, OM’s three edit operations 

have no particular meaning in biology. They are just abstract operations used to align sequences. 

The key of the successful transposition of OM into the biological field rest on costs which are 

                                                        
4 A low substitution cost between two states in an alignment means that under some phylogenetic 
assumptions the two sequences are probably related. As a result, substitution matrices are above all a 
question of probability estimation, which means that the main task of computational biologists is to 
constitute a good sample of confirmed alignments but also of alignments which are plausible under certain 
phylogenetic assumptions in order to estimate these probabilities. 
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interpreted and defined according to biological theories. Social scientists should therefore not be too 

worried about the substantive meaning of edit operations5 but should rather focus on cost setting.  

In the social sciences, when an event is inserted or deleted, it is also time that is either added 

or removed. Indel operations warp time so as to align identically coded events. On the other hand, 

substituting an event by another preserves the timing of the sequences but at the cost of 

approximating an event by another one. In summary, insertion and deletion operations preserve 

events but distort time while substitution operations do just the opposite, i.e. they conserve time but 

alter events. As a result, OM applied to sequences of social events is a combination of 

accelerations/decelerations to match subsequences of identically coded events and of event 

approximations when the flow of time is normal (see Table 2). The expression “normal flow of time” 

has been used here to emphasize that once time has been warped, co-occurrences of events do not 

mean that these events are necessarily contemporaneous, unless time is accelerated then 

decelerated so that the respective time-scales of both sequences coincide again. 

Table 2 — Edit operations and sequences of social events 

 Insertion-Deletion Substitution 

Preserved Events Time 

Altered Time Events 

The warping of time by indel operations is a well-known feature of OM in the speech 

recognition field, which shares with the social sciences some of their concern with time6. While time 

warping is a valued feature in this field where it “has no intrinsic meaning and can be freely distorted” 

(Kruskal et Liberman 1983) this question is more problematic in the social sciences. Indeed, time 

warping means that events coded identically but occurring at different moments are considered as 

almost perfectly equivalent except for the weighted number of episodes that separate them. In the 

Levenshtein I and II distances, neither the nature of the events suppressed nor their locations in the 

sequence are considered as relevant. As a consequence, time warping destroys the temporal links 

between sequences, their contemporaneity. To insert time to identify unemployment spells of 

approximately equal length suggests that the events themselves and their order are more important 

                                                        
5 Some authors (Levine 2000 ; Wu 2000 ; Elzinga 2003) expressed concerns about the sociological 
meaning of the three basic operations of OM, some arguing that the legitimacy of OM in biology was 
stemming from the theoretical relevance of the three edit operations. 
6 In this field, OM is used to (1) measure the variability of compression-expansion between two sequences, 
(2) determine the degree of resemblance of two sequences independently of differences in compression-
expansion, and (3) build ‘average’ sequences. In this context, indel operations can be used to compress 
and expand time so that different delivery speeds of the same words can be taken into account. Both indel 
and compression-expansion operations are used in speech recognition. The former are used in order to 
recover interpolated or deleted sounds (e.g. “probably” may be pronounced “prob’ly”, etc.) whereas the 
latter are used to synchronize identical sub-sequences. The difference between these two very similar 
operations, both implemented by indel operations, lies in their respective costs (more details can be found 
in Kruskal and Liberman, 1983, especially in sections 6 and 7). It is interesting to note that, as in biology, it 
is through costs that OM is fine-tuned in order to suit the requirements of the analysis. 
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than when they occur (e.g. in a mass unemployment or a full employment period); thus events lose 

their indexicality. 

When sequences are put together in order to be analyzed by means of sequence analysis 

techniques, it is assumed that they are ordered according to a common time scale and that the aim 

of sequence analysis is to study the thus implicitly defined calendar. A calendar is not necessarily an 

institutionalized system of division of time as the year, the month, the hour, but can be defined as any 

relevant social system of division of time as for instance the calendar of footsteps of the Ilmington 

dances (Abbott et Forrest 1986), the calendar of the German musician careers (Abbott et Hrycak 

1990) or the calendar of lynching (Stovel 2001). The term calendar is used here to emphasize that 

the aim of applying sequence analysis on social science data is to uncover socio-temporal 

regularities. This term refers to the precursory work of Durkheim on time (Durkheim 1912): “The 

calendar expresses the rhythm of collective activities, while at the same time its function is to assure 

their regularities”. Calendars reveal the rhythm(s) of collective life but at the same time help 

individuals to anticipate, plan and orient themselves. Calendars can be more or less structured, 

institutionalized, recognized by actors, etc., but as long as there is some sort of collective activities 

there is a calendar. 

As a consequence, what time-warping and contemporaneity mean depend on the nature of 

the calendar implied by putting sequences together. Contemporaneity does not refer exclusively to 

the common period of time in which sequences may unfold. For example in a panel of individuals 

followed over a period of years, trajectories involve age and period effects. But with such data, other 

types of sequences can be defined. For instance, Brendan Halpin (Halpin 2008), using the British 

Household Panel Survey, studied the six-year monthly labor market histories of women who had a 

birth at the end of the second year, classified into full-time and part-time employment, unemployment 

and non-employment. In this case, even if the time unit is still months, the calendar studied is defined 

by the cohort of women who became mothers at the end of the second year, whatever this year is. 

Even if trajectories are not anymore located in the same historical time, time warping is still an issue 

as the aim of the analysis is to identify different temporal patterns of labor market attachment after 

entry into motherhood: whether women get back to work six months or two years after giving birth to 

their first child matters for the analysis. 

As shown by this example, the effect of time warping also depends on how sequences are 

arranged and coded. Coding states amounts to defining the social space in which unfold the series of 

states studied. With OM, social sequences are indeed not considered as “the list of successive 

realizations of an underlying stochastic process” (Abbott 1990) but as social processes unfolding in 

interactional fields governed by rules and regularities (Abbott 1997). Consequently, the kind of 

temporal patterns that can be uncovered using OM depends first on the state space defined in this 

coding stage. The kind of temporal patterns that can be identified by OM and as a result whether or 

not time-warping is a desirable feature primarily depend on the definition and constitution of the 

social field studied. In history, OM was applied to identify patterns of folk dances (Abbott et Forrest) 

or musicians careers (Abbott et Hrycak). In the field of stratification analysis, OM has been used to 
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identify intragenerational mobility patterns (Halpin et Chan 1998); in time-use analysis it has been 

applied to examine daily lifestyles (see for instance Saint Pol 2006 ; Lesnard 2008)7. 

The kind of temporal patterns that can be brought to light with OM can be located on a scale 

(see Figure 1) ranging from the number of identical states identically located in the sequences 

(Hamming distance, see Table 1) to the longest common subsequences irrespectively of their 

location in the sequences using only indel transformations (Levensthein II distance, see Table 1). 

When all the states have the same substitution cost, setting indel costs to a value smaller than or 

equal to twice the cost of a substitution amounts to finding the longest common subsequences 

wherever their locations in the sequences. When one insertion and one deletion cost more than one 

substitution, as for instance in the Levenshtein I distance (see Table 1), then both kinds of operation 

are used and it is not anymore the longest common subsequences which are found but the longest 

quasi-common subsequences. A quasi-common subsequence has some states not aligned in 

between two series of common states. Using more than one substitution cost allows even more 

flexibility in the balance between identical subsequences and very similar subsequences as it gives 

the possibility to define what kind of quasi-common subsequence is acceptable or not. States with 

high substitution costs, that is, higher than one insertion and one deletion cannot be part of the 

longest quasi-common subsequences whereas states which substitution costs are lower than two 

indels can be. 

 

 

 

 

 

 

Figure 1 — Ratio of substitution to indel costs and kinds of pattern captured by OM 

The balance between indel and substitution operations will focus the analysis towards 

temporal patterns located between two polar ideal-types, one where the timing of events is less 

important than their order (the Levenshtein II pole) and the other where the timing of events is crucial 

(the Hamming pole). Using only indel transformations makes it possible to identify long common 

subsequences whereas using only substitution operations amounts to measuring the degree of 

contemporaneity of sequences. In their review, Abbott and Tsay (2000) underline that indel costs are 

most of the time set empirically once substitution costs are defined, either empirically or theoretically. 

                                                        

7
 For a review of the different uses of OM in the social sciences, see Abbott and Tsay (2000). 
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As a consequence, setting substitution costs so that they adequately capture contemporaneous 

similarities is the major challenge social scientists are facing, whether or not indel operations are also 

used. 

3. Improving substitution costs to capture contemporaneous 
similarities 

When the timing of event is crucial, insertion and deletion operations warp time and smooth out a 

great part of the social structure of sequences. This is the case in the time use field where the timing 

of everyday activities is decisive. But it is can also the case in other fields such depending on the 

research questions, as for instance life course research where the timing of the different stages 

analyzed is very often critical (Aisenbrey et Fasang 2007). Preserving the timing of sequences 

comes at the expense of distorting episodes whenever they are different. Indeed, substitution costs 

reflect the penalty of replacing a state by another one: the higher the penalty, the more different 

states are. Substitution costs should then be interpreted as the likelihood that two different episodes 

are contemporaneously close i.e. that they belong to the same trajectory pattern even though they 

are different. In this respect, it seems better to allow substitution costs to vary with time in order to 

improve the extraction of the social structuring of the timing of events. Time-independent substitution 

costs amount to assuming that the likelihood that two different episodes are contemporaneously 

close is time-constant, which is a strong assumption. 

Yet, once sequences are time warped by indel operations, their respective time scales do not 

coincide anymore and time-varying substitution costs cannot really be used unless a choice is made 

regarding which date of the two sequences should be considered. The simplest way to implement 

time-varying substitution costs is to keep sequences always in sync by using only substitution 

operations, which is possible only when sequences are of equal length. When no indel operations 

are used, matching is based on the identical parts of the two sequences and on the time-varying 

degree of proximity of the differing episodes. 

Table 3 — Time-dependent substitution costs: an example 

 Low rate of 
unemployment 

 High rate of unemployment 

 1 2 3 4 5 6 

i E E E U U E 

j U U E E E E 

k E E E E E E 

If we consider two sequences describing work stability with two states, employed (E) and 

unemployed (U), then using time-varying substitution costs makes it possible to define 

unemployment spells as being closer to employment ones when the unemployment rate is high. For 

example, if the employment rate is low at the beginning of the period studied (t = 1,2) but high after, 

then the distance between j and k will be higher than the one between i and k because being 
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unemployed at a time of full employment is more atypical than when unemployment is widespread 

(Table 3). Such time-varying substitution costs also mean that the distance between i and j will be 

higher than the one between k and i because even if they have more events in common (they both 

experience unemployment), these events occur at different dates with different rates of 

unemployment: when unemployment is low, being unemployed is more atypical than at times of 

mass unemployment. Of course, if the unemployment rate were stable throughout the period studied, 

then using time-varying substitution costs would be irrelevant. 

In this example, substitution costs are defined according to the rate of unemployment, which 

can be calculated from the same data. Such a method to derive substitution costs becomes 

problematic for sequences with three or more states8. A solution to take into account the timing of 

sequences is to use the series of transition matrices that describe the transitions between all states 

between two consecutive dates. A transition matrix is a macro representation of individual trajectories 

between all the different states between two consecutives dates. The strength of the flux between 

two different states, measured by transitions, can be used as an indicator of how close two different 

events are. A low transition rate between two states means that, at that particular moment, these two 

states are not connected hence that they can be considered as being part of two distinct trajectories. 

On the contrary, a high transition rate between two states can be interpreted as a change of state 

within a single trajectory. 

For example, in the 1999 French Time Use survey, 22% of the respondents started to work 

between 8:00 and 8:10 but only 3% between 10:40 and 10:50. Conversely, only 78% of those not at 

work at 8:00 were still not working at 8:10 whereas 97% of the non-workers at 10:40 did also not 

work 10 minutes later. In the vocabulary of markov chain analysis, between 10:30 and 10:40, work 

and non-work are very close to being two absorbing states, that is, two states from which it is 

impossible to leave, suggesting that these two states belong to two different processes. If in two 

workdays considered at 8 AM, one has work but not the other, then even if these two episodes are 

different, they are however likely to belong to the same type of workday.  

As a result, the cost for substituting work for non work should reflect that even though 

episodes are different, empirical evidence at hand suggest that at that particular moment in time, 

they are likely to be two slightly shifted variants of the same type of workday. On the contrary, 

because transitions are very low between 10:30 and 10:40, the states work and non-work found in 

two sequences should be considered as very different at that time. Whereas it is hard to tell around 

8 AM if two persons, one working and not the other, have different work schedules, it is easier at 

10:40. 

                                                        

8
 When there are only two states, the contemporaneous proximity can be derived indifferently from either the rate of 

unemployment (pt(U)) or the rate of employment (pt(E)) since pt(U) = 1 ! pt(E). 
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It is not because two events are coded identically that they are socially equivalent: a one-hour 

work spell in the middle of the afternoon vs. one at the beginning of the night is clearly different. But 

the difference in the absolute number of hours that separate them can be either increased or 

lessened by collective rhythms. For instance, the social difference between one hour of work from 

4 PM to 5 PM (9-to-5 workday) and another from 7 PM to 8 PM (evening work) is larger than the 

absolute number of hours that separate 4 PM to 7 PM9. 

4. Dynamic Hamming Matching 

The solution suggested in this paper is (1) to use time-varying substitution costs inversely 

proportional to transition rates (2) to only use substitution operations10. When all sequences have the 

same length11, and the sample and coding are defined so as to uncover contemporaneous 

similarities, then is it possible to use only substitution operations with costs derived from transitions. 

Temporal distortions are avoided since indel operations are not used. This method is no longer 

based on optimality principles, precisely because it is the search of logic optimality that causes time 

warping. In this regard, the OM variant suggested here can be seen as an extension of the Hamming 

distance with substitution costs derived from the series of transition matrices describing the 

sequences. Sample weights can be used to estimate the transitions matrices so that the survey 

design can be to a certain extent integrated in OM12. 

                                                        

9
 Before turning to the solution proposed in this paper to the question of substitution cost setting, it seems necessary 

at this point of the article to address the issue of the software implementation of OM. It should be clear that importing 

directly into the social sciences programs that were designed in other fields is delicate. While it is no longer 

maintained but still available, it is worth mentioning the program designed by Andrew Abbott, Optimize. Only time-

invariant substitution costs can be used and indel costs are determined relatively to them according to a scale factor. 

A sequence module is available in the TDA package, a freeware developed by Götz Rohwer and Ulrich Pötter of the 

University of Bochum originally to apply event history models. By default indel and substitution costs are 

respectively set to 1 and 2 but can be set to other values. Indel costs can be set using a single value, a user-defined 

matrix or a linear indel function cost with two parameters. Transition frequencies or any user-defined matrix can also 

be used as substitution costs. A set of Stata ado files proposing roughly the same functionalities have been recently 

released (Brzinsky-Fay, Kohler et Luniak 2006). More recently, a R library, TraMineR, brings sequence analysis, 

including optimal matching, to R (Gabadinho et al. 2008). 
10

 It could be possible to use indel operations by using dynamic costs defined relatively to substitution ones; for 

instance the middle of the distribution of substitution costs. 
11

 In the social sciences, sequential materials are collected by means of survey and consequently are not necessarily of 

equal length. For instance, in a survey with retrospective questions on family and work biographies carried out on a 

representative sample of the population with age ranging from 18 to 65, family and work sequences are of different 

length. Analyzing with OM social sequences of uneven length seems highly problematic: what kind of regularities 

can be obtained out of sequences so varied in their completeness? Of course OM handles such sequences, but in a 

very cursory way, through insertions; the quality of such extrapolation then depends on insertion costs, in particular 

whether or not they vary with time. In the above example, the only solution available to analyze sequences of equal 

length would consist in focusing on partial biographies, between 18 and 30 for instance (transition to adulthood). It 

would amount to exclude respondents younger than 30 (incomplete biography) and to truncate the other sequences 

over that age. 
12

 Sample weights should only be used to calculate transition matrices, and consequently substitution costs. Instead of 

counting the number of transitions, it is simply the weighted number of transitions which should be taken into 
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The fact that substitution costs are derived from transitions between states and are used to 

compare events could appear in this regard as a kind of circularity. In fact, there is indeed some 

circularity here but this is not a problem since description is the only goal of the analysis. The output 

of OM, a distance matrix between sequences, is indeed just a new way of presenting the underlying 

series of transition matrices. However, whereas a series of transition matrices represent just macro 

relationships without connection with one another, the OM presentation proposed here is an 

individual and sequential synthetic measure of those relationships. This sequence comparison 

method is basically turning transition matrices into inter-individual differences. 

This variant can appear similar to the common practice of setting substitution costs using 

information about transitions (Abbott et Forrest 1986 ; Abbott 2000). If this strategy has indeed 

already been used, substitution costs are usually time independent, i.e. they are derived from a 

global transition matrix collapsing all the couples of dates, thus disregarding the intra-sequences 

variability. 

When the sequences have all the same length it is suggested to estimate the 
{ }tabp , , the 

proximity of two states occurring at the same time, by the series of conditional probabilities 

describing the transitions between the states a and b considered between the dates t ! 1 and t, and t 

and t + 1: 

! 

p Xt = b Xt"1 = a( ) 13, 

! 

p Xt+1 = b Xt = a( ), 

! 

p Xt = a Xt"1 = b( ) , 

! 

p Xt+1 = a Xt = b( ), where Xt is a 

random variable describing the occurrence (event) of the tth episode of a sequence. In other words, a 

diachronic distance is substituted for a synchronic one. From a probabilistic point of view the higher 

the probability of transition between the two states before and after t, the closer the two episodes. 

One possible way to do this is simply to define the substitution cost function as14:  

( )
( ) ( ) ( ) ( )[ ]

( )1
otherwise0

 if4
,

1111

!
"
# $==+==+==+==%

= ++%% baaXbXpbXaXpaXbXpbXaXp
bas tttttttt

t

 

                                                                                                                                                                   

account. The matching procedure in itself, i.e., the comparison of pair of sequences does not require any weights; it is 

by definition a one to one procedure. However, sample weights should be turned on to interpret results, for instance, 

if cluster analysis is used, the size of the clusters obtained must be weighted. 
13

 It is formally the probability of reaching the state b at time t conditionally to being in the state a at time t ! 1. 

14
 This formula is a quite straightforward adaptation of the one used in TDA to implement transition-based 

substitution costs (Rohwer et Pötter 2005, p. 496-497). It is valid on the interval 

! 
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The higher the transitions between the states a and b and between t ! 1 and t, and between t 

and t + 1 (with an upper bound of 4), the lower the substitution cost between the two episodes a and 

b at t (with a lower bound of 0). Indeed, high transitions mean that many individuals have just 

changed from a to b or from b to a, or that they are about to do so. In statistical terms, the probability 

at t that a and b belong to the same trajectory is high. On the contrary, low transitions mean that 

these two states are not connected around t, that, from a probabilistic viewpoint, they belong to two 

different types of trajectories. Thus, substitution costs depend on time and are derived from the 

transitions observed in the sample studied. As transition rates necessary imply two consecutive 

dates while dissimilarity is only needed for a single date, it seems better to smooth a little bit 

substitution costs by taking into account the two transitions immediately before and after the date of 

interest rather than only the one before or after. 

Other implementations of this type of transition-based substitution costs are possible. More 

transitions before and after the date of interest could have been taken into account. It would have 

even been possible to use all the transitions before and/or after t in order to smooth more substitution 

costs15. However, as the aim of DHM is precisely to uncover temporal patterns, smoothing should 

never be too strong. Overall, the more dates considered in the calculation of such substitution costs, 

the more timing is smoothed. However, the effect of the number of dates ultimately depends on both 

the time unit and the timing of the variations of the process studied. If daily activities were observed 

minute by minute instead of every ten minutes, it might have been necessary to use more dates 

before and after t. On the contrary, if daily activities were only observed every hour, then using more 

dates would have certainly smoothed out most of the temporal variations. The question of the 

correspondence between the time unit and the variations of the phenomenon measured is however 

unlikely to appear in practice as the time units of longitudinal data are very often scaled to the 

temporal variations of the process of interest. 

Before turning to the application of this method to the scheduling of paid work, it is worth 

noting that transitions from a to b as well as from b to a are used to estimate the degree of proximity 

of the states a and b. Deriving substitution costs from transition does not imply that substitution costs 

are conceived in terms of transitions. Substitutions are diachronic in essence whereas transition are 

by definition synchronic. In the example of job stability, it means that both those who become 

unemployed and those who find a job are taken into account to assess the proximity of the states 

employment an unemployment. A sequence with three employment spells followed by three 

unemployment spells can be considered as quite similar as another one with three unemployment 

spells and three of employment at t = 3 if the substitution cost is low, but the total distance will be 

nonetheless quite high as they never coincide: “The fact that there is a temporal or linear logic (that 

                                                        

15
 In this case, rather than assigning equal weights to past and/or future transitions, decreasing weights with the 

temporal distance of transitions from t could be used. For instance, it might be interesting to use exponentially 

decreasing weights similar to those used in the exponential smoothing technique in time-series analysis. 
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certain states are disproportionately likely to follow or precede other specific states) is a feature of 

the longitudinal nature of the trajectory rather than of the state space” (Halpin 2008). 

5. An application to the daily scheduling of paid work 

Contrary to the order required by communication, it is through the question of the scheduling of paid 

work within the day that the theoretical considerations that have been proposed first were in fact 

elaborated. Dynamic Hamming Matching is nonetheless not bind to this question and to this kind of 

data but can be applied to any social sequence dataset where timing is essential. For instance it has 

been successfully applied to life course data to identify trajectories to old age security in West 

Germany (Aisenbrey et Fasang 2007). It has also been applied to more complex time-use sequences 

to describe jointly the work schedules of dual-earner couples with the help of four states (Lesnard 

2008) or the scheduling of work over the week with short sequences (seven days) made of five 

states (Lesnard et Saint Pol 2009). The simplicity of the analysis of work schedules where 

sequences are just made of zeroes (not at work) and ones (at work) is intentional and aims at 

exploring how Dynamic Hamming Matching fares on an ideal-typical problem. To do so, DHM will be 

compared to the three classical OM variants described in Table 3. 

Work schedules have been usually reduced to either durations (the number of hours of work) 

or categorical indicators (e.g. day vs. night work). In order to distinguish night work from work 

schedules shifted in the afternoon/evening or in the morning, precise criteria are required. Despite 

the fact that these criteria can be based on a priori knowledge, they require setting threshold and as 

such, necessarily entail some arbitrariness. As a result, the scheduling of work is most of the time 

reduced to simplistic and rigid dichotomies, eg. day vs. night work, which makes it difficult to study 

work schedules with the necessary level of details. Indeed, when the entire distribution of work hours 

over the day is taken into account, it appears that if night work remained stable in the US since the 

1970s, work before 9 AM and after 5 PM increased significantly (Hamermesh 1999). This trend can 

be linked to the growth of the service sector where many occupations have work hours at the fringes 

of the of the 9-to-5 workday (Presser 2003). These low-skilled occupations also tend to work fewer 

hours than in the past (Gershuny 2000), yet, short workdays do not necessarily go hand in hand with 

shifted schedules. If previous studies gave some very useful first elements on the correlation 

between work schedules and occupation, only a detailed typology of workdays can give more 

insights on this issue. As the timing of work is more important for the analysis than the number of 

hours of work, OM variants close to the Hamming pole on Figure 1 should in theory give better 

results. 

Information on work time can be collected using various methodologies, but it has been 

proven that the time diary approach produces far better estimates than any other method (Robinson 

1985). Indeed, contrary to the “stylized questions” on time directly asking respondents to give 

average estimates of the time they spend doing some pre-defined activities, in time use surveys 

information on time is collected in diaries in which respondents describe, with their own words, the 



OSC – Notes & Documents N° 2009-03 
Laurent Lesnard – Cost Setting in Optimal Matching to Uncover Contemporaneous Socio-
Temporal Patterns 

14/25 

sequence of activities they did on a specific day. These descriptions are then coded according to a 

nomenclature of activities. Unfortunately, this sequential information on daily life is usually reduced to 

aggregate durations (time-budgets) despite the wealth of sociological information they contain, in 

particular on the sequencing of daily life (Gershuny et Sullivan 1998). The last two French time use 

surveys (1985-86 and 1998-99) used here were done in person by the French Institute of Statistics 

(INSEE) over the course of a year16 and had high response rates17. In the 1985-86 survey, one 

respondent was selected among household members ages 15 and over using the Kish method. 

When the respondent had a partner, he or she was also interviewed. In the 1999 survey, all 

household members over 15 year old were interviewed. In both surveys, respondents were asked to 

describe their activities over the course of one day, imposed by interviewers so that all the days of 

the week were represented equally. As the aim of the analysis is to describe workdays, the 

information about daily activities contained in the diaries of these two surveys has been drastically 

reduced to two activities: work vs. non work. Diaries of both surveys cover 24 hours (midnight to 

midnight), with minor differences in precision18, and as a result all sequences have the same length 

(144 10-minute spells) and are day-synchronized. 

Four OM analyses were conducted on the two samples merged (N = 7,908)19: 

• Hamming 

• Dynamic Hamming 

• Levenshtein I 

• Levenshtein II 

The four dissimilarity matrices were analyzed with the flexible beta cluster algorithm, also 

known as flexible WPGMA (Weighted Pair Group using arithMetic Averages), proposed by Lance 

and Williams (1967), one of the most efficient method in presence of noise and outliers (Milligan 

1980; Milligan 1981; Milligan 1989). The same settings have been used (! = ! 0.5) for the four 

dissimilarity matrices. Following Rohwer and Pötter (2005, p. 468-470), entropy (Shannon’s H) is 

used to compare the homogeneity of state distribution in the four typologies. If pt j is the proportion of 

individuals who are in state j at t, then entropy at time t can be defined as: 

                                                        

16
 With the exception of summer and Christmas holidays. A year is a small observation window with respect to the 

pace of changes in the use of time (on changes in the use of time since the 1960s, see Gershuny, 2000). 
17

 65% for the 1985-86 French TUS, and 80% for the 1998-99 one.  
18

 The 1985-86 and 1998-99 surveys have respectively 5- and 10-minute time slots: comparability can be an issue but 

an unpublished methodological study (Alain Chenu, personal communication) suggests that problems are likely to be 

minor and limited to very specific sequences of activities (clearing the table vanishes in having meal for instance). 

Work time should not be too affected by this methodological difference. 

19
 DHM is available in SAS as a macro, in Stata as a plug-in (see the author’s web page), and soon in R in the 

TraMineR library (Gabadinho et al. 2008). All the OM analyses were carried out in R with TraMineR. Detailed 

results will only be provided for the Dynamic Hamming Matching typology. 
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Ht is bounded by 0 and ln(q), values reached respectively when all individuals are in the same 

state and when individuals are equally distributed among the q states. Therefore, the lower Ht, the 

higher the homogeneity of state distribution at t. In other words, low entropy values signal that all the 

individuals considered are in the same state (work for instance) at the same time. As a result, 

entropy can be used as a measure of contemporaneous similarity of the four typologies. Entropy is 

by no means an absolute quality index as it obviously favors high degree of contemporaneous 

similarities. It is used here only to see whether or not Dynamic Hamming Matching captures this kind 

of temporal pattern better than Levenshtein I and II dissimilarity measures. 

Table 4 — Average entropy (twelve-cluster solutions)
20

 

 H % 

Hamming 0.2121 30.60 

Dynamic Hamming 0.2172 31.33 

Levenshtein I 0.2183 31.50 

Levenshtein II 0.2182 31.48 

Whole sample 0.4000 57.70 

Note. The first column shows the absolute values of entropy (weighted averages over cluster and time for 
the typologies) and the second, values of entropy relative to the maximum possible value (ln(2)). The lower 

entropy, the higher homogeneity.  

The entropy figures corresponding to each of the four typologies (see Table 4) were obtained 

in the following way. First, entropy was derived from (2) for each time slot and for each of the twelve 

groups of a given typology21. To get an entropy indicator for a group of a given typology, these 144 

entropy figures were then averaged (simple mean). At this stage each of the twelve groups of the 

four typologies is characterized by an average entropy. In order to obtain a single figure for each of 

the four typologies, these twelve entropy measures were finally weighted by the size of their 

respective clusters and averaged. These successive averages are likely to be responsible for 

smoothing out most of the differences in entropy between the four typologies. However, even if 

differences are small, the two Hamming dissimilarity measures have indeed the lowest entropy 

values. 

                                                        

20
 There is no absolute and rigid rule to decide how many clusters are necessary to give a synthetic but faithful 

representation of the data analyzed. However, considering the inter-group distance for the last steps in the grouping 

process can give some guidelines as a spike reveals that two dissimilar clusters have just been joined. The graph (not 

shown) for Dynamic Hamming Matching suggests that an eight-class scheme is the most acceptable synthetic 

representation of the structure of the data. Other spikes are occurring when the number of classes is reduced from 

eleven to ten, and from fifteen to fourteen. The right number of classes is therefore between thirteen and eleven. A 

twelve-class classification was finally adopted after close inspection of the shape and relevance of all the cluster 

solutions between fifteen and eight. 
21

 The seqstatd command of the R library TraMineR was used (Gabadinho et al. 2008). 
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Figure 2. Entropy distribution for the four twelve-cluster typologies 

Note: The dotted lines indicates the average entropy value (cf. Table 4). Box widths are proportional to the 
square root of the size of each cluster. 

The inspection of the four series of twelve boxplots of the 144 entropy values (Figure 2) gives 

a better picture of the differences between the four OM variants. The two hamming dissimilarity 

measures keep entropy at very low levels for about half of the clusters whereas entropy figures are 

low for only four of the twelve clusters derived from the Levenshtein II one. It seems that the better 

entropy efficiency of the Hamming dissimilarities for a larger number of clusters comes at the 

expense of a two or three small clusters with very high entropy values. This explains why on the 

average the four cluster solutions are about the same. It should also be noted that the low-value 

entropy clusters of Levenshtein II are smaller than the Hamming ones or even the Levenshtein I 

ones. As Levenshtein II does not favor contemporaneity, it is just because the data contain highly 

synchronized workdays that they are nonetheless picked up by this OM variant. However, only 

perfectly synchronized workdays are grouped together and even if the four techniques can identify 

the same highly synchronous patterns, their relative size is very different. For instance, with 

Levenshtein II, quite synchronized workdays but of different lengths will end up in two different 

clusters, just because parameterization favors identically coded events, here work duration, over 

their timing. The Levenshtein I cluster solution is in between these two patterns: it has both more low- 

and high-entropy groups than Levenshtein II but less than Hamming and Dynamic Hamming. 
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Homogeneity of state distribution can also be assessed visually by plotting for each episode 

the proportion of sequences in the cluster that are in the different states. An alternative is to stack all 

individual sequences horizontally. The former is an aggregate tempogram (or chronogram) and the 

latter is an individual tempogram or index plot. Both kinds of tempograms help to interpret and 

assess visually the quality of sequence classifications. The gradient and the height of the curve of 

aggregate tempograms indicate how homogeneous clusters are: the steeper and the higher, the 

more homogenous clusters are. If individual sequences are represented in individual tempograms by 

colored sub-segments then it is possible to assess the quality of clusters by the homogeneity of the 

different patches of color. With the exception of the last two clusters, which clearly lack homogeneity, 

the overall quality of the Dynamic Hamming Matching taxonomy assessed visually with aggregate 

tempograms appears quite satisfactory (see Figure 3). Individual tempograms (see Figure 4) confirm 

these impressions and measures, showing that most clusters contain very similar sequences. 

Tempograms of the two Levenshtein typologies (not shown) look less homogeneous, confirming 

previous findings. 
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Figure 3 — Aggregate tempograms for the Dynamic Hamming Matching typology 

Note. Cluster id numbers are different from Figure 2. 
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Figure 4. Individual tempograms for the Dynamic Hamming Matching typology 

Note. Cluster id numbers are different from Figure 2. 
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But more importantly, the other typologies are less interpretable. In the case of the 

Levenshtein typologies, it is certainly because the social structuring of the timing is partially blurred 

by indel operations. It is the opposite for Hamming, which is so good at spotting contemporaneous 

similarities that it tends to group sequences together not because they are alike but just because 

they are very dissimilar from the very synchronized ones. Work schedules can be described roughly 

by two simple indicators: the number of work hours and the time of the day corresponding to the 

middle of the workday (mid-workday), which gives a very rudimentary indication of the scheduling of 

work within the day. With the help of Table 5 and of aggregate and individual tempograms, the 

Dynamic Hamming Matching clusters can be easily labeled and interpreted. The first three clusters 

consist of the 9 to 5 workdays and of two variants, one slightly shifted to the left in the morning, the 

other slightly shifted to the right but also markedly longer. Another group of clusters consists of 

shifted schedules: in the morning, in the afternoon, in the evening and in the night. As a result, we 

see that night work, the only shifted work schedule usually taken into account, is only the tip of the 

iceberg of “shifted work schedules”. Work schedules located at the margin of the 9 to 5 work day 

have increased in France as it was found for the US with visual estimates (Hamermesh 2002). 

Table 5. Basic characteristics of the classification (averages in hours:minutes per day) 

  1985-86 1998-99  

  Type of work day Size 
(%) 

Mid-
work day 

Duration Size 
(%) 

Mid-work 
day 

Duration Average 
entropy 

 Standard 56.45 12:59 8:26 54.71 13:06 8:43  

1 8 to 4 7.60 12:00 8:14 6.79 11:53 8:22 .1390 

2 9 to 5 38.17 12:53 8:17 33.88 12:57 8:23 .1720 

3 10 to 7 10.69 14:01 9:09 14.03 14:03 9:39 .1872 

 Shifted 14.41  7:16 16.55  7:16  

4 In the morning 5.26 9:44 7:39 6.07 9:45 7:44 .1381 

5 In the afternoon 5.40 15:32 6:46 6.43 15:24 6:43 .2812 

6 In the evening 2.08 17:02 7:20 2.49 17:20 7:04 .3383 

7 In the night 1.66  7:38 1.57  7:56 .2394 

 Long 9.12 13:57 10:29 11.60 14:06 11:02  

8 Long 9 to 5 3.53 12:54 10:47 4.08 12:53 11:08 .2899 

9 
10 to 7 spreading in 
the evening 

5.59 14:38 10:18 7.52 14:46 10:58 
.4321 

 Other 20.02 12:50 3:45 17.14 13:11 4:13  

10 Fragmented part-time 3.23 13:21 3:50 2.38 13:28 5:33 .2327 

11 Fragmented full time 3.46 12:15 8:06 4.22 12:11 7:20 .4343 

12 Very short work day 13.32 12:52 2:14 10.54 13:31 2:41 .2483 

 Total 100.00  7:32 100.00  7:58 .2172 

Long workdays come in two flavors: either in a long version of the standard workday, i.e. 

beginning earlier and ending later than the 9 to 5 workdays, or in a long version of the 10 to 7 ones, 

i.e. ending later than 7 PM. Other patterns of workdays are less clear and are generally made up of 

short and/or fragmented workdays. Fragmented means that work schedules have at least two distinct 

work periods separated by considerable time. The best example of this is supermarket cashiers who 

are asked to work only during peak shopping periods, i.e., during the 9 to 5 workers’ lunch break and 



OSC – Notes & Documents N° 2009-03 
Laurent Lesnard – Cost Setting in Optimal Matching to Uncover Contemporaneous Socio-
Temporal Patterns 

21/25 

after the 9 to 5 work day (Prunier-Poulmaire 2000). Fragmented part-time workdays are often 

concentrated around the lunch break, i.e. at the end of the morning and the beginning of the 

afternoon. Fragmented full-time workdays are fragmented workdays par excellence. Indeed, although 

their duration average eight hours, they are made of two distinct but highly variable work periods 

separated by several hours. In this case, mid-work day is a very poor indicator of the scheduling of 

work. Finally, the last cluster groups very short workdays together. Since all days with at least a 10-

minute work spell have been considered as workdays, this last cluster collects in fact very short work 

days without having to a priori define a minimum work time. 

6. Conclusion 

Up to now, OM has been mainly used in the social sciences as a kind of sequence data mining tool 

capable of uncovering socio-temporal patterns. There is nothing wrong with this kind of use but even 

if OM can be used without any specific expectations on the kind of socio-temporal patterns buried in 

data, it seems crucial to know what kind of patterns can be uncovered with OM and how those 

different patterns are linked to cost setting. Indel operations warp time in order to match identically 

coded states but occurring at different moments in their respective sequen ces. Substitutions do the 

opposite as substituting one event by another preserve their location in their respective sequences 

but entails approximation. As a result, the kind of socio-temporal patterns that can be brought to light 

by OM vary with costs and range from finding the longest common subsequences irrespective of 

their locations, when indel costs are low relatively to substitution ones (Levenshtein II), to identifying 

contemporaneous similarities, when indel costs are high relatively to substitution ones (Hamming). 

The flexibility offered by OM is even greater when more than one substitution costs are used and 

when costs vary with time. 

Two consequences can be drawn on. First, that if OM can be used as a sequence data mining 

tool, different combinations of costs should be used in order to explore the different types of temporal 

patterns concealed in data. In this respect, the Levenshtein I dissimilarity measure might represent a 

good starting point, as it combines limited time-warping with neutral substitution costs. In a way, 

Levenshtein I plays a similar role in OM than the uniform prior distribution in Bayesian statistics. 

Second, if OM is used to measure specific similarities, then costs should chosen accordingly. Of 

course in any case, coding is likely to play a major part in the kind of temporal patterns that can be 

uncovered. This step is as crucial as parameterizing correctly OM given that socio-temporal patterns 

are captured within the bounds laid out by the different states chosen. If no difference is made 

between two states playing a fundamental part in the trajectories studied, then it will be hard to get 

something out of OM, whatever costs are chosen. 

The greatest challenge social scientists are facing to apply OM is to find sensible ways to 

determine substitution costs to capture adequately contemporaneous similarities. This issue is even 

more prominent when the timing of the sequences studied is of primary importance, as it can be in 

time-use studies, but also in other field of social sciences, as for instance for life-course research. 
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Indeed, using indel operations amounts to voluntarily adding noise to the phenomenon under study 

and should be seldom used whenever the timing of events is considered as crucial for the analysis. 

Dynamic Hamming Matching (DHM), which only use substitution operations with time-varying costs 

derived from the series of transition matrices, has been specially designed for this purpose. Indeed, 

as collective rhythms are behind the social differentiation of time, they should be central in the 

definition of substitution costs. The series of transition matrices describing a set of sequences can 

also be seen as the macro description of these collective rhythms. With substitution costs inversely 

proportional to empirical transition frequencies, low transition flows mean high substitution costs. 

When two states are disconnected in terms of transition probabilities, they will be considered as 

belonging to two distinct trajectories. On the contrary, high transition probabilities between two states 

may reveal changes in a single trajectory. Deriving substitution costs from transition matrices 

amounts to disaggregating and connecting this macro information on collective rhythms. 

Dynamic Hamming Matching was applied to study the timing of paid work and compared to 

the three classical OM variants. The four dissimilarity matrices were analyzed using flexible WPGMA. 

Despite the fact that DHM only uses substitution operations, differences in timing can appear within 

clusters. Indeed, as OM is only the first stage of the analysis and is supplemented by cluster 

analysis, giving the priority to contemporaneous similarities do not totally prevent from finding other 

kinds of patterns. But the cluster analysis stage is far from removing all the effects of cost setting. In 

terms of the homogeneity of state distribution (entropy), Dynamic Hamming Matching fared better 

than the two Levenshtein dissimilarity measures. The different types of workday are also more 

interpretable because information on the timing of sequences is not blurred by indel operations. 

As the goal of this article was to introduce the method and its rationale, it was not possible to 

push any further the methodological comparison of those four methods. It is however a much needed 

next step. OM is still quite new to the social sciences and therefore requires abundant critical use, 

replication, and validation (Levine 2000). Different ways of describing social patterns must be 

systematically compared using different kinds of data. In this regard, future methodological work 

should not be restricted to OM but should consider other forms of sequence analysis techniques but 

also alternative methods such as multiple correspondence analysis and direct cluster analysis. 
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