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Abstract

When multiple agents have access to many draws of private signals,
results from Frick, Iijima, and Ishii (2023) show that we can character-
ize the speed of individual and common learning away from the limit.
However, in a data-rich setting like this, it is challenging for agents to
remember and utilize precisely all of the signals they have received in the
past. In this paper, we consider a setting where agents experience biased
memory when making inferences, meaning certain signals are more likely
to be remembered than others. Our first main result characterizes the
speed of individual and common learning under this novel setting. We
then show that, contrary to classical wisdom, under certain information
structures, common learning occurs slower than individual learning; that
is, higher-order uncertainty vanishes slower than first-order uncertainty.
We also provide an intuitive necessary condition for this result: the state
that agents individually find difficult to distinguish from the true state has
to be different from the state that agents expect others to find difficult to
distinguish.
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1 Introduction
In a learning setting where multiple agents have access to many draws of private information,
economists have been interested in understanding how agents commonly learn the underlying
state of the world despite facing uncertainty to varying degrees. A classical result from
Cripps et al. (2008)shows that agents can always achieve approximate common knowledge
(in the sense of Monderer and Samet (1989)) of the true state once they observe an infinitely
large number of signal draws. Recent advancments by Frick, Iijima and Ishii (2023) provide
a way of characterizing the speed of individual and common learning away from the limit,
when agents observe a large but finite number of signal draws. Despite common learning
appearing more demanding, as agents’ first-order uncertainty about the state and their
higher-order uncertainty about other players’ beliefs about the state both have to vanish
for common learning to be successful, a key lesson in this literature has been that common
learning occurs at the same rate as individual learning. The intuition behind this result
is that, for any information structure, higher-order uncertainty always vanishes faster than
first-order uncertainty.

However, in a "data-rich" setting like this, it is challenging for agents to remember
and utilize precisely all of the signals they have received in the past. In this paper, we
consider a setting where agents cannot remember all the signals they observed in the past;
particularly, when making inferences, they experience biased memory, where certain signals
are more likely to be remembered or recalled than others. Our first main result characterizes
the speed of individual and common learning under this novel setting. We then show
that, under certain information structures, common learning occurs slower than individual
learning; that is, higher-order uncertainty is vanishing slower than first-order uncertainty.
We also provide an intuitive necessary condition for when common learning occurs slower
than individual learning: the state that each agent individually finds difficult to distinguish
from the true state has to be different from the state that each agent expects others to find
difficult to distinguish.

Section 2 provides a brief literature review. Our results closely relate to the learning
literature, contributing to our understanding of both the speed of common learning and
the importance of higher-order uncertainty. We also discuss how the assumption of biased
memory is related to the behavioral economics literature and provide real-world examples.

Section 3 introduces the setup of the learning environment. For technical simplicity, we
consider an information structure I with binary signals, where higher frequencies of high
signals are more indicative of a higher state (state set is finite). Agents receive independent
draws of private signals from I, which specifies a (full support) joint distribution over agents’
private signals in each state but may feature arbitrary correlation across different players’
signals.

Section 4 characterizes the speed of common learning with biased memory. For each
information structure I, some biased memory functions could cause common learning to
fail. We are primarily interested in the rest of the memory function that does not lead to
a breakdown in common learning, which we term "mild memory functions." Under mild
memory functions, we consider the probability that agents have a common p-belief of the
true state aftertsignal draws fromI, and analyze how fast p converges to one as t grows large.
Utilizing Sanov’s theorem from large deviation theory, we derive a "multi-agent memory-
adjusted learning efficiency index" that characterizes the rate at which agents individually
and commonly learn the state. The proof of Propostion 1 and Theorem 1 demonstrate that
individual learning and common learning occur at different rates. Proposition 2 provides a
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necessary condition for when common learning can occur slower than individual learning.
We also include a subsection 4.3 with numerical exmaples to better facilitate understanding
of the intuition behind our main results.

Section 5concludes the article with a brief discussion on future research agendas and
questions.

2 Related Literature
First and foremost, our paper closely relates to the learning literature. We adopt a similar
learning setting as inCripps et al. (2008) and Frick, Iijima and Ishii (2023). As mentioned
above, we contribute to their work by incorporating biased memory into the canonical
setting, offering novel insights into the speed of individual and common learning. Contrary
to classical wisdom, we demonstrate that with biased memory, under certain information
structures, common learning can occur slower than individual learning: even when first-order
uncertainty has vanished for the slowest learning agent, higher-order uncertainty persists,
delaying common learning. Other studies have explored different settings where there is an
extreme breakdown of common learning. Steiner and Stewart (2011) and Cripps et al. (2013)
examine settings with correlated signals between draws, while Acemoglu, Chernozhukov and
Yildiz (2016) study settings featuring identification problems due to uncertainty about the
information structure. Our approach is less extreme and offers deeper insights; even with
i.i.d. signals between draws and no uncertainty about the information structure, with certain
memory functions, common learning or individual learning breaks down, whereas with other
memory functions, common learning is preserved but occurs more slowly than individual
learning.

We follow the approaches in Moscarini and Smith (2002) and Frick, Iijima and Ishii (2023)
in deriving the learning efficiency index and extend it to a multi-agent learning environment
with biased memory.Many others, such as Vives (1993), Hann-Caruthers, Martynov and
Tamuz (2018), Rosenberg and Vieille (2019), and Dasaratha and He (2023), have considered
individual learning efficiency indices in a social learning setup but have not focused on the
role of higher-order uncertainty. Harel et al. (2021) discuss how higher-order beliefs influence
agents’ inference and provide an upper bound on the speed of learning. However, their
setting involves long-lived agents repeatedly observing both private signals and actions of
other players. Our result does not require agents to observe actions; repeated private signals
are sufficient.

Our paper also contributes to a large literature on higher-order beliefs (for exmaple, Ru-
binstein (1989), Carlsson and van Damme (1993), and Weinstein and Yildiz (2007)). Our
result reinstates the importance of higher-order uncertainty on learning outcomes. Even
when agents have access to finitely many private signal draws and are rational in mak-
ing inferences, biased memory could cause additional confusion regarding agents’ estimates
about others’ beliefs, slowing down the speed of common learning. To improve efficiency in
common learning, merely improving first-order uncertainty is not sufficient.

he biased memory that we consider is documented in several papers. For example, it can
resemble the ego-boosting memory bias, which is documented and generalized in Fudenberg,
Lanzani and Strack (0), where signals reveal information on ego-relevant characteristics, such
as a successful IQ test. Zimmermann (2020)’s experiment finds that after taking an IQ test,
subjects who received negative feedback were less likely to recall the feedback compared to
subjects who received positive feedback. Walters and Fernbach (2021) finds that investors
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are 10% less likely to recall an investment that led to loss compared to ones that led to gain.
Our paper provides a learning outcome for this type of ego-boosting memory bias when
we consider high signals to be "positive feedback" and agents are endowed with a biased
memory function that remembers higher signals more frequently than lower signals.

3 Setup
The learning environment addressed in this paper is characterized by a fixed, finite set
of agents, denoted byN , and a fixed, finite set of states, denoted byΘ. Agents possess a
common full-support prior belief over the states, p0 ∈ ∆(Θ).

Agents receive independent and identically distributed (i.i.d.) signal draws from an
Information Structure I consisting of binary private signals si ∈ {L,H}. The space of
private signals for each agent i ∈ N is Si, withS :=

∏
i∈N Si denoting the set of all signal

profiles. Letµθ ∈ ∆(S) represent the joint signal distribution conditional on each stateθ ∈ Θ,
where arbitrary correlations between agents’ signals are allowed, and µθi ∈ ∆(Si) denotes
the marginal distribution over agent i’s signals. For technical simplicity, assume that µθi
has full support, and for eachθ > θ′, µθi (si = H) > µθ

′

i (si = H), indicating that higher
frequencies of high signals are more indicative of a higher state. Agents observe repeated
i.i.d. signal draws from information structure I. Let t ∈ N denote the number of signal
draws. Then, for each information structure I and t ∈ N,PIt ∈ ∆(Θ × St) denotes the
probability over states and sequences of signal observations when stateθ is drawn according
to priorp0, and signal profiles st = (sτ )τ=1,...,tare generated fromµθ, conditional on state θ.
Agent i’s observed signals up to t are denoted by xti = (xiτ )τ=1,...,t.

Letνit ∈ ∆(Si)denote agent i’s proportion of high signal realizations up to time t:

νit :=
1

t

t∑

τ=1

1{siτ=H}

Since signals are binary,νit serves as a sufficient statistic for agent i’s empirical signal
distribution.

In addition to this rational benchmark, an agent’s memory of past signals is distorted
by a collection of signal-dependent memory functions, denoted as f : S → [0, 1], where f(si)
specifies the probability with which the agent remembers a past realization of a signal. The
agent is unaware of their memory bias and naively updates their beliefs as if the signals they
remembered are the only ones they received. The posterior belief of the signal distribution
is governed by a memory function m:

m(νit) =
f(si = H)νit

f(si = H)νit + f(si = L)(1− νit)

For anyt ∈ N, p ∈ (0, 1), memory function m, and event E ⊆ Θ × St, let Bpt (E) denote
the event that Eis p-believed at t, i.e., that all agents assign probability at leastp to E after
t draws from I. That is,

Bpt (E) :=
⋂

i∈N
Bpit(E), where Bpit(E) := Θ×

{
sti ∈ Sti : PIt

(
E | m(sti)

)
≥ p
}
×
∏

j 6=i
Stj
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We say that all agents individually learn the true state when, for all p ∈ (0, 1), θ ∈ Θ,
and memory function m, we have:

lim
t→∞

PIt (Bpt (θ) | θ) = 1

Common learning additionally considers agents’ higher-order beliefs. Let

Cpt (E) :=
⋂

k∈N
(Bpt )

k
(E)

denote the event that E is commonly p-believed att, where (Bpt )
1

(E) := Bpt (E) and
(Bpt )

k
(E) := Bpt

(
(Bpt )

k−1
(E)
)
for all k ≥ 2.

We say that all agents commonly learn the true state, when for all p ∈ (0, 1) , θ ∈ Θ,
and memory function m, we have

lim
t→∞

PIt (Cpt (θ) | θ) = 1

4 Multi-Agent Learning Efficiency with Biased Memory

4.1 Preliminaries
We first recall a few standard statistical measures from information theory that are crucial
for identifying the speed of learning in this setting.

Definition 1. Fix any agent i and state θ, the Kullback-Leibler divergence of distri-
bution νi relative to µθi is defined as:

KL
(
νi, µ

θ
i

)
:=

∑

si∈Si
νi (si) log

νi (si)

µθi (si)

A classical result due to Berk (1966), and subsequently Esponda and Pouzo (2016),
demonstrates that a misspecified agent’s "long-run" belief (in our case as t → ∞) assigns
probability 1 to the state that minimizes the KL-distance between the agent’s perceived
signal distribution and the theoretical signal distribution. For our naive agents with biased
memory, this result applies since, contrary to the rational benchmark, their perceived signal
distribution may not match the theoretical signal distribution under the true state. As t
grows large, an agent’s belief will concentrate on the state that best explains the signal
distribution observed.

Definition 2. Fix any agent i and state θ, for any θ
′ 6= θ, the Chernoff distance between

agent i’s marginal signal distributions in states θand θ
′
is defined as:

d
(
µθi , µ

θ′

i

)
:= min

νi∈∆(Xi)
max

{
KL
(
νi, µ

θ
i

)
,KL

(
νi, µ

θ′

i

)}
(1)

The Chernoff distance is very useful in characterizing how difficult it is for an agent to
statistically distinguish θ′ fromθ. Note that any minimizerνiof KL

(
νi, µ

θ
i

)
= KL

(
νi, µ

θ′

i

)

must satisfy this equation. Thus, d
(
µθi , µ

θ′

i

)
essentially measures the distance fromµθi and
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µθ
′

i to their KL-midpoint, and smaller values of d
(
µθi , µ

θ′

i

)
capture that agent i’s private

signal distributions in states θ and θ′ are closer to each other.
Next, we recall two lemmas from the common learning literature that will be helpful in

deriving our main results.

Lemma 1. (Frick, Iijima, and Ishiii, 2023) Fix any θ ∈ Θ and distinct i, j ∈ N . For each
t and realized empirical signal distribution νit ∈ ∆ (Si), we have

KL
(
E [νjt | θ, νit] , µθj

)
≤ KL

(
νit, µ

θ
i

)

or equivalently,

KL
(
νitG

θ
ij , µ

θ
j

)
≤ KL

(
νit, µ

θ
i

)

Moreover, the inequality is strict whenever µθ has full support and νi 6= µθi .

This lemma states that when agenti is forming an estimate of agentj’s signal observations
conditional on i’s own observation and state θ, this estimate is less atypical than i’s own
signal observations. This is the key driving force behind Frick, Iijima and Ishii (2023)’s
result: because agenti’s expectation of agent j’s signal distribution is closer to the theoretical
distribution than i’s own signal observation, whenever agent i privately learns the state,
there will be no higher-order uncertainty about j’s learning outcome.

Lemma 2. (Cripps, Ely, Mailath, and Samuelson, 2008) For any information structure
Iand agents iand j, consider the matrix Gθij ∈ RSi×Sj with (si, sj)-th entry

Gθij (si, sj) = µθ (sj | si)

then, E [νjt | θ, νit] = νitG
θ
ij and µθiG

θ
ij = µθj .

Moreover, let ‖ ·‖ denote the sup norm for finite-dimensional real vectors. For any ε > 0
and q < 1, there is T such that for all t ≥ T ,θ ∈ Θ, and sti,

PIt
({∥∥νitGθij − νjt

∥∥ < ε,∀j 6= i
}
| sti, θ

)
> q

This lemma states that if agenti’s empirical signal distribution at timet is νit, conditional
on state θ,i’s expectation of j’s empirical distribution is given by E [νjt | θ, νit] = νitG

θ
ij

(treating νit ∈ ∆ (Si) ⊆ R1×Si as a vector). Additionally, each agent believes that their
expectation of the frequencies of the signals observed by their opponent is likely to be
nearly correct.

Recognize that these two lemmas are applicable to agents exhibiting any form of memory
distortion. Since our agents are unaware of their memory biases, they draw inferences about
other agents’ signal observations as if what they remembered is all that happened.

4.2 Speed of Common Learning under Biased Memory
Fix any state θ ∈ Θ. To characterize the speed of individual and common learning with
biased memory under state θ, we first need to identify the state that agents find most
difficult to distinguish from state θ.

we construct ν̂i(θ
′
) to capture the KL-midpoint between state θand θ

′
:
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ν̂i(θ
′
) := argminνi∈∆(si) max

{
KL
(
νi, µ

θ
i

)
,KL

(
νi, µ

θ′

i

)}

Take any memory function m, denote the state that agent iwith memory-adjusted belief
finds most difficult to distinguish from state θas θ̃i. Formally, this is:

θ̃i := argminθ′∈Θ\{θ}KL
(
ν̂i(θ

′
),m(µθi )

)

Denote the state that, given agent i’s empirical signal distribution, agent i expects agent
j to find most difficult to distinguish from state θas θ∗j . Formally, this is:

θ̃j := argminθ′∈Θ\{θ}KL
(
ν̂j(θ

′
),m(µθi )G

θ
ij

)

We are going to show later that common learning could fail under some memory functions
as tgrows large. We call these memory functions “wild”. For the rest of the memory functions
that do not induce a failure in common learning, we refer to them as “mild”. For now, we
introduce a definition that restricts the focus of our results to mild memory functions only.

Definition 3. Fix any state θ ∈ Θ and information structure I, a memory function is mild
if for all agent i ∈ N ,

(1)

KL
(
m(µθi ), µ

θ
i

)
< KL

(
ν̂i(θ̃i), µ

θ
i

)

and,
(2)

KL
(
m(µθi ), µ

θ
i

)
< KL

(
G−1(ν̂j(θ̃j)), µ

θ
i

)

Memory functions that violate either (1) or (2) or both are called wild.

Our first result shows that the speed of individual learning under a mild memory function
m and information structure Iis given by a multi-agent memory-adjusted individual learning
efficiency index. Formally,

λB
θ(I,m) := min

i∈N
λθi (I,m) where λθi (I,m) := KL

(
m−1(ν̂i(θ̃i)), µ

θ
i

)

Intuitively, λθi (I,m) captures how difficult agent iwith memory-adjusted belief finds it
to distinguish state θfrom the state θ

′
that generates the most similar signal distributions,

and λBθ(I,m) simply considers the slowest learning agent.
On the other hand, the speed of common learning is given by a multi-agent memory-

adjusted common learning efficiency index:

λC
θ(I,m) := min

i∈N,j∈N
λθij(I,m) where λθij(I,m) := KL

(
m−1

(
G−1(ν̂j(θ̃j))

)
, µθi

)

Intuitively, λθij(I,m) captures how difficult it is for agent ito believe that agent j could
distinguish state θfrom the state θ

′
that generates the most similar signal distributions from

agent j’s point of view, and λBθ(I,m) simply considers the slowest learning pair of agent
iand j.

One might think that the learning efficiency index could also be expressed in the memory-
adjusted signal space but not in the memory-free signal space. However, that is not the case:
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Remark 1. KL
(
νit, µ

θ
i

)
≥ KL

(
m(νit),m(µθi )

)

KL
(
νit, µ

θ
i

)
=

∑

si∈∆(Si)

νitlog
νit
µi

=
∑

si∈∆(Si)

m(νit)
f(si = H)νit + f(si = L)(1− νit)

f(si = H)
log

m(νit)
f(si=H)νit+f(si=L)(1−νit)

f(si=H)

m(µi)
f(si=H)µi+f(si=L)(1−µi)

f(si=H)

= KL

(
m(νit)

f(si = H)νit + f(si = L)(1− νit)
f(si = H)

,m(µθi )
f(si = H)µi + f(si = L)(1− µi)

f(si = H)

)

≥ KL
(
m(νit),m(µθi )

)

with equality if νit = µθi

Since the memory function alters the marginal distribution of signals that agent
observe, it also alters the KL-distance. In order to access the rate of learning, we need
to express the index in terms of the true (before memory distortion) signal distributions.
Therefore, we cannot express or approximate it in the memory-adjusted space.

Theorem 1. Fix any information structure I, state θ ∈ Θ, and p ∈ (0, 1), if memory
function m is wild, common learning fails.

If memory function is mild, individual learning occurs at rate λBθ(I,m), that is:

PIt (Bpt (θ) | θ) = 1− exp
[
−λBθ(I,m)t+ o(t)

]

and common learning occurs at rate min{λBθ(I,m), λC
θ(I,m)}:

PIt (Cpt (θ) | θ) = 1− exp
[
−min{λBθ(I,m), λC

θ(I,m)}t+ o(t)
]

WhenλBθ(I,m) > λθC(I,m), common learning occurs at a rate slower than private
learning.

The proof of Theorem 1 utilizes the Sanov’s theorem from large deviation theory. It
states that, for any set D ⊆ ∆(S) that is the closure of its interior,

PIt (νt ∈ D | θ) = exp

[
− inf
ν∈D

KL
(
ν, µθ

)
t+ o(t)

]

The proof is straight forward when we can identify the events that gives rise to individual
and common learning. We show it in the next proposition:

Proposition 1. Fix any state θ ∈ Θ, mild memory function m, p ∈ (0, 1), θ
′ 6= θ, and

λ ∈
(

0,min{λBθ(I,m), λC
θ(I,m)}

)
.There exists T such that for all i ∈ N , j 6= i and t ≥ T ,

KL
(
νit, µ

θ
i

)
≤ λ =⇒ PIt

(
{θ} ∩KL

(
E [νjt | θ,m(νit)] , µ

θ
′

j

)
> d

(
µθj , µ

θ̃j
j

)
| sti
)
≥ p

Proposition 1 says that whenever the empirical signal frequencies that agent ireceived
are close enough to the theoretical distribution under the true state θ, for a large enough
t, agent ibelieves with high probability that the state is θ, and in expectation, with high

7



probability, agent j observed signal frequencies are further away from all states except state
θ. Since agent i is confident that j’s observed signal distribution is further away from all
state except θ, it is equivalent to saying iis confident in j learning state θ. Thus, this “close
enough” threshold characterizes the speed of common learning.

I want to stress two technical challenges in proving this proposition.
Firstly, memory function does not preserve the order in KL-distance. That is, take two

empirical signal frequencies ν1
it and ν2

it, any θ ∈ Θ, and any mild memory function m,

KL
(
ν1
it, µ

θ
i

)
> KL

(
ν2
it, µ

θ
i

)
; KL

(
m(ν1

it), µ
θ
i

)
> KL

(
m(ν2

it), µ
θ
i

)

However, in proving Proposition 1, we want to characterize a tight threshold in the
empirical signal frequencies such that if the signal frequencies that an agent observed are
closer to the true distribution than this threshold, learning succeeds; whereas, if the observed
signal frequencies are further away from the true distribution than this threshold, learning
fails.

Take the speed of individual learning as an example. We would like to find a threshold in
the empirical frequencies such that whenever signals are outside that threshold, after mem-
ory transformation, they are further away from the true distribution than the KL-midpoint
between the true state and the most difficult-to-distinguish state, causing learning to fail.
By Sanov’s theorem from large deviation theory, this threshold characterizes the speed of
individual learning. However, it seems impossible to find a tight threshold around the
theoretical distribution when the memory function could alter the ranking in KL-distance.

To address this issue, we utilize the convexity of KL(νit, µ
θ
i ) in the pair(νit, µθi )and the

non-negativity of KL-distance, KL(νit, µ
θ
i ) ≥ 0, with equality if and only ifνit = µθi . We can

construct a neighborhood around µθi , νθit ∈ [νit, ν̄it] , satisfies:

KL
(
νit, µ

θ
i

)
≤ KL

(
m−1(ν̂i(θ̃i)), µ

θ
i

)
= λB

θ(I,m)

Since the memory function is monotone in νit, after memory transformation,ν̂i(θ̃i) /∈
[m(νit),m(ν̄it)]. Together with the fact that ν̂i(θ̃i) is by construction the memory-adjusted
most tricky KL-midpoint, λBθ(I,m) gives us the speed of individual learning.

Secondly, the memory function causes an asymmetrical shift in the observed signal fre-
quencies. Imagine there is a neighborhood around µθi , νθit ∈ [νit, ν̄it]such that KL(νit, µ

θ
i ) ≤

λC
θ(I,m) and at the boundary,

KL(νit, µ
θ
i ) = KL(ν̄it, µ

θ
i ) = λC

θ(I,m)

Since the memory function could distort high signals and low signals differently, after
memory transformation, KL(m(νit), µ

θ
i ) 6= KL(m(ν̄it), µ

θ
i ). Despite being at either bound-

ary, in expectation,

KL
(
E
[
νjt | θ,m(νit)

]
, µθj
)
< d

(
µθj , µ

θ
j

)
and KL

(
E [νjt | θ,m(ν̄it)] , µ

θ
j

)
< d

(
µθj , µ

θ̄
j

)

We cannot make a general argument about how close E[νjt | θ,m(νit)] is to the true dis-
tribution µθj . Instead, we argue that for all states other than the true state θ, in expectation,
agent i believes that agent j’s signal observation is at least further away than the closest
Chernoff distanced(µθj , µ

θ̃j
j ). By the standard argument that beliefs at large t concentrate on

states whose signal distributions minimize KL-divergence relative to the perceived empirical
signal distribution, agent iis confident that agent j can only learn the true state θ.
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One important lesson from Theorem 1 is that, with biased memory, common learning
and individual learning can occur at different rates. A necessary and sufficient condition for
common learning to happen slower than individual learning is the comparison of learning
efficiency index, that is, when λBθ(I,m) > λθC(I,m). However, this condition can be very
abstract. In order to provide clearer intuition of this learning result, Proposition 2 then
introduces a less strict (only necessary but not sufficient) condition.

Proposition 2. Fix any information structure I, mild memory function m, state θ ∈ Θ,

λB
θ(I,m) > λC

θ(I,m) =⇒ θ̃i 6= θ̃j

Proposition 2 states that for common learning to occur slower than individual learning,
the most challenging state for individual learning (θ̃i) must differ from the most challenging
state for common learning (θ̃j). When agent i estimates agent j’s signal observations based
on its own signal observations, according to Lemma 1, this estimate tends to be closer to
the theoretical distribution under state θ in KL-distance thani’s own signal observations.
If θ̃i = θ̃j = θ∗, agent \(i\) is most concerned about mislearning the state θ∗, and in
expectation, also most concerned about agent j mislearning the stateθ∗. Just as in the
rational benchmark, Lemma 1 guarantees that the expectation effect brings the estimate
ofj’s signal frequencies closer to the theoretical distribution, which immediately implies
further away from the distribution under the critical state θ∗. Thus, whenθ̃i = θ̃j , Theorem
1 can nest Frick, Iijima and Ishii (2023) as a special case.

However, whenθ̃i 6= θ̃j , agenti is primarily concerned about mislearning the state θ̃i.
Crucially, due to biased memory,θ̃i could differ from the state that would otherwise be
closest in KL-distance to state θ under the rational benchmark. Fortunately, the expectation
effect brings the estimate of agentj’s signal frequencies closer to the theoretical distribution
under the true state θ and away from θ̃i. Unfortunately, signals could exhibit negative
correlation between the two agents, causing the estimates to also be closer to the theoretical
distribution underθ̃j , adding more confusion in higher-order uncertainty. Note that this
does not constitute a sufficient condition for creating a slower speed of common learning.
To obtain the necessary and sufficient condition, one needs to compare the learning efficiency
index.

4.3 Illustrative Example
In this section, we will provide a general intuition for the theorems and propositions in this
paper using a numerical example. Consider a simple setting where there are three states,
each characterized by frequencies of high signals: θ1 with µ1

i = 0.3, θ2 with µ2
i = 0.5, and

θ3 with µ3
i = 0.8. Suppose that θ2is the true state.

4.3.1 Speed of Individual and Common Learning under Rational Benchmark

The canonical result from Frick, Iijima and Ishii (2023), establishes that in this setting,
the speed of individual learning coincides with the speed of common learning. This speed
is characterized by the Chernoff distance between the true state, θ2, and the state whose
signal distribution is closest to the true state, which is θ1 in our example. It’s worth noting
that the Chernoff distance betweenθ1 andθ2 is equivalent toKL(ν̂i(θ1), µθ2i ), where ν̂i(θ1)
represents the KL-midpoint between θ2and θ1, as constructed. Throughout this paper, we

9



will predominantly use the formulation based on the KL-distance to maintain consistency
with the notation.

Why does KL
(
ν̂i(θ1), µθ2i

)
characterize the speed of individual learning? Imagine a very

unlucky agent i, whose empirical signal distribution after tsignal draws, νit, has with very
low high-signal realizations and is further away from the true distribution µθ2i than the
KL−midpoint between θ2 and θ1, that is KL

(
νit, µ

θ2
i

)
> KL

(
ν̂i(θ1), µθ2i

)
. Then, in such

case, agent iobserves signal distribution better matches with signals in θ1 than with the
true state θ2 and agent iis going to update his/her belief about the state in favor of the
wrong state θ1. Thus, with large t, in order for agents to correctly learn the true state, the
empirical signal distribution has to be close enough to the true distribution than to any other
distributions. Hence, in this example, the event Bpt (θ2) is bounded by the KL−midpoints
between θ2and θ1 (ν̂i(θ1)in Figure 1) and between θ2and θ3 (ν̂i(θ3)in Figure 1). For all large
enough t, one can show that Bpt (θ2) is approximated by

Bpt (θ2) ≈
{
νit ∈

(
0.4, 0.65

)
,∀i = 1, 2

}

To go from the eventBpt (θ2) to the speed of individual learning, we apply the Sanov’s
theorem from large deviation theory. It states that, for any set D ⊆ ∆(S) that is the closure
of its interior,

PIt (νt ∈ D | θ) = exp

[
− inf
ν∈D

KL
(
ν, µθ

)
t+ o(t)

]

That is, as t grows large, the probability of event D vanishes exponentially at rate given
by the KL−distance between the closest (to theoretical signal distribution) element in D
and the theoretical signal distribution µθ. Since in our setting,

KL
(
ν̂i(θ1), µθ2i

)
= KL

(
(0.4, 0.6), (0.5, 0.5)

)
< KL ((0.65, 0.35), (0.5, 0.5)) = KL

(
ν̂i(θ3), µθ2i

)

the probability PIt
(
(Bpt (θ2))

c | θ2

)
of first-order belief failures vanishes at rate KL ((0.4, 0.6) , (0.5, 0.5)),

demonstrated by the blue curve in Figure 1.

νit = 0 νit = 1

E[νjt] = 0 E[νjt] = 1

ν̂i(θ1) ν̂i(θ3)

ν̂j(θ1) ν̂j(θ3)

Speed of Higher-Order Uncertainty Vanishing
Speed of First-Order Uncertainty Vanishing
Expectation Effect

Figure 1: Speed of Individual and Common Learning under Rational Benchmark

θ1 = θ̃i = θ̃j
µ1
i = 0.3

θ1
µ1
j = 0.3

θ2
µ2
i = 0.5

θ2
µ2
j = 0.5

G−1
(
ν̂j(θ1)

)

θ3
µ3
i = 0.8

θ3
µ3
j = 0.8
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In terms of the speed of common learning, Lemma 1 from Frick, Iijima and Ishii (2023)
provides a very clear intuition: because agent i’s expectation of agent j’s signal distribution
is closer to the theoretical distribution than agent i’s own signal observation, whenever
agent iprivately learn the state, there will be no higher order uncertainty about j’s learning
outcome. To see it in our numerical example, we introduce a correlation parameter ρ ∈ [0, 1]
to capture the extent of correlation across agents’ signals. Then, fixing a state θ, the joint
probabilities of agents’ signals are given by the following table

θ si = H si = L
sj = H µθi ρ µθj (1− ρ)

sj = L µθi (1− ρ) 1− µθj (2− ρ)

Since the result is quite intuitive when agents’ signals are positive correlated, we will
demonstrate the case when agents’ signals are negatively correlated. Assume, ρ = 0.1, under
the true state θ2, the joint probabilities of agents’ signals are given by

θ = θ2 si = H si = L
sj = H 0.05 0.45
sj = L 0.45 0.05

Then, for any realized signal frequencies νit and large enough t, Lemma 2 from Cripps
et al. (2008) shows that agent ibecomes confident in θ2, so i’s belief about νji concentrates
on the expectation E [νjt | θ, νit], approximately,

E [νjt | θ, νit] = νit
0.05

0.5
+ (1− νit)

0.45

0.5

For agent ito be confident that agent j is also correctly learning the true state, we need

E [νjt | θ, νit] ∈ (0.4, 0.65) =⇒ νit ∈ (0.3125, 0.625)

and we have

Cpt (θ2) ≈
{
νit ∈

(
0.4, 0.65

)
∩
(

0.3125, 0.625
)
,∀i = 1, 2

}

Realize that

KL ((0.3125, 0.6875), (0.5, 0.5)) > KL ((0.625, 0.375), (0.5, 0.5))

Using Sanov’s theorem, the probability PIt (Bpt (θ2)\Cpt (θ2) | θ2) of higher-order belief
failures vanishes at rate KL ((0.625, 0.375) , (0.5, 0.5)), demonstrated by the orange curve
in Figure 1, which is strictly larger than the blue curve. Thus, as tgoes large, higher-
order belief failures become negligible relative to first-order failures, and we have that the
individual learning and common learning occur at the same rate.

4.3.2 Failure of Individual and Common Learning under Wild Memory

Once we consider that agents could possess biased memory about past signals that they
observed, common learning could fail. We thus include definition 3 to distinguish two types
of memory functions. To see intuition, consider the following wild memory function:
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Example 1. f1(si = H) = 0.7 and f2(si = H) = 0.3. This is the case where high signals
are more memorable for agent ithan low signals.

The memory adjusted agent i’s belief about signal distribution under state θ2 is given
by the bayesian updating rules:

m1(µ2
i ) =

f1(si = H)µ2
i (si = H)

f1(si = H)µ2
i (si = H) + f1(si = L)µ2

i (si = L)
=

0.7× 0.5

0.7× 0.5 + 0.3× 0.5
= 0.7

In this case, the memory function brings the theoretical signal distribution under θ2 to
m(µ2

i ) = 0.7, as demonstrated by the red dot m1(µ2
1) in the Figure 2. Notice that now

KL
(
m(µ2

i ), µ
2
i

)
= KL ((0.7, 0.3), (0.5, 0.5)) > KL ((0.65, 0.35), (0.5, 0.5)) = KL

(
ν̂i(θ3), µ2

i

)

This memory function is indeed “wild”, as it violates part (1) of definition 3. With
such wild memory function, individual learning fails. By a standard law of large number
argument, as tgoes large, agent i’s belief about his signal observation under state θ2 would
be concentrated around m(µθ2i ) = 0.7 but not in µ2

i = 0.5. Since our agents are unaware
of their biased memory and m(µ2

i ) = 0.7 is already further away from µ2
i than the KL-mid

point between θ2andθ3, agent i would believe that he/she has observed signal distribution
closer to θ3 than to the true state θ2, leading to a learning of the wrong state. The failure
of individual learning immediately implies a failure of common learning.

νit = 0 νit = 1

E[νjt] = 0 E[νjt] = 1

ν̂i(θ1) ν̂i(θ3)

ν̂j(θ1) ν̂j(θ3)

Memory Effect
Expectation Effect

Figure 2: Failure of Individual and Common Learning under Wild Memory

θ1
µ1
i = 0.3

θ1
µ1
j = 0.3

G
(
m2(µ

2
i )
)

θ2
µ2
i = 0.5

θ2
µ2
j = 0.5

m2(µ
2
i ) m1(µ

2
i )

θ3
µ3
i = 0.8

θ3
µ3
j = 0.8

Example 2. f2(si = H) = 0.8, f2(si = H) = 0.45, and ρ = 0.1. This is a case where high
signals are more memorable and agents’ signals are negatively correlated.

The memory adjusted agent i’s belief about the signal distribution under state θ2 is:

m2(µ2
i ) =

f2(si = H)µ2
i (si = H)

f2(si = H)µ2
i (si = H) + f2(si = L)µ2

i (si = L)
=

0.8× 0.5

0.8× 0.5 + 0.45× 0.5
= 0.64

In expectation, agent i’s belief about agent j’s observed signal frequencies is concentrated
on:

12



E
[
νj | θ2,m2(µ2

i )
]

= 0.64× 0.05

0.5
+ 0.36× 0.45

0.5
= 0.388

In this case, the memory function brings the theoretical signal distribution under θ2 to
m(µ2

i ) = 0.64, as demonstrated by the red dot m2(µ2
1) in the Figure 2. This memory effect

is not detrimental to the individual learning outcome, as agent iwould still learn the true
state θ2 as tgrows large. However, our agents are unaware of their biased memory and they
update their belief about other agents’ signals as if what they remembered are the only
ones that they received. Thus, this expectation effect is directly applied to the memory
adjusted theoretical signal distribution of agent i and it brings the expected agent j’s signal
frequencies toE

[
νj | θ2,m2(µ2

i )
]

= 0.388.
Notice that now

KL
(
G(m(µ2

i )), µ
2
j

)
= KL ((0.388, 0.612), (0.5, 0.5)) > KL ((0.4, 0.6), (0.5, 0.5)) = KL

(
ν̂j(θ1), µ2

j

)

This memory function is “wild”, as it violates part (2) of definition 3. With such wild
memory function, despite individual learning succeed, common learning fails . By a standard
law of large number argument, as tgoes large, agent i’s memory adjusted expectation of agent
j’s signal observation under state θ2 would be concentrated around E

[
νj | θ2,m2(µ2

i )
]

=
0.388 and is further away from µ2

j than the KL-mid point between θ1andθ2, agent i would
believe that agent j has observed signal distribution closer to θ1 than to the true state θ2,
leading to a failure of common learning.

4.3.3 Speed of Individual and Common Learning under Mild Memory

When agents have biased memory but the biasness is not extreme, it wouldn’t be detrimental
to the learning outcomes. For these mild memory bias, we are interested in the implication
it has on the speed of learning.

Imagine the following mild memory function: f(si = H) = 0.88 and f(si = H) = 0.72.
Assume that agents’ signals are negatively correlated with ρ = 0.1.

With this mild memory function, conditioning on state θ2, as tgrows large, agent i’s
belief about his/her empirical signal distribution is going to concentrate on

m(µ2
i ) =

f(si = H)µ2
i (si = H)

f(si = H)µ2
i (si = H) + f(si = L)µ2

i (si = L)
=

0.88× 0.5

0.88× 0.5 + 0.72× 0.5
= 0.55

The KL−midpoint between θ2and θ1 is approximately ν̂i(θ1) = 0.4 and the KL-midpoint
between θ2and θ3 is approximately ν̂i(θ3) = 0.65. Among these two KL-midpoints, ν̂i(θ3)
is closer to m(µ2

i ) in KL-distance. Thus, individually, agent iis most concerned about
the uncertainty from θ3 and the rate of individual learning is determined by how fast this
uncertainty vanishes. In Theorem 1, we show that this rate is given by the inverse of memory
function at the (memory adjusted) most trickyKL-midpoint. Numerically,

0.88× νit
0.88× νit + 0.72× (1− νit)

= 0.65 =⇒ νit ≈ 0.603

The rate of individual learning is given by:

λB
θ2(I,m) ≈ KL

(
(0.603, 0.397), (0.5, 0.5)

)
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demonstrated by the blue curve in Figure 3.

νit = 0 νit = 1

ν̂i(θ1) ν̂i(θ3)

Speed of Individual Learning
Memory Effect

Figure 3: Speed of Individual Learning under Mild Memory

θ1

µ1
i = 0.3

θ2

µ2
i = 0.5

m−1
(
ν̂i(θ3)

)

θ3 = θ̃i
µ3
i = 0.8

For the speed of common learning, we are concerned about agent i’s memory adjusted
expectation about agent j’s observed signal distribution. As tgrows large, agent i’s belief
about agent j’s empirical signal distribution is going to concentrate on:

E
[
νj | θ2,m2(µ2

i )
]

= 0.55× 0.05

0.5
+ 0.45× 0.45

0.5
= 0.46

Among the two KL-midpoints for agent j, ν̂j(θ1) is closer to E
[
νj | θ2,m2(µ2

i )
]
in KL-

distance. Thus, in expectation, agent iis most concerned about the uncertainty from agent
j about state θ1 and the rate of common learning is determined by how fast this uncertainty
vanishes. In Theorem 1, we show that this rate is given by the inverse of the memory
function at the inverse of the expectation effect at the (memory adjusted, in expectation)
most tricky KL-midpoint for agent j. Numerically,

( 0.88× νit
0.88× νit + 0.72× (1− νit)

)
×0.05

0.5
+
(

1− 0.88× νit
0.88× νit + 0.72× (1− νit)

)
×0.45

0.5
= 0.4 =⇒ νit ≈ 0.577

The rate of individual learning is given by:

λC
θ2(I,m) ≈ KL

(
(0.577, 0.423), (0.5, 0.5)

)

demonstrated by the orange curve in Figure 4.

14



νit = 0 νit = 1

E[νjt] = 0 E[νjt] = 1

ν̂i(θ1) ν̂i(θ3)

ν̂j(θ1) ν̂j(θ3)

Speed of Common Learning
Speed of Individual Learning
Expectation Effect
Memory Effect

Figure 4: Speed of Individual and Common Learning under Mild Memory

θ1 = θ̃j
µ1
i = 0.3

θ1
µ1
j = 0.3

m−1
(
G−1(ν̂j(θ̃1))

)

θ2

µ2
i = 0.5

θ2
µ2
j = 0.5

θ3 = θ̃i
µ3
i = 0.8

θ3
µ3
j = 0.8

Realize that this is a case of common learning happening slower than individual learning,
as higher order uncertainty vanishes faster than first order uncertainty:

λB
θ2(I,m) ≈ KL

(
(0.603, 0.397), (0.5, 0.5)

)
> KL

(
(0.577, 0.423), (0.5, 0.5)

)
≈ λCθ2(I,m)

Proposition 2 applies in this case: under true state θ2, individually, agent iis most
concerned about mislearning the state θ3, whereas in expectation, he/she is most concerned
about agent j mislearning θ1.

θ̃i = θ3 6= θ1 = θ̃j

To see the intuition, let’s first consider the case under rational benchmark, without bi-
ased memory. Agent i is primarily concerned about mislearning the state that is closest to
the true state in terms of KL-distance, which in our case is stateθ1. Successfully learning
state θ2 requires agents to observe signal frequencies close enough to the theoretical dis-
tribution under stateθ2compared to the Chernoff distance between θ2 and θ1. At ν̂i(θ1),
agent i is on the boundary where observing slightly lower signals can lead to a failure in
individual learning. In this boundary case, by Lemma 1, agent i still expects agent j’s ob-
served signal distribution to be closer to θ2 than i’s own observed signals. This expectation
effect is bounded by either perfectly positive correlation or perfectly negative correlation, as
demonstrated by the teal brackets in Figure 5. Any E[νj ] within the teal brackets is closer
to θ2 and further away from either θ1 or θ3 than the boundary case, ensuring that when
first-order uncertainty vanishes, there is no higher-order uncertainty.

In our example, due to biased memory, agents are more likely to remember high signals
than low signals, which inflates agent i’s belief upward. Consequently, agent i is more con-
cerned about mislearning state θ3 rather than mislearning θ1 as in the rational benchmark.
Despite this bias, in expectation (as demonstrated by the red brackets in Figure 5), agent j’s
signal distribution is still closer toθ2 than agent i’s own signal observation. However, since
the Chernoff distance between θ2 and θ3 is larger than that between θ2 and θ1, for some
boundary conditions near ν̂i(θ3), a negatively correlated signal structure could bring agent
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i’s estimates of agent j’s signal observation closer to θ1. This creates additional higher-order
uncertainty stemming from θ1.

νit = 0 νit = 1

E[νjt] = 0 E[νjt] = 1

ν̂i(θ1) ν̂i(θ3)

ν̂j(θ1) ν̂j(θ3)

Expectation Effect at ν̂i(θ3)
Expectation Effect at ν̂i(θ1)

Figure 5: Expectation Effect at the Boundary

θ1
µ1
i = 0.3

θ1
µ1
j = 0.3

θ2
µ2
i = 0.5

θ2
µ2
j = 0.5

θ3
µ3
i = 0.8

θ3
µ3
j = 0.8

5 Conclusion
In conclusion, this paper explores the dynamics of learning in a multi-agent environment
with biased memory. By extending existing frameworks and drawing on concepts from
information theory, we investigate the speed of individual and common learning under biased
memory functions. Our analysis reveals nuanced interactions between memory biases, signal
correlations, and learning outcomes. Notably, we find instances where common learning can
occur slower than individual learning due to the asymmetrical effects of memory distortion.
These results shed light on the complexities of common learning processes and underscore the
importance of accounting for cognitive biases in understanding collective decision-making.

To extend our model further, exploring the implications of these results in information
design for coordination problems would be interesting. Given that higher-order uncertainty
may vanish more slowly than first-order uncertainty, information designers aiming to fa-
cilitate learning or coordination among agents face challenges. Questions arise about the
necessity of additional information regarding other players’ signals, and if so, when and how
this information should be provided.

Additionally, investigating social learning environments where players repeatedly choose
actions following each signal draw could yield valuable insights. Observing other players’
past signals may reveal information about their signals and about players’ memory effects.
Characterizing the speed of common learning in settings where agents can respond to others’
strategic incentives and adjust their behavior based on revealed memory biases would be an
intriguing avenue for future research.
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Appendix: Proofs

A Proof of Proposition 1
we first prove the following claims

Claim 1. There exist κ
′ ∈

(
0, λC

θ(I)− λ
)
and T ′ > 0 such that for all t ≥ T ′, θ ∈ Θ and

θ
′ 6= θ,

KL
(
νit, µ

θ
i

)
≤ λ+ κ

′
=⇒ PIt

(
KL
(
E [νjt | θ,m(νit)] , µ

θ
′

j

)
> d

(
µθj , µ

θ̃j
j

))
≥ √p

Proof. Notice first that, KL
(
νit, µ

θ
i

)
is convex in the pair (νit, µθi ). To see that, take two

pairs of probability mass functions (ν1
it, µ

1
i ) and (ν2

it, µ
2
i ), for all α ∈ [0, 1], we can apply the

log sum inequality property to obtain:

(
αν1

it(si)+(1−α)ν2
it(si)

)
log

αν1
it(si) + (1− α)ν2

it(si)

αµ1
i (si) + (1− α)µ2

i

≤ αν1
it(si)log

αν1
it(si)

αµ1
i (si)

+(1−α)ν2
it(si)log

(1− α)ν2
it(si)

(1− α)µ2
i (si)

Summing over all si, we get

KL
(
αν1

it + (1− α)ν2
it, αµ

1
i + (1− α)u2

i

)
≤ αKL

(
ν1
it, µ

1
i

)
+ (1− α)KL

(
ν2
it, µ

2
i

)

Also notice that KL-distance is nonnegative,KL
(
νit, µ

θ
i

)
≥ 0, with equality if and

only if νit = µθi and is continuous in νit. Thus, for each λ, we can find a neighbor-
hood around µθi , νθit ∈ [νit, ν̄it] satisfies KL

(
νit, µ

θ
i

)
≤ λ. Because we are choosing λ ∈(

0,min{λBθ(I), λC
θ(I)}

)
≤ λC

θ(I) ≤ λθij(I), the empirical distribution ν∗itsuch that

KL
(
ν∗it, µ

θ
i

)
= λθij(I) = KL

(
m−1

(
G−1(ν̂j(θ̃j))

)
, µθi

)
does not reside in the neighborhood

of [νit, ν̄it].
Next, realize that memory function is monotone in νθit. To see that, take any ν1

it, ν
2
it ∈

∆ (Si), if ν1
it(si = H) > ν2

it(si = H), then

m(ν1
it(si = H))−1 = f(si = L)(1−ν1

it(si = H)) ≤ f(si = L)(1−ν2
it(si = H)) = m(ν2

it(si = H))−1

Since m(·) ≥ 0, this gives us that m(ν1
it(si = H)) ≥ m(ν2

it(si = H)).
Thus, we also have that G−1(ν̂j(θ̃j)) do not reside in the neighborhood of[m(νit),m(ν̄it)]

and

KL
(
νit, µ

θ
i

)
≤ λ =⇒ KL

(
m(νit), µ

θ
i

)
≤ KL

(
G−1(ν̂j(θ̃j)), µ

θ
i

)

By the chain rule for KL−divergence, we have

KL
(
m(νit)G

θ
ij , µ

θ
iG

θ
ij

)
= KL

(
m(νit), µ

θ
i

)
+

∑

νit∈supp(νi)

m(νit)KL
(
Gθij , G

θ
ij

)

= KL
(
m(νit), µ

θ
i

)
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Thus, the matrix transformation of Gθij preserves the order in KL−distance, and we
have:

KL
(
m(νit), µ

θ
i

)
≤ KL

(
G−1(ν̂j(θ̃j)), µ

θ
i

)
=⇒ KL

(
m(νit)G

θ
ij , µ

θ
iG

θ
ij

)
≤ KL

(
ν̂j(θ̃j), µ

θ
j

)

Recall that ν̂j(θ̃j) is the KL-midpoint between θ and θ̃j , then for νθit ∈ [νit, ν̄it] , it is
evident that

KL
(
m(νit)G

θ
ij , µ

θ
iG

θ
ij

)
≤ KL

(
ν̂j(θ̃j), µ

θ
i

)
= d

(
µθi , µ

θ̃j
i

)
≤ KL

(
m(νit)G

θ
ij , µ

θ̃j
j

)

Notice that by construction, θ̃j is the state agent i expects agent j to find most difficult
to distinguish from state θ. Then, for all other states θ

′ ∈ Θ\{θ, θ̃j},

d
(
µθ
′

j , µ
θ̃j
j

)
< KL

(
m(νit)G

θ
′

ij , µ
θ̃j
j

)
< KL

(
m(νit)G

θ
′

ij , µ
θ
′

j

)

Since KL (·, µi) is continuous for each full-support µi ∈ ∆ (Si) and ∆ (Si) is compact,
there exists η > 0 such that for all j 6= i, νi ∈ ∆ (Si), θ ∈ Θ, and θ

′ 6= θ,

KL
(
νi, µ

θ
i

)
≤ λ =⇒ KL

(
m(νi)G

θ
ij , µ

θ
′

j

)
> d

(
µθj , µ

θ̃j
j

)
+
η

2

Given this, there exists κ
′ ∈
(

0, λC
θ(I)− λ

)
such that,

KL
(
νi, µ

θ
i

)
≤ λ+ κ

′
=⇒ KL

(
m(νi)G

θ
ij , µ

θ
′

j

)
> d

(
µθj , µ

θ̃j
j

)
+ η

Moreover, since agents are unaware of their biased memory and they take expectation
only based on their remembered signal realization, there exists ε

′
> 0 such that,

[
KL
(
νi, µ

θ′

i

)
≤ λ+ κ

′
and

∥∥∥νiGθ
′

ij − νj
∥∥∥ ≤ ε′

]
=⇒ KL

(
E
[
νjt | θ

′
,m(νit)

]
, µθ

′′

j

)
> d

(
µθ
′

j , µ
θ̃j
j

)

Together with Lemma 2, this proves Claim 1.

Claim 2. There exists κ
′′ ∈

(
0, λB

θ(I)− λ
)
and T ′′ such that for all t ≥ T ′′ and i ∈ N ,

KL
(
νit, µ

θ
i

)
≤ λ =⇒ PIt

({
θ : KL

(
νit, µ

θ
i

)
≤ λ+ κ

′′
}
| sti
)
≥ √p

Proof. Take any t ≥ 1 andsti such that KL
(
νit, µ

θ
i

)
≤ λ, then for any θ′ 6= θ , we have

KL
(
νit, µ

θ
′

i

)
> λ+ κ

′′
and

log
PIt (θ′ | sti,m)

PIt (θ | sti,m)
= log

p0 (θ′)
p0(θ)

+ t
∑

si∈Si
m(νit) log

µθ
′

i (si)

µθi (si)

= log
p0 (θ′)
p0(θ)

+ t
(

KL
(
m(νit), µ

θ
i

)
−KL

(
m(νit), µ

θ′

i

))
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Denote η :=
(

KL
(
m(νit), µ

θ
i

)
−KL

(
m(νit), µ

θ′

i

))
and take exponential on both side

gives us:

PIt (θ′ | sti,m)

PIt (θ | sti,m)
≤ p0 (θ′)

p0(θ)
etη

Next, we show that η < 0. we can find the neighborhood νθit ∈ [νit, ν̄it] satisfies

KL
(
νit, µ

θ
i

)
≤ λ. Because we are choosing λ ∈

(
0,min{λBθ(I), λC

θ(I)}
)
≤ λB

θ(I) ≤

λθi (I), the empirical distribution such that KL
(
νit, µ

θ
i

)
= λθi (I) = KL

(
m−1(ν̂i(θ̃)), µ

θ
i

)

does not reside in the neighborhood of [νit, ν̄it]. Using similar arguments as in claim 1,
for any empirical distribution within νθit ∈ [νit, ν̄it] that gives us KL

(
νit, µ

θ
i

)
≤ λ, we have

KL
(
m(νit), µ

θ
i

)
< KL

(
m(νit), µ

θ̃
i

)
< KL

(
m(νit), µ

θ′

i

)
.

We can sum over θ
′ 6= θ and rearrange to obtain:

PIt (θ | sti,m)

1− PIt (θ | sti,m)
≥ p0 (θ)

1− p0 (θ)
e−tη

Hence, by choosing T ′′ > 0 large enough, we get Claim 2.

Combining these two claims, choose T = max {T ′, T ′′} and κ = min {κ′, κ′′} then,
whenever t ≥ T and KL

(
νit, µ

θ
i

)
≤ λ, we have,

PIt
((
{θ} ∩KL

(
E [νjt | θ,m(νit)] , µ

θ
′

j

)
> d

(
µθj , µ

θ̃j
j

))
| sti
)

≥ PIt
(

KL
(
E [νjt | θ,m(νit)] , µ

θ
′

j

)
> d

(
µθj , µ

θ̃j
j

)
| sti, θ

)
PIt
(
θ | sti

)

≥ √p× PIt
(
θ′ | sti

)

≥ p

where the second inequality follows from Claim 1 and the last inequality follows from
Claim 2.

B Proof of Theorem 1
Fix any state θ ∈ Θ, memory function is wild, if either (1) KL

(
m(µθi ), µ

θ
i

)
≥ KL

(
ν̂i(θ̃i), µ

θ
i

)

or (2) KL
(
m(µθi ), µ

θ
i

)
≥ KL

(
G−1(ν̂j(θ̃j)), µ

θ
i

)
.

By a law of large numbers argument, agent i′s memory-adjusted belief about νit would
concentrate on the memory-adjusted theoretical signal distribution m(µθi ). Under case (1),
agent i′s belief is further away, in KL−distance, from µθi than ν̂i(θ̃i). Recall that ν̂i(θ̃i) is
the KL−midpoint between the signal distribution under true state θand the state θ̃i that
agent i with biased memory finds the most challenging to distinguish, we have that

KL
(
m(µθi ), µ

θ
i

)
≥ KL

(
ν̂i(θ̃i), µ

θ
i

)
> KL

(
m(µθi ), µ

θ̃i
i

)

This implies, at large t, agent i believes that he or she received signal observation closer
to state θ̃i than to the true state θ, which led to a failure of learning the true state θ.
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If we are not in case (1) but under case (2), then agent iis individually confident in
state θand its belief about agent j’s signal observation concentrates in m(µθi )G

θ
ij . As we

showed in claim 1 of Proposition 1, the matrix transformation of Gθij preserves the order in
KL−distance, we thus have that:

KL
(
m(µθi ), µ

θ
i

)
≥ KL

(
G−1(ν̂j(θ̃j)), µ

θ
i

)
=⇒ YKL

(
m(µθi )G

θ
ij , µ

θ
j

)
≥ KL

(
ν̂j(θ̃j), µ

θ
j

)

This implies, at large t, even if agent iis individually confident in state θ, his expectation
of agent j’s signal observation is closer to state θ̃j than to the true state θ, which led to a
failure of common learning the true state θ.

To see the speed of common learning, take any λ ∈
(

0,min{λBθ(I), λC
θ(I)}

)
, apply

Proposition 1 to state θ. Then, Claim 2 of Proposition 1 tells us that for each i ∈ N , there
exists T > 0 such that, for all t ≥ T , whenever KL

(
νit, µ

θ
i

)
≤ λ, for parbitrarily close to 1,

PIt
({
θ : KL

(
νit, µ

θ
i

)
≤ λBθ(I)

}
| sti
)
≥ p

State θis thus individually p−believed.
Claim 1 of Proposition 1 tells us that for j 6= i and all t ≥ T , whenever KL

(
νit, µ

θ
i

)
≤

λ, in agent i’s expectation, agent j′s signal distribution is further away from all θ
′ 6= θ.

Together, Proposition 1 implies that, for all t ≥ T , whenever KL
(
νit, µ

θ
i

)
≤ λ, state θis

p−evident for all agents. Therefore,

lim sup
t→∞

1

t
log
(
1− PIt (Cpt (θ) | θ)

)
≤ lim sup

t→∞

1

t
log

(∑

i

PIt
({

KL
(
νit, µ

θ
i

)
> λ

}
| θ
)
)

= max
i

lim sup
t→∞

1

t
logPIt

({
KL
(
νit, µ

θ
i

)
> λ

}
| θ
)

= −λ

where the last equality follows from Sanov’s theorem. Since it holds for all λ ∈
(

0,min{λBθ(I), λC
θ(I)}

)
,

this establishes that

lim sup
t→∞

1

t
log
(
1− PIt (Cpt (θ) | θ,m)

)
≤ −min{λBθ(I), λC

θ(I)}

For the speed of individual learning, take i ∈ N and any λ > λB
θ(I), following a similar

argument from Claim 2 of Proposition 1, we can construct a neighborhood around µθi ,
νit ∈ [νit, ν̄it] satisfies KL

(
νit, µ

θ
i

)
≤ λBθ(I). For all λ > λB

θ(I), we can find a set of signal

distributions ν
′

it /∈ [νit, ν̄it] with λBθ(I) < KL
(
ν
′

it, µ
θ
i

)
< λ, such that

KL
(
ν̂i(θ̃i), µ

θ
i

)
< KL

(
m(ν

′

it), µ
θ
i

)
=⇒ KL

(
m(νit), µ

θ̃i
i

)
< KL

(
m(ν

′

it), µ
θ
i

)

Then, for all large enough t,Bpit(θ) ∩
{
ν
′

it

}
= ∅, because by standard arguments,i ’s

beliefs at large tconcentrate on states whose signal distributions minimize KL−divergence
relative to νit. Thus,
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lim inf
t→∞

1

t
log
(
1− PIt (Bpit(θ) | θ)

)
≤ lim inf

t→∞
1

t
logPIt

({
KL
(
νit, µ

θ
i

)
> λ

}
| θ
)

= −λ

where the last equality follows from Sanov’s theorem. Since it holds for all λ ∈
(

0, λB
θ(I)

)
,

this establishes that

lim sup
t→∞

1

t
log
(
1− PIt (Bqt (θ) | θ,m)

)
≤ λBθ(I)

C Proof of Proposition 2

Proof by contrapositive: suppose that θ̃i = θ̃j , denote it θ∗.
Thus, for each λ < λB

θ(I,m), we can find a neighborhood around µθi , νθit ∈ [νit, ν̄it]
satisfies KL

(
νit, µ

θ
i

)
≤ λ. Because we are choosing λ < λB

θ(I,m), the empirical distribu-
tion ν∗it such that KL

(
ν∗it, µ

θ
i

)
= λB

θ(I,m) = KL
(
m−1(ν̂i(θ

∗)), µθi
)
does not reside in the

neighborhood of [νit, ν̄it].
Recall that memory function is monotone in νit, we thus have thatν̂i(θ∗) do not reside

in the neighborhood of[m(νit),m(ν̄it)], and

KL
(
νit, µ

θ
i

)
≤ λ =⇒ KL

(
m(νit), µ

θ
i

)
≤ KL

(
ν̂i(θ

∗), µθi
)

Applying Lemma 1, we have that

KL
(
E [νjt | θ,m(νit)] , µ

θ
j

)
< KL

(
m(νit), µ

θ
i

)
≤ KL

(
ν̂i(θ

∗), µθi
)

Thus, whenever KL
(
νit, µ

θ
i

)
≤ λ, higher order uncertainty about θand θ∗ vanishes faster

than first order uncertainty.
By definition of θ̃j being the most tricky state in expectation and the assumption that

θ̃i = θ̃j = θ∗

KL
(
E [νjt | θ,m(νit)] , µ

θ
j

)
< KL

(
E [νjt | θ,m(νit)] , µ

θ∗

j

)

< KL
(
E [νjt | θ,m(νit)] , µ

θ
′

j

)
∀θ
′
∈ Θ\{θ, θ∗}

Therefore, higher order uncertainty about state other than θ∗ could only vanish even
faster. This argument holds for all λ ∈

(
0, λB

θ(I)
)
.

It’s then straightforward to see that

λB
θ(I,m) ≥ λCθ(I,m)
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