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1 Introduction

Natural disasters pose a serious threat to the stability and prosperity of economies

around the world. They are a familiar and well-studied shock. While previous studies have

examined how natural disasters affect economic growth, employment, and credit (Botzen

et al., 2019; Klomp & Valckx, 2014), this paper is the first to directly investigate their

impact on crisis-risk. Doing so is important because the frequency of natural disasters

has drastically increased in the last half century and is projected to continue to increase

as a result of climate change (see Figure 1). By identifying the channels through which

natural disasters increase crisis-risk, this line of research can help inform policies that are

aimed at making our economies more climate resilient.

My aim is to estimate the effect that natural disasters have on the risk that a financial

crisis occurs. To do so I use the Emergency Events Database (EM-DAT) and a historical

dataset constructed by Schularick and Taylor (2012). The merged data covers 18 countries

over 120 years. In the analysis I proceed as follows: First, I estimate a set of logit and

linear probability models with a binary crisis indicator as the dependent variable. The

key explanatory variables are a set of lagged disaster measures and I also control for other

macroeconomic indicators and fixed effects. Second, I use local projections to analyze the

dynamic impact disasters have on credit, bank equity return, and growth. And third, I

conduct in and out-of-sample crisis prediction.
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I find that a 0.1% of GDP increase in damages from natural disasters increases the odds

of a crisis occurring two years later by 6% to 18%. Moreover, when I interact credit growth

with disaster damages the estimated effect is positive and significant, while the effect of

the disaster shock alone shrinks. The results support the hypothesis that natural disasters

increase the risk of financial crises, and that this risk is amplified by periods of rapid

credit expansion. The dynamic analysis shows that disasters have a persistent negative

effect on economic growth and bank equity returns, but only a very small, positive, and

mostly insignificant impact on credit. The logit model had some predictive power both in

and out-of-sample even when including only fixed effects and disaster variables.

This research and its findings are especially important in light of the fact that natural

disasters are quickly becoming more damaging and more frequent. Since 1950, climate

change has drastically increased the frequency and damage of storms, wildfires, droughts,

floods, extreme temperatures, and even epidemics (IPCC, 2022). According to projections

by the International Panel on Climate Change, the increase in frequency and ferocity of

disasters will only further accelerate. Deepening our understanding of the impact that

these disasters have on the financial system is therefore a crucial component to mitigating

and preparing for the costs of future climate induced disasters.

1.1 Historic Examples

Noteworthy historic examples of extreme natural disasters that have had a significant

impact on crisis-risk, include the 1906 San Francisco earthquake, the 1923 and 1995

earthquakes in Japan, and the 1999 earthquake in Turkey. In Turkey, the earthquake in

1999 coincided with a number of adverse financial conditions: In the late 1990s the Asia

Crisis and Russian debt default put pressure on the portfolios of Turkish banks, which

were also holding a quickly increasing level of public debt. When the Marmara earthquake

caused damages of up to US$20 billion (11% of GDP) in 1999, the exposure of banks to

government debt in combination with the heightened fear of sovereign default looming,

eventually led to a panic that pushed eight banks into insolvency, triggering a financial

crisis in 2001 (Akyüz & Boratav, 2002; Koch et al., 2001). The 1995 Kobe earthquake in

Japan, shocked the country’s capital stock with damages estimated as high as US$100

billion (Horwich, 2000). The reduction of capital belonging to firms and households, put
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Figure 1: Frequency and Type of Natural Disasters

Note: Panel A shows the stacked frequency for the disaster types with which I compute the main
shock variable. Panel B shows a broader range of disasters that I include in the analysis as a
robustness check.

pressure on banks’ balance sheets, reducing their lending capacity and decreasing their

financial health (Hosono et al., 2016). Additionally, over 30% of bank branches in the

affected regions were unable to operate in the aftermath of the quake because their physical

infrastructure was destroyed (Hosono et al., 2016). This directly weakened the banking

system’s ability to respond and further worsened its financial stability. The country

eventually experienced a banking crisis in 1997 (Nelson & Tanaka, 2014). Earlier in 1923,

the Great Kanto earthquake in Japan caused vast destruction of real and financial capital,

which is said to have contributed to a spike in non-performing loans that eventually led to

a panic followed by a systemic banking crisis in 1927 (Schularick & Taylor, 2012; Tamaki,

1995).

Going even further back in history, some economic historians have argued that the

1906 San Francisco earthquake triggered a chain of events that led to the 1907 panic and

financial crisis. The 1906 earthquake ignited a fire that left over half of San Francisco’s

residents homeless and caused damages of up to 1.8% of GNP (Odell & Weidenmier,

2004). A majority of the costs was actually borne by British, German, and French

insurance companies that were liable for the claims. The quake therefore led to a very

large (14% of the gold money stock of England) and sudden transfer of gold from the UK

to San Francisco in the months following the disaster (Odell & Weidenmier, 2004). To

counteract the gold outflows and protect its exchange rate under the gold standard, the
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Bank of England doubled its discount rate and discriminated against American finance

bills (Friedman et al., 1963; Wicker & Tallman, 2009). When Germany and France

followed suit it effectively halted the flow of gold to the United States, which led to a

liquidity crisis, stock market crash, recession, and finally the panic of 1907 (Friedman

et al., 1963; Odell & Weidenmier, 2004).1

More recent examples are the Covid-19 pandemic or the 2023 earthquake in Turkey,

whose full impact on the financial system we have yet to see. The point of these narratives

and this paper is not to argue that natural disasters are the sole cause of crises, but rather

to highlight the channels through which they have increased crisis-risk or acted as triggers

in combination with other factors. What follows is an empirical investigation of whether

this is an observable pattern in the data.

Roadmap

Section II reviews the literature and highlights the contributions of my research

approach and results. Section III defines the key variables, gives an overview of the data,

and describes the main models and specifications. In Section IV I present and discuss the

main empirical results. Section V analyzes the robustness of the earlier findings. Finally,

Section VI discusses the weaknesses of the paper and summarizes its findings as well as

highlights ways to further extend this line of research.

2 Literature Review

The paper with an aim most similar to mine is Klomp (2014), who uses country-level

panel data from 1997 to 2010 across 160 countries to study the effect natural disasters

have on bank stability, measured by the World Bank’s z-score2. Klomp (2014) finds that

a large natural disaster significantly decreases the z-score of a country’s banking sector,

which suggests that they increase the default-risk of banks. Since bank defaults are a

known precursor and symptoms of panics, this highlights one of the channels through
1To ensure that the United States would not be as vulnerable to future shocks to the money supply,

the government put in place institutions that formed the basis of the Federal Reserve System (Odell &
Weidenmier, 2004).

2Defined as the number of standard deviations that a bank’s return on assets has to drop below its
expected value before the bank is considered insolvent
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which natural disasters may increase crisis-risk. Klomp (2014), however, only uses data

that spans 13 years and finds no evidence that natural disasters have an impact on banking

crises.3

A recent paper by Baron et al. (2020) constructs a historical dataset on bank equity

returns for 46 countries. It shows that large declines in bank equity returns are indeed a

key feature of banking crises as well as a cause of the associated panics. Combined with

the findings of Klomp (2014) that natural disasters decrease bank equity returns, this

suggests a potential channel through which disasters increase crisis-risk: If large natural

disasters are a negative shock to bank equity returns (as found by Klomp (2014)) and a

bank capital crunch can lead creditors to run on banks and trigger a crisis (as shown in

Baron et al. (2020)), then that is a clear channel through which strong natural disasters

may increase crisis-risk. It also echoes the historic narratives presented in the previous

section.

I contribute to this literature by directly testing this link between natural disasters

and financial crises using a macrohistory database developed by Schularick and Taylor

(2012) that contains an indicator variable for systemic financial crises. Combined with the

data on disasters, my analysis uses long-run data on crises, key macroeconomic variables,

and natural disasters from 1900 to 2020 for 18 countries, making it, to the best of my

knowledge, the first in-depth quantitative analysis of the effect that natural disasters have

on systemic financial crises. To test the hypothesis that natural disasters impact crisis-risk

through their effect on bank equity returns, I also employ local projections (Jordà, 2005)

to analyze the dynamic effects of a disaster shock on returns.

Furthermore, my paper also provides new empirical evidence in support of the financial-

accelerator model, developed by Bernanke and Gertler (1989), Bernanke et al. (1999),

and Kiyotaki and Moore (1997) who argue that periods of financial fragility and credit

expansions amplify shocks. According to the model proposed by Bernanke and Gertler

(1989), an economy with adverse financial conditions can experience amplified effects from

shocks due to their impact on the cash flows of borrowers. Kiyotaki and Moore (1997)

model such a negative feedback loop but focus more on the role of asset prices than on
3In the final paragraph of the paper, Klomp (2014) use data from Laeven and Valencia (2013) to test

the impact of natural disasters on a bank crisis and do not find a statistically significant result. The
analysis is more of an extension to the rest of the paper and the lack of significant results is not surprising
given that the time period analyzed only covers 13 years and banking crises are rare.
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cash flows. In their model, an initial reduction in the total worth of assets from agents

who face financial constraints leads to a drop in asset prices, which further reduces the

wealth of those agents.

Building on this foundation, newer models show that the state of the financial system

can have non-linear effects on the impact of shocks to the economy (Brunnermeier &

Sannikov, 2014; He & Krishnamurthy, 2013; Mendoza, 2010). Barnichon et al. (2016) show

that the impact of a negative shock to the economy is larger when the financial system

is in a fragile state. Furthermore, there is substantial empirical evidence that a large

expansion in credit may not only amplify shocks, but itself be a source of them (Baron

et al., 2020; Krishnamurthy & Muir, 2017; Schularick & Taylor, 2012). In particular, the

findings of Schularick and Taylor (2012) show that past credit expansion is a significant

predictor of financial crises and suggest that they could indeed be shocks themselves.

I use natural disasters to identify a shock in order to understand if the negative effect

of the shock is larger when it coincides with a credit expansion. In other words, does a

natural disaster have a crisis-triggering effect when the financial system is weak? This is

unique because (1) it is the first paper to do so using natural disasters as a shock. And (2)

natural disasters have the added benefit of truly identifying a stochastic and exogenous

shock because the probability of a disaster occurring is unrelated to the current state of

economy. The exogeneity of allow me to make causal claims about the effect on crisis-risk.

Other studies have used natural disasters as an instrument for local credit demand and

shown that they lead to an increase in bank lending in affected areas (Cortés & Strahan,

2017). Given what we know about credit expansions, this could suggest yet another

channel through which natural disasters effect crisis-risk. That said, when analyzing the

dynamic effects of natural disasters on credit growth using local projections, I find almost

no significant result.

Regarding the exogenous characteristics of natural disasters, some may argue that

since the frequency of disasters has rapidly increased over the last decades (see Figure

1) their occurrence is not entirely stochastic and agents may be able to predict a higher

likelihood of disaster in the future. That said, I find it convincing that while economic

agents may have a good approximation of the risk that a disaster could occur at any

given moment, they generally do not foresee the exact date or year of extreme storms,
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wildfires, earthquakes, or volcanic activity years or even months in advance. Therefore,

these extreme events do indeed qualify as a stochastic and exogenous shock.

3 Data and Empirical Strategy

To estimate the impact natural disasters have on the likelihood of financial crises, I

merged the Emergency Events Database (EM-DAT) with historic financial data from

Schularick and Taylor (2012). The EM-DAT is a project of the Centre for Research on

the Epidemiology of Disasters (CRED) and contains detailed data on over 20 000 natural

disasters worldwide between 1900 to the present day. It is also one of the most commonly

used databases for research on disasters (Botzen et al., 2019; Klomp, 2014; Noy, 2009).

For an event to be recorded in EM-DAT, it has to cause 10 or more deaths, affect 100 or

more people, or be declared as an emergency by the country. The data collected for each

disaster includes its year and start month, the type of disaster, and the total cost of its

damages.

3.1 Data

Identifying a Natural Disaster Shock

For the baseline analysis presented in this paper, I consider an event to be a natural

disaster if it meets the following two conditions: (1) it is classified as a: storm, wildfire,

earthquake, or volcanic activity. (2) The estimated cost of direct damages associated

with the disaster are above the country median. The first condition limits natural

disasters to events that stochastically shock the economy for a limited amount of time.

A more extensive list of natural disasters would also include droughts, floods, extreme

temperatures, and epidemics, but these types of disasters may occur gradually and over

long periods of time and are therefore usually not considered a natural disaster shock in

the literature (Bremus & Rieth, 2022). Nevertheless, I include the full list of disasters in

the robustness-check section and the results do no not meaningfully change. The second

condition aims to reduce noise and ensures that the disasters are indeed substantially large

shocks. Only including above median disasters is a common strategy in the literature
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(Bremus & Rieth, 2022). However, to account for cross-country differences in size and

economy, my strategy differs from past disaster studies in that I include all disasters with

estimated damages above the country median as opposed to the overall median. The

results are, nevertheless, robust to using the standard approach or relaxing the condition

all together.

Environmental economics distinguish between direct and indirect economic effects of

disasters (Botzen et al., 2019). The former captures the physical destruction of assets and

lives. The latter relates to interrupted economic activities and reconstruction efforts that

were brought about by these direct effects. The estimated damages from each disaster

reported in the EM-DAT database capture only the direct damages to property, crops,

and livestock. This is good for identification purposes, because in order for the disaster

measure to properly identify the shock, it should not also capture its indirect effect, which

is in part what this paper intends to estimate.

Furthermore, I weigh the estimated damage (measured in thousands of (current) U.S.

Dollars) by the onset month of the disaster. This captures the idea that since the main

analysis uses annual data, a disaster in January will have a bigger impact on the financial

stability of that calendar year than the same disaster in December. The weighted damages

are calculated using the same formula as Noy (2009): d̃ = d(12−OM)/12, where OM

denotes the onset month of the disaster and d is the estimated damage.

To construct the final disaster measure, Di,t, I sum the weighted damages from

(qualifying) natural disasters by country and year, divide by the price level to adjust for

inflation and divide by real GDP to standardize.4 The formula is as follows:

Di,t =

(∑
i,t d̃i,t

)
1

cpii,t

rGDPi,t
×1000 (1)

The subscripts i and t denote the country and year respectively. Multiplying the measure

by 1000 is merely for convenience such that a one unit change in Di,t represents 0.1% of

GDP. The average damage from a qualifying disaster is approximately 0.19% of GDP

(see Table 1). The disaster with the highest estimated damages in the sample is the 2011

earthquake and tsunami in Japan which is estimated to have cost 5.98% of GDP.5

4The base year for both real damages and real GDP is 1990.
5This figure is in line with other available estimates.
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The main issue with the EM-DAT is the quality of the data collection. Collecting

information on natural disasters worldwide over the last 120 years is an ambitious

undertaking and although the database is one of the most trusted sources of disaster

events in the literature, it is not without gaps. The first issue is that the quality of the

data is not consistent over time (it is easier to keep a record of all disasters in 2010 than

in 1910). The second issue is that studies have shown that the quality of data collection

is not consistent across countries and that low-income countries are likely to have more

missing data (Jones et al., 2022). This is not a significant problem since I mainly use data

on the 18 high-income countries in the Schularick and Taylor (2012) database for which

the data collection is likely to be fairly similar. To account for any remaining systematic

differences in data collection across countries I include country-fixed effects in all the

main specifications. Finally, another issue is that there is a significant amount of missing

data on the estimated damages of disasters, which consequently effects my main disaster

measure. I address this issue in two ways: Since the missing data is a particularly large

problem for early years, I also test the model with a restricted sample including only

observations after 1949 as a robustness check. Additionally, I also check that my results

are robust to different measures of disasters including a binary indicator variable that

does not rely on the availability of estimated damages.

Crisis Data

The Schularick and Taylor (2012) macrohistory database (from now on JST database)

contains macroeconomic data on 18 countries from 1870 to 2020 and is one of the most

comprehensive macroeconomic long-run time series datasets available. Most importantly

for this paper, it also contains an indicator variable for systemic financial crises, which

is 1 for the first year of the crisis and 0 otherwise. Schularick and Taylor (2012) use a

narrative-approach to coding the systemic banking crises, which they define as an episode

of banking distress "characterized by major bank failures, banking panics, substantial

losses in the banking sector, significant recapitalization, and/or significant government

intervention." Observe that in this definition, the failure of only a few small banks without

broader economic consequences is not considered a systemic crisis. The summary statistics

presented in Table 1 show that there are 63 crises included in the sample from (1900 -

2020).
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Table 1: Summary Statistics

Statistic N Mean Median Pctl(75) Min Max St. Dev.
Crisis Indicator (JST) 2,158 0.029 0 0 0 1 0.168
Disaster Indicator 2,158 0.173 0 0 0 1 0.379
Strong Disaster Indicator 2,158 0.110 0 0 0 1 0.313
Damages (in millions US) 596 923.047 151.950 580.415 0.002 37,279.920 3,056.656
Strong Damages (in millions US) 285 1,813.045 573.835 1,371.900 16.095 37,279.920 4,241.096
Weighted Damages (pc GDP) 357 0.121 0.016 0.079 0.00000 5.987 0.426
Disaster Measure (pc GDP) 225 0.185 0.039 0.154 0.00000 5.980 0.528
Strng Disaster Measure (pc GDP) 237 0.336 0.112 0.324 0.00001 8.044 0.743
Strng Disaster Measure 5yr ma (pc GDP) 2,084 0.192 0.000 0.000 0.000 19.953 1.082
Log change in credit 2,059 0.040 0.041 0.086 −1.675 0.779 0.107
Log change in credit 5yr ma 2,025 0.041 0.045 0.075 −0.474 0.412 0.064

To test the robustness of the results and analyze a broader set of countries, I also

conduct the analysis using data from Baron et al. (2020), which covers 46 countries from

1870 to 2016. In their definition, an event is considered a financial crisis if there is a

bank panic or a bank equity crash (defined as a cumulative 30% decline) in combination

with widespread bank failures.6 Baron et al. (2020) define a banking panic as an event in

which large banks face considerable funding pressures in the form of depositor (or creditor)

withdrawals. This crisis identification approach differs from the narrative-based approach

of Schularick and Taylor (2012). The dataset also covers a wider set of countries, including

lower and upper middle income. This allows me to test whether developing countries’

financial systems are more or less vulnerable to disasters than those of high-income

countries. A disadvantage of covering a wider set of countries is that it does not include

as many other macroeconomic variables (including long-run GDP data). I therefore use

GDP data from the World Bank - available from 1960 onwards - to construct the disaster

measure for the Baron et al. (2020) sample.

3.2 Model and Methods

The Basic Model

The empirical evidence in the literature suggests that the disruption in the production

of goods and services in the wake of disaster event’s negatively affects growth, employment,

and trade (Botzen et al., 2019; Hsiang & Jina, 2014; Strobl, 2011) but generally leads to an
6A detailed explanation of how their indicators are constructed is given in their online appendix.
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increase in private and public debt (Klomp & Valckx, 2014). I want to know whether the

economic consequences of a natural disaster make the financial system more vulnerable to

financial crises. Schularick and Taylor (2012) show that large increases in credit predict a

higher risk of a financial crisis occurring. Baron et al. (2020) show that shocks in the form

of bank losses can be a key driver of financial crises. Given the evidence of the effect a

disaster has on the macroeconomy I propose that the combination of disrupted production,

lower growth, and higher levels of debt put pressure on the financial system and increase

crisis-risk. To test, this I estimate the following logit models based on Schularick and

Taylor (2012) with an added measure of natural disasters as the key explanatory variable

of interest:

logit(pi,t) = αi +
4∑

j=0
βjDi,t−j +ϕXi,t + ei,t (2)

Crisist = αi +γt +
4∑

j=0
βjDi,t−j +ϕXi,t + ei,t (3)

In equation (2), the dependent variable pit denotes the probability of a crisis occurring,

such that logit(pit) = ln(pit/1−pit) is the log odds ratio of a crisis occurring in country i at

time t. The logit function transforms probabilities from the range (0, 1) to the entire real

line (−∞, ∞), such that the specification can model probabilities as a linear combination

of the independent variables. αi denotes country-fixed effects, and Xi,t represents a set

of lagged controls including credit growth and economic growth. Finally, the variables

of interest, Di,t, are four measures of annual damages from a disaster (defined above) at

time t, t−1, t−2, and t−3.

The logit model specified in equation (2), includes country fixed effects to control for

unobserved heterogeneity across countries. Observe that the inclusion of country fixed

effects here does not result in the incidental parameters’ problem because the number of

countries is relatively small compared to the sample size (Lancaster, 2000; Schularick &

Taylor, 2012). This means that the number of fixed effects parameters to be estimated is

small relative to the number of observations, which allows for consistent estimation of the

model parameters.

In contrast, including time fixed effects in the logit model, would result in a large

number of fixed effects parameters relative to the sample size, which would indeed lead
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to the incidental parameters’ problem. However, since only 18 countries are covered in

the dataset, this cannot be addressed by using conditional logit or the analytical bias

corrections derived in Cruz-Gonzalez et al. (2017). This leaves using the linear probability

model (LPM) in equation (3) to test whether the estimates are robust to including

year and country fixed effects. The crisis indicator variable is denoted Crisisi,t and γt

represents the added year effects. The LPM, however, suffers from well-known limitations

including that it assumes that the relationship between the independent variables and

the probability of a crisis occurring is linear, which is a particularly weak assumption

given that the probability of a crisis occurring is low to begin with. Additionally, the error

term in LPMs is inherently heteroscedastic, which, if left unaddressed, can lead to biased

standard errors.7 For those reasons, the main specifications and results in this paper are

logistic regressions and I use the LPMs predominately as an additional robustness check

and to address potential measurement error (discussed in the next section).

The Role of Credit

To test the hypothesis that natural disasters are particularly risky if they occur in

combination with a credit boom, I follow the approach of Krishnamurthy and Muir (2017)

and interact the disaster variable with the measure for credit growth:

logit(pi,t) = αi +β
(
DMA5

)
+ δ

(
CMA5

)
+λ

(
DMA5 ×CMA5

)
+ϕXi,t + ei,t (4)

In equation (4) above, the disaster measure is a 5 year, backward looking, moving average

of annual damages from natural disasters denoted DMA5 = 1
5

∑4
j=0 Di,t−j . Similarly,

credit is denoted as the 5-year moving average of the log change in real total debt,

CMA5 = 1
5

∑5
j=1 ∆Ci,t−j . The moving average of the disaster measures includes damages

from the current year t since natural disasters are exogenous to crisis-risk. On the

other hand, the moving average of the credit measure is calculated using only past

values. As before, Xi,t denotes a vector of further control variables, which for this
7LPMs are inherently heteroscedastic because the variance of the error term is not constant across the

range of predicted probabilities. This occurs because the LPM assumes that the relationship between the
independent and dependent variables is linear and thus the variance of the error term changes as the
predicted probability moves closer to 0 or 1. Therefore, I also include results with heteroscedasticity-robust
standard errors in the robustness test section
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specification consists of only a 5-year moving average of the log change of GDP, denoted

GDP MA5 = 1
5

∑5
j=1 ∆GDPi,t−j

Danger Zones

One of the weaknesses of the models above is that there are multiple lagged disaster

variable such that the results focus on details that do not add much value to the aim

of the paper. In other words, to understand the relationship between natural disasters

and financial crises, it is not so important whether the 1-year or 2-year lagged disaster

variable is significant. Therefore, I re-define the dependent variable by trading precision

for efficiency and capture a financial crisis "danger zone" (or risk period):

dangerzonet =


1 if Crisist = 1, Crisist+1 = 1, or Crisist+2 = 1

0 otherwise

I then re-estimate the previous specifications but only including the one-period lagged

independent variables. The logit model, for example, becomes:

logit
(
p∗

i,t

)
= αi +β (Di,t−1)+ δ (Ci,t−1)+λ(Di,t−1 ×Ci,t−1)+ϕ(GDP i,t−1)+ ei,t (5)

where pit denotes the probability of a crisis occurring in the current year, next year, or

the year after. Figure 2 shows this visually for four example countries.

Local Projections

I also test the impact of a disaster on the log change in GDP, the change in credit to

GDP ratio, and the percentage change in bank equity returns (taken from Baron et al.

(2020)) using Jordà (2005) local projections:

∆hyi,t+h = αi +
3∑

j=0
βjDISASTERi,t−j +γXi,t + ei,t, ∀ h ∈ {0,1,2, ...,5} (6)

The outcome variable in equation (6) is the cumulative log change in GDP, change in credit-

to-GDP, or percentage change in bank equity return denoted ∆hyi,t+h = yi,t+h −yi,t−1 for

any h in {0,1,2, ...,5}. To further test the underlying mechanisms (as well as to check the
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Figure 2: Crises "Danger Zones" and Natural Disasters

Note: The four graphs show an example of the crisis "dangerzone" and the disaster measure
(weighted annual damages from natural disasters standardized by GDP) for Switzerland, Italy,
the United States, and Japan. The dotted red line indicates the year in which the crisis occurred.

robustness of the results), I also estimate the model in equation (1) for banking panics

and bank equity crashes. A local projection is a series of projections of the cumulative

change in the endogenous variable shifted forward in time (Jordà, 2005). They are a useful

tool for this analysis because they allow for the estimation of the impact of a disaster on

the outcome variable over a range of horizons. In fact, Jordà et al. (2022) recently used

local projections to analyze the long-run impact of pandemics on economic growth (Jordà

et al., 2022).

Challenges

There are three main challenges that I need to address in the analysis. Firstly, the

impact natural disasters have on countries is heterogeneous and correlated with other

macroeconomic indicators (Botzen et al., 2019; Hsiang & Jina, 2014). Kahn (2005), for

example, finds that higher income countries have fewer economic growth consequences,

although their total damages from disasters are larger. This is an issue because the

frequency of natural disasters systematically varies by country. For example, Figure 3

shows that the frequency, type, and trend of natural disasters is heterogeneous across

countries. Earthquakes, for instance, are common in Italy and Japan but rare in Australia
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Figure 3: Country-level Frequency and Type of Natural Disasters

Note: The four graphs in the panel show the frequency and trend of qualifying natural
disasters in Italy, Japan, Australia, and Germany.

and Germany. To address this I include country fixed effects in all estimations (except to

explicitly show the effect of adding them).

Secondly, it seems fairly obvious that natural disasters are exogenous to crisis-risk.

If this were not the case, one would have to argue that financial crises cause natural

disasters. I see no reason why such a reverse causality would exist and therefore assume

that natural disasters are exogenous to crises (Noy (2009), Raddatz (2007), and Skidmore

and Toya (2002) adopt a similar logic for different macroeconomic outcome variables).

Nevertheless, the model could suffer from omitted variable bias if there are factors in

the economy that arguably increase the risk of a financial crisis as well as accelerate

climate change or worsen the damages from natural disasters (which then increases the

frequency of natural disasters). This is also largely addressed by including fixed effects,

which control for static country-level differences. Additionally, given the global nature of

climate change, its uneven impacts, and the lack of empirical evidence that would suggest

that macroeconomic variables are determinants of natural disasters, this is likely not a

large concern. There is, however, some empirical evidence that economic growth is a

determinant of the damage caused by natural disasters (Botzen et al., 2019; Skidmore &

Toya, 2002). To account for this, I control for GDP growth in the specifications.
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Figure 4: Frequency of Crises vs Disasters

Lastly, it is likely that the drastic increase in the frequency of natural disasters after

the 1950s is partially driven by a significant amount of measurement error. In other

words, technology likely improved global data collection for natural disasters. This would

be worrisome if the data collection for crises suffered from similar measurement error.

However, unlike natural disasters, the frequency of crises has not increased meaningfully

over the last century (see Figure 4). As a robustness check, however, I include year effects

in the LPMs, which would account for this type of correlated measurement error. Overall

the main results appear to be robust to this issue.

4 Results

The Basic Model

In this section I present the main results and discuss their strengths and limitations.

Columns (1) through (3) in Table 2 show the results of the logit model introduced in

equation (2). Columns (4) and (5) show the results of the LPM specified in equation (3).

The standard errors are clustered by country, which is a standard approach for estimating

effects of natural disasters in panel data (Klomp, 2014). The most noteworthy finding in

Table 2 is that the two-period lagged damage measure is positive and significant at the

0.01 level across all different specifications with and without year and fixed effects. This
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result indeed suggests that a large natural disaster is associated with higher crisis-risk in

the future.

Examining columns (1) and (2), it is noteworthy that including fixed effects in the

logit model does not change the estimate for the coefficient of the two-year lagged disaster

measure. This suggests that the time-invariant unobserved characteristics of countries

included in the analysis are not correlated with both the disaster and crisis variable. This

would be the case if, for example, countries that are consistently more likely to have higher

damages from natural disasters are also more likely to experience financial crises. Similarly,

for the LPM, including year and country fixed effects only increased the estimates from

0.005 to 0.006, which indicates that the bias, if any, from country-specific (time-invariant)

and time-specific (country-invariant) unobserved characteristics is directed downward.

Table 2: Effect of a strong natural disaster on crisis risk (1900 - 2020)

Dependent Variable: Crisis in year = t

logistic OLS
(1) (2) (3) (4) (5)

Damages(pcGDP )t −0.171 −0.148 −0.111 −0.001 −0.0002
(0.185) (0.176) (0.202) (0.001) (0.0004)

Damages(pcGDP )t−1 0.009 0.012 0.098∗ −0.00002 0.00004
(0.030) (0.033) (0.059) (0.001) (0.001)

Damages(pcGDP )t−2 0.058∗∗∗ 0.060∗∗∗ 0.165∗∗∗ 0.005∗∗∗ 0.006∗∗∗

(0.006) (0.006) (0.054) (0.002) (0.002)
Damages(pcGDP )t−3 0.060∗ 0.062 0.166∗ 0.005 0.002

(0.036) (0.040) (0.095) (0.006) (0.002)
Country fixed effects No Y es Y es No Y es
Year fixed effects No No No No Y es
Restricted sample No No Y es No No
Observations 2,084 2,084 1,278 2,084 2,084
Adjusted R2 0.005 0.204
Log Likelihood -268.928 -262.137 -113.029
Residual Std. Error 0.167 0.149
F Statistic 3.542∗∗∗ 4.898∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Cluster-robust standard errors are shown in parentheses.

The coefficients in the logit model represent the marginal change in the log-odds of a

crisis occurring associated with a one-unit change in the corresponding disaster variable

(holding all other variables constant). And since a one unit increase in the disaster

measure represents 0.1% of GDP, the results in column (2) can be interpreted as follows:

A 0.1% of GDP increase in damages from natural disasters, increases the odds of a crisis
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occurring two years later by 6.2%.8 Column (3) depicts the results of the same logit

model as in column (2) but restricting the sample to observations after 1949. I do this to

address concerns regarding the data collection on natural disasters during the first half

of the century and therefore test the results using only more recent data of the last 70

years, which has the added benefit of (1) reducing any additional noise coming from the

weaknesses in data collection between 1900 and 1950 and (2) excluding both World Wars.

The result for the lagged disaster measure remains statistically significant at the 0.01 level

and also significantly increases from 0.060 to 0.165. This would suggest that a 0.1% of

GDP increase in disaster damages is associated with a 17.9% increase in the odds that a

crisis occurs two years later.

The interpretation of the coefficients in the LPM reported in columns (4) and (5) is

different, but the overall conclusion is the same. A one unit increase in the two-year lagged

disaster measure is associated with a 0.006 percentage point increase in the probability

that there is a crisis. While the estimated coefficients of the LPM are fairly small, one has

to consider that the probability of a crisis occurring in any given year is not large to begin

with and that the shock variable is scaled such that a one unit increase represents 0.1% of

GDP. Consequently, scaling the shock variable differently would increase or decrease the

size of the coefficients. I set it to 0.1% of GDP because that was close to the mean for

damages from qualifying natural disasters (see Table 1). Moreover, although the estimated

effects are small, the exogenous nature of the disaster shock allow me to make causal

claims about the relationship between disasters and crises.

Next, Figure 5 visualizes the results of local projections of a disaster shock on bank

equity returns. The figure confirms the finding of previous studies (Klomp, 2014) that

disasters have a negative effect on bank equity returns. Moreover, the results show that

the effect is persistent and only starts to sets in one period after the shock. Interestingly

the timing is in line with the fact that the coefficients for the two-period lagged disaster

variable were the most significant crisis predictors in Table 2. The figure therefore gives

credence to the narrative that strong disasters put pressure on bank’s balance sheets,

which heightens crisis-risk. Although the effect is negative for all time horizons, it is only

statistically significant after 3 years. The outcome variable in the local projection is the

cumulative percentage change in bank equity returns from year -1. The light blue shaded
8The formula for converting log odds is simply: exp(0.060) = 1.062.

18



Figure 5: Local Projection of Disaster Shock on bank equity returns

Note: The outcome variable is the cumulative percentage change in bank equity returns from
year -1.

area represents the 90% confidence interval computed using cluster-robust standard errors

(as in Jordà et al. (2020)).9

4.0.1 The Role of Credit

Table 3 adds the log-change of credit growth as controls and tests if there are interaction

effects between credit growth and disasters. Columns (1) and (2) simply extend the

previous specification by adding 4 lagged credit covariates and an interaction term for

the disaster and credit growth variable at t − 2. The results in the first column show

that controlling for the change in credit does not change the statistical significance of the

disaster shock coefficients and slightly increases the magnitude of the two-year lagged

disaster coefficient (from 0.060 in column (2) of Table 2 to 0.074). Additionally, the

estimated coefficients of the log-change in credit are very similar to those found by

Schularick and Taylor (2012) who find a coefficient of 7.14 for the two-year lagged credit

(compared to 8.14).10 Including the interaction term in column (2) does not produce any

statistically significant differences to column (1). Table 15 also controls for GDP growth,

but the results are not meaningfully different either.
9However, the results are robust to using White and Newey West standard errors for both heteroscedas-

ticity and autocorrelation in all the local projections presented in this paper.
10The minor differences between the two estimates could be attributed to the inclusion of the disaster

measures or the fact that the sample in Schularick and Taylor (2012) covered 1870-2008, whereas my
sample covers 1900-2020.
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Table 3: Interaction credit expansions and natural disasters (1900 - 2020)
Dependent Variable: Crisis in year = t

logistic OLS
(1) (2) (3) (4) (5) (6)

Damages(pctGDP )t −0.125 −0.124
(0.155) (0.154)

Damages(pctGDP )t−1 0.033 0.033
(0.030) (0.030)

Damages(pctGDP )t−2 0.074∗∗∗ 0.078∗∗∗

(0.009) (0.013)
Damages(pctGDP )t−3 0.078∗ 0.078∗

(0.043) (0.044)
∆Creditt−1 −0.333 −0.319

(1.451) (1.472)
∆Creditt−2 8.137∗∗∗ 8.155∗∗∗

(2.050) (2.066)
∆Creditt−3 −0.537 −0.526

(1.198) (1.214)
∆Creditt−4 1.931∗∗ 1.929∗∗

(0.894) (0.894)
Damages 5yr ma 0.184∗∗∗ −0.080 0.008∗∗∗ 0.003

(0.057) (0.089) (0.001) (0.002)
Credit 5yr ma 9.554∗∗∗ 8.293∗∗∗ 0.199∗∗∗ 0.179∗∗∗

(2.459) (2.211) (0.046) (0.050)
Damagest−2 ×∆Creditt−2 −0.245

(0.701)
Damages ma ×∆Credit ma 9.948∗∗∗ 0.299∗

(2.053) (0.182)
Constant −5.321∗∗∗ −5.319∗∗∗ −5.320∗∗∗ −5.688∗∗∗ −0.033∗∗∗ −0.037∗∗∗

(0.219) (0.217) (0.184) (0.176) (0.005) (0.006)
Country fixed effects Y es Y es Y es Y es Y es Y es
Year fixed effects No No No No Y es Y es
Observations 1,964 1,964 1,966 1,966 1,966 1,966
Adjusted R2 0.222 0.224
Log Likelihood -233.230 -233.208 -240.674 -235.443
Residual Std. Error 0.148 0.148
F Statistic 5.165∗∗∗ 5.180∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Cluster-robust standard errors are shown in parantheses.
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The lack of significant results in the specifications with the lagged variables may be

because I only interacted the two-period lags. Therefore, Columns (3) and (4) of Table

3 present the results from the logit model introduced in equation (4) with the 5-year

moving averages for disasters and credit. As expected, the estimated coefficients for the

5-year moving average of the disaster shock and credit expansion are both statistically

significant (and larger than the estimates for the lagged shocks). The main result from

this table is that including the interaction term in column (4) makes the disaster variable

statistically insignificant while the coefficient for the interaction is positive, larger than

either of the other coefficients was in column (3), and statistically significant at the 0.01

level. Additionally, including the interaction term also reduces the magnitude of the credit

coefficient. Overall the estimates in columns (3) and (4) support the hypothesis that a

credit boom amplifies the effect of a natural disaster shock (and/or vice versa). A natural

disaster during a period of credit expansion, increases crisis-risk. Additionally, the fact

that the disaster variable becomes insignificant may imply that the interaction is one of

the main channels through which disasters cause crises.

Next, I test whether this result is robust to adding year effects in a linear probability

model (LPM). Indeed, the estimates in columns (5) and (6) of Table 3 show the same

development when I include the interaction term. The disaster shock coefficient is positive

and significant in column (5) and when the interaction term is included its magnitude

decreases and is no-longer significant. As before, the interaction term in column (6) is

significant and larger than the coefficient for the credit variable.

The results so far identify a credit expansion as an amplifier of the effect of natural

disasters on crisis-risk. But could credit booms themselves be a channel through which

natural disasters increase crisis-risk? In other words, natural disasters may lead to an

increase in credit due to economic disruptions and reconstruction costs. If this resulting

increase in credit increases crisis-risk, it would mean that part of the observed effect of

disasters on crises is actually coming from the resulting increase in credit. But comparing

the estimates of column (2) of Table 2 to those of column (1) of Table 3 shows that

the estimated coefficient for the disaster shock is larger when controlling for credit and

therefore does not indicate that credit expansions are a channel through which disasters

negatively affect crisis-risk. Additionally, I analyze the effect that natural disasters have

on the credit-to-GDP ratio using the local projections approach as in Jordà et al. (2020).
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Figure 6: Local Projection of Disaster Shock on Credit-to-GDP Ratio

Note: The outcome variable is the difference of credit-to GDP ratio from year -1.

Figure 6 visually shows the local projections of the disaster shock on the change in the

credit-to-GDP. While the effect is positive throughout the 5 year time horizons, it is small

and only slightly significant in the year of the shock.

4.0.2 The Role of economic growth

Table 4 shows the results for the logit model in equation 4 when controlling for the

five-year moving average of GDP growth. Unsurprisingly, economic growth is negatively

related to crisis-risk. But interestingly, including GDP growth as a control reduces the size

of the disaster coefficient in column(1). In column (2), where the interaction term is also

included, the coefficient actually becomes negative (although not statistically significant).

Together this may imply yet another channel through which natural disasters increase

crisis-risk. To briefly re-estimate a well-established result in the literature that natural

disasters decrease growth, I use a two-way fixed effects OLS model to test the effect of

natural disasters on economic growth as well as a local projection to analyze the dynamic

effects of its impact. The result of the two-way fixed effects model is reported in column (3)

and is consistent with well established finding that natural disasters lead to a reduction in

growth. Figure 7 shows a local projection on 100 × log change of GDP from year -1. The

impulse response function clearly shows that the effect of a natural disaster shock on GDP

growth is negative and statistically significant for all 5 time horizons. The effect appears

to slow in the fourth year after the shock. This result is consistent with other empirical

findings in the environmental economics literature that the destructive effect of strong
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natural disasters outweighs the positive effect of reconstruction efforts and therefore leads

to a reduction in economic growth Klomp and Valckx (2014). Coupled with the effect

that including GDP growth had on the logit regression, this also supports the narrative

that the reduction in output after a disaster is a potential channel through which crises

become more likely.

Table 4: Controlling for economic growth

Dependent variable:
logistic OLS

(1) (2) (3)
Damages 5yr ma 0.149∗∗∗ −0.099 −0.002∗∗∗

(0.057) (0.080) (0.0004)
Credit 5yr ma 14.854∗∗∗ 13.572∗∗∗

(3.120) (2.886)
∆ GDP ma −17.747∗∗∗ −17.939∗∗∗

(5.181) (5.267)
Damages ma ×∆Credit ma 9.636∗∗∗

(1.945)
Constant −5.085∗∗∗ −5.397∗∗∗ 0.034∗∗∗

(0.206) (0.199) (0.004)
Country fixed effects Y es Y es Y es
Year fixed effects No No Y es
Observations 1,900 1,900 2,003
Adjusted R2 0.245
Log Likelihood -230.713 -225.531
Residual Std. Error 0.033
F Statistic 5.924∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Cluster-robust standard errors are shown in parentheses.

Danger Zone

Columns (1) and (2) of Table 5 show the estimates of the specification defined in

equation (5) where the dependent variable is re-coded as a crisis "Danger Zone". Overall

both the magnitude and the significance of the estimates in all the columns is similar to

those presented in previous models. The estimates in column (1) indicate that a natural

disaster shock (with damages of 0.1% of GDP) is associated with a 7% increase in the

odds that a crisis occurs in the following three years. When including the interaction of

the disaster and credit shock, the shock coefficient decreases and is no longer significant

while the coefficient for the interaction term is positive and significant. The LPMs with

year and country effects in columns (3) and (4) are also similar.
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Figure 7: Local Projection of Disaster Shock on GDP Growth

Note: The outcome variable is 100 × log change of GDP from year -1.

Table 5: Effect on a Crisis "Danger Zone" (1900 - 2020)

Dependent Variable: Crisis Danger Zone
logistic OLS

(1) (2) (3) (4)
Damages(pcGDP )t−1 0.068∗ −0.009 0.008∗∗∗ 0.006∗∗∗

(0.038) (0.017) (0.001) (0.001)
∆Creditt−1 5.493∗∗∗ 5.219∗∗∗ 0.213∗∗∗ 0.209∗∗∗

(1.514) (1.470) (0.080) (0.080)
∆GDPt−1 −4.269∗∗ −4.253∗∗ −0.046 −0.044

(1.782) (1.800) (0.111) (0.111)
Damagest−1 ×∆Creditt−1 5.377∗∗∗ 0.108

(1.500) (0.076)
Constant −3.812∗∗∗ −4.023∗∗∗ −0.078∗∗∗ −0.079∗∗∗

(0.086) (0.140) (0.014) (0.015)
Country fixed effects Y es Y es Y es Y es
Year fixed effects No No Y es Y es
Restricted sample No No No No
Observations 1,985 1,985 1,985 1,985
Adjusted R2 0.312 0.312
Log Likelihood -544.567 -537.591
Residual Std. Error 0.234 0.234
F Statistic 7.612∗∗∗ 7.569∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Cluster-robust standard errors are shown in parentheses.
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Figure 8: In and Out of Sample ROC plots

Note: Figure A shows the ROC curves for the in-sample predictions and Figure B shows the
ROC curves for the out-of-sample predictions. The out-of-sample prediction model is trained on
data from 1900-1995 and then used to predict crises from 1995-2020

Prediction

Another way to test what effect natural disasters have on crisis-risk, is to test how well

they predict them. This not only provides a different way to test the main hypothesis, but

also test the robustness of the previous results. I use the logit model specified in equation

2 to predict the probability of a crisis occurring. Following the approach of Schularick

and Taylor (2012), I then compare the predicted crises to the actual crises using Receiver

Operating Characteristic (ROC) curves presented in Figure 8. The ROC curve plots the

true positive rate (sensitivity) against the false positive rate (specificity) for different

thresholds of the predicted probability. The area under the curve (AUC) is a measure of

the accuracy of the model. The closer the AUC is to 1, the more accurate the model.

Panel A in Figure 8 shows the ROC curves for the in-sample prediction for a model

including only the lagged disaster shocks (Model 3 in green), a model including only the

lagged credit variables (Model 2 in blue), and a model including both (Model 1 in red).

Observe that even the model with only disaster shocks has some predictive power (AUC

= 0.65). This is a striking result. Furthermore, adding disaster shocks to a model with

only credit variables (i.e. comparing the blue and red line), increases the predictive power

of the model.11

11The results of the in-sample and out-of-sample prediction of the model including only credit are in
line with the results from Schularick and Taylor (2012).

25



Going a step further, I want to check whether I have overfitted the model. Thus, Panel

B in Figure 8 shows the ROC curves for the out-of-sample prediction using the same

models. In other words, I trained on data from 1900 to 1995 and then used the result to

predict crises from 1995 to 2020. The AUC for the out-of-sample prediction of the model

using only disasters is 0.6 indicating that natural disasters have some predictive power

even in the out-of-sample prediction.

All the models perform worse in the out-of-sample prediction. This is not surprising

since the out-of-sample prediction has less information available and is trained on a smaller

sample. Consequently, the fact that model 3 in the out-of-sample prediction is even just

somewhat predictive about when a financial crisis is going to occur, is a good result in

favor of my main hypothesis.

5 Robustness checks

Recall that I limited the analysis to storms, wildfires, earthquakes, and volcanic

activities. In Table 6 I test whether the main logit models are robust to also including

droughts, floods, extreme temperatures and epidemics. Although the magnitude of the

estimates is somewhat smaller, Table 6 shows that the estimates reported in Table 2 and

3 are robust to including these additional types of disasters.

Next, Table 7 presents the estimates of model 2 when I don’t exclude disasters with

damages under the country-specific median. Here too, the results are robust and almost

identical to the baseline estimates. Table 8 shows estimates for the same model but

using unweighted damages to compute the disaster measure, which also produces similar

coefficients and standard errors.

To see what happens when I use a different measure of financial crises for the same

list of 18 countries, I estimate equation 2 using the crisis indicator from Baron et al.

(2020) as the dependent variable and report the results in column 1 of Table 9. Although

the estimated coefficients are smaller, the two-period lagged disaster measure is still a

statistically significant predictor of financial crises.

A key issue with the disaster measure I used so far is that it relies on the availability

of damage data, which is not consistent across the listed disaster events in the EM-DAT
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Table 6: Robust: Main results including other types of disasters

Dependent Variable: Crisis in year = t

(1) (2) (3) (4)
Damages(pctGDP )t −0.095 −0.060

(0.177) (0.205)
Damages(pctGDP )t−1 −0.001 0.066

(0.037) (0.055)
Damages(pctGDP )t−2 0.055∗∗∗ 0.136∗∗∗

(0.007) (0.040)
Damages(pctGDP )t−3 0.059 0.140∗

(0.037) (0.081)
Damages 5yr ma 0.175∗∗∗ −0.022

(0.050) (0.078)
Credit 5yr ma 9.577∗∗∗ 8.416∗∗∗

(2.473) (2.300)
Damages ma ×∆Credit ma 7.721∗∗∗

(2.022)
Constant −4.757∗∗∗ −4.620∗∗∗ −5.369∗∗∗ −5.939∗∗∗

(0.121) (0.423) (0.201) (0.247)
Country fixed effects Y es Y es Y es Y es
Year fixed effects No No No No
Restricted sample No Y es No No
Observations 2,084 1,278 1,966 1,966
Log Likelihood -262.455 -113.835 -240.963 -237.029

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Cluster-robust standard errors are shown in parantheses.

Table 7: Robust: Effect of a natural disaster on crisis risk (1900 - 2020)

Dependent Variable: Crisis in year = t

logistic OLS
(1) (2) (3) (4) (5)

Damages(pcGDP )t −0.190 −0.167 −0.135 −0.001 −0.0003
(0.198) (0.192) (0.226) (0.001) (0.0005)

Damages(pcGDP )t−1 0.019 0.021 0.113∗ 0.0004 0.0002
(0.026) (0.029) (0.059) (0.001) (0.001)

Damages(pcGDP )t−2 0.058∗∗∗ 0.060∗∗∗ 0.163∗∗∗ 0.005∗∗∗ 0.006∗∗∗

(0.006) (0.006) (0.054) (0.002) (0.002)
Damages(pcGDP )t−3 0.061∗ 0.062 0.165∗ 0.005 0.002

(0.036) (0.040) (0.094) (0.005) (0.002)
Constant −3.550∗∗∗ −4.762∗∗∗ −4.612∗∗∗ 0.027∗∗∗ −0.023∗∗∗

(0.119) (0.069) (0.307) (0.003) (0.003)
Country fixed effects No Y es Y es No Y es
Year fixed effects No No No No Y es
Restricted sample No No Y es No No
Observations 2,102 2,102 1,278 2,102 2,102
Adjusted R2 0.005 0.204
Log Likelihood -269.469 -262.680 -113.037
Residual Std. Error 0.166 0.149
F Statistic 3.391∗∗∗ 4.904∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Cluster-robust standard errors are shown in parentheses.
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Table 8: Robust: Effect of a strong natural disaster (unweighted) on crisis risk (1900 -
2020)

Dependent Variable: Crisis in year = t

logistic OLS
(1) (2) (3) (4) (5)

Damages(pcGDP )t −0.098 −0.090 −0.064 −0.001∗∗ −0.0004
(0.079) (0.080) (0.096) (0.001) (0.0005)

Damages(pcGDP )t−1 −0.027 −0.029 0.002 −0.001 −0.0004
(0.048) (0.047) (0.052) (0.001) (0.0003)

Damages(pcGDP )t−2 0.042∗∗∗ 0.041∗∗∗ 0.076∗∗∗ 0.003∗∗ 0.004∗∗∗

(0.009) (0.010) (0.018) (0.001) (0.001)
Damages(pcGDP )t−3 0.044∗ 0.043 0.077∗ 0.003 0.001

(0.025) (0.026) (0.041) (0.003) (0.001)
Constant −3.545∗∗∗ −4.739∗∗∗ −4.355∗∗∗ 0.027∗∗∗ −0.022∗∗∗

(0.123) (0.058) (0.137) (0.003) (0.003)
Country fixed effects No Y es Y es No Y es
Year fixed effects No No No No Y es
Restricted sample No No Y es No No
Observations 2,102 2,102 1,278 2,102 2,102
Adjusted R2 0.003 0.203
Log Likelihood -269.530 -262.843 -114.884
Residual Std. Error 0.166 0.149
F Statistic 2.844∗∗ 4.887∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Cluster-robust standard errors are shown in parentheses.

database. To address this, columns (2) through (4) in Table 9 present the results for

different disaster measures, all of which support the main hypothesis that disasters increase

crisis-risk. The model reported in column (2) codes the disaster measure as a dummy

variable that takes the value of 1 if there was a disaster in country i and time t. Column (3)

uses a count measure of the number of disasters each year. Finally, the disaster measure

in column (4) is just the estimated sum of damages measured in billions of current US

dollars. Next to the fact that the results are robust to using different measures for the

dependent and independent variables, the main takeaway is that in the estimates that do

not rely on damage data, it is the one-period (as opposed to two-period) lagged coefficient

that is significant. It is unclear what is driving this change in chronology, but the direction

of the effect remains the same.

Finally, the findings may depend on the 18 countries included in the sample, which all

have very advanced-economies. To account for this I take advantage of the fact that the

crisis indicator from Baron et al. (2020) covers 46 countries. The results from testing the

model using this larger sample and their crisis indicator, are presented in Table 10. Note
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Table 9: Robust: Additional Robustness checks (1900 - 2020)

Dependent Variable: Crisis in year = t

BVX JST
(1) (2) (3) (4)

Damages(pcGDP )t −0.119
(0.121)

Damages(pcGDP )t−1 0.013
(0.027)

Damages(pcGDP )t−2 0.042∗∗∗

(0.006)
Damages(pcGDP )t−3 0.041

(0.038)
Disastert −0.682

(0.444)
Disastert−1 0.672∗∗

(0.333)
Disastert−2 −0.012

(0.435)
Disastert−3 −0.080

(0.473)
No.ofDist −0.065

(0.100)
No.ofDist−1 0.214∗

(0.118)
No.ofDist−2 −0.123

(0.078)
No.ofDist−3 −0.096

(0.089)
DamB(US)t −0.056∗

(0.033)
DamB(US)t−1 −0.018

(0.015)
DamB(US)t−2 0.019∗∗∗

(0.006)
DamB(US)t−3 0.005

(0.006)
Constant −3.897∗∗∗ −4.610∗∗∗ −4.598∗∗∗ −4.604∗∗∗

(0.042) (0.190) (0.034) (0.008)
Country fixed effects Y es Y es Y es Y es
Observations 1,798 1,818 1,818 1,818
Log Likelihood -299.511 -250.675 -251.288 -250.316

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Cluster-robust standard errors are shown in parentheses.
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that the coefficients are now no longer statistically significant. This may, however, be due

to the lack of available damage data for less advanced economies and not because the

finding doesn’t hold for a larger sample of countries. To test this I use a dummy variable

as the disaster measure (as before) and find that the one-period lagged disaster coefficient

is indeed positive and significant (see Table 11 column (1)).

Additionally, I check whether the results hold for a dummy variable for above median

disasters for all, high-income, and low-income countries. I present the results in Table

11 columns (2), (3), and (4) respectively. Interstingly the coefficient for the one-period

lagged disaster measure is significant for all countries and high-income countries but not

for low-income countries. Again, this may be due to data collection issues which is why it

is hard to draw any strong conclusions from these results.

Table 10: Robust: Effect of a strong natural disaster on crisis risk (with additional
countries) (1960 - 2020)

Dependent Variable: Crisis in year = t
(1) (2)

Damages(pcGDP )t −0.063 −0.075
(0.076) (0.094)

Damages(pcGDP )t−1 −0.006 −0.006
(0.013) (0.016)

Damages(pcGDP )t−2 0.007 0.008
(0.012) (0.013)

Damages(pcGDP )t−3 −0.005 −0.005
(0.012) (0.014)

Constant −3.125∗∗∗ −2.219∗∗∗

(0.094) (0.0003)
Country fixed effects No Y es
Observations 2,220 2,220
Log Likelihood -382.465 -363.889
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Cluster-robust standard errors are shown in parentheses.

In the specifications presented so far, I used cluster-robust standard errors as is

standard in the literature. As a robustness check, I conducted both the Breusch-Pagan

and White test on the main specifications, which indicated that there may indeed be

some heteroscedasticity in the models. Since the clustered standard errors may therefore

not be robust enough, Tables 12, 13, and 14 present the results using heteroskedasticity-

consistent standard errors and shows that, although the main findings are robust, a few

of the coefficients become less significant or insignificant all-together. This is particularly

an issue for the LPMs including the interaction terms. The estimates for the logit models

with and without the interaction terms, however, are robust to using heteroskedasticity-

consistent standard errors.

30



Table 11: Robust: Disaster Dummies (1900 - 2020)
Dependent Variable: Crisis in year = t

(1) (2) (3) (4)
Disastert −0.023

(0.214)
Disastert−1 0.740∗∗∗

(0.212)
Disastert−2 0.021

(0.249)
Disastert−3 0.028

(0.253)
StrongDisastert 0.257 0.155 0.465

(0.269) (0.293) (0.612)
StrongDisastert−1 0.861∗∗∗ 0.888∗∗ 0.786

(0.300) (0.380) (0.491)
StrongDisastert−2 −0.412 −0.485 −0.240

(0.316) (0.357) (0.654)
StrongDisastert−3 0.411 0.334 0.574

(0.309) (0.388) (0.513)
Constant −2.853∗∗∗ −2.626∗∗∗ −4.245∗∗∗ −2.634∗∗∗

(0.111) (0.010) (0.183) (0.023)
Country fixed effects Y es Y es Y es Y es
Income group All All High Low
Observations 4,671 4,671 3,151 1,520
Log Likelihood -657.948 -657.073 -456.994 -199.690
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Cluster-robust standard errors are shown in parentheses.

Table 12: Robust: Effect of a strong natural disaster on crisis risk (1900 - 2020)
Dependent Variable: Crisis in year = t

logistic OLS
(1) (2) (3) (4) (5)

Damages(pcGDP )t −0.171 −0.148 −0.111 −0.001∗ −0.0002
(0.162) (0.154) (0.172) (0.001) (0.0005)

Damages(pcGDP )t−1 0.009 0.012 0.098 −0.00002 0.00004
(0.026) (0.029) (0.062) (0.001) (0.001)

Damages(pcGDP )t−2 0.058∗ 0.060∗ 0.165∗∗∗ 0.005 0.006
(0.034) (0.035) (0.061) (0.005) (0.006)

Damages(pcGDP )t−3 0.060∗∗ 0.062∗ 0.166∗ 0.005 0.002
(0.030) (0.033) (0.093) (0.004) (0.002)

Constant −3.542∗∗∗ −4.756∗∗∗ −4.603∗∗∗ 0.027∗∗∗ −0.023∗

(0.133) (1.014) (1.141) (0.004) (0.012)
Country fixed effects No Y es Y es No Y es
Year fixed effects No No No No Y es
Restricted sample No No Y es No No
Observations 2,084 2,084 1,278 2,084 2,084
Adjusted R2 0.005 0.204
Log Likelihood -268.928 -262.137 -113.029
Residual Std. Error 0.167 0.149
F Statistic 3.542∗∗∗ 4.898∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Heteroskedasticity-robust standard errors are shown in parentheses.
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Table 13: Robust: Interaction credit expansions and natural disasters (1900 - 2020)
Dependent Variable: Crisis in year = t

logistic OLS
(1) (2) (3) (4) (5) (6)

Damages(pctGDP )t −0.125 −0.124
(0.138) (0.137)

Damages(pctGDP )t−1 0.033 0.033
(0.027) (0.028)

Damages(pctGDP )t−2 0.074∗∗ 0.078∗∗

(0.036) (0.039)
Damages(pctGDP )t−3 0.078∗∗ 0.078∗∗

(0.035) (0.035)
∆Creditt−1 −0.333 −0.319

(1.244) (1.257)
∆Creditt−2 8.137∗∗∗ 8.155∗∗∗

(1.522) (1.530)
∆Creditt−3 −0.537 −0.526

(1.405) (1.410)
∆Creditt−4 1.931∗ 1.929∗

(1.022) (1.022)
Damages 5yr ma 0.184∗∗∗ −0.080 0.008 0.003

(0.064) (0.162) (0.006) (0.004)
Credit 5yr ma 9.554∗∗∗ 8.293∗∗∗ 0.199∗∗∗ 0.179∗∗∗

(2.596) (2.536) (0.067) (0.068)
Damagest−2 ×∆Creditt−2 −0.245

(0.724)
Damages ma ×∆Credit ma 9.948∗∗∗ 0.299

(3.438) (0.196)
Constant −5.321∗∗∗ −5.319∗∗∗ −5.320∗∗∗ −5.688∗∗∗ −0.033∗∗ −0.037∗∗∗

(1.025) (1.025) (1.002) (1.098) (0.014) (0.014)
Country fixed effects Y es Y es Y es Y es Y es Y es
Year fixed effects No No No No Y es Y es
Observations 1,964 1,964 1,966 1,966 1,966 1,966
Adjusted R2 0.222 0.224
Log Likelihood -233.230 -233.208 -240.674 -235.443
Residual Std. Error 0.148 0.148
F Statistic 5.165∗∗∗ 5.180∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Heteroskedasticity-robust standard errors are shown in parentheses.
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Table 14: Robust: Effect on a Crisis "Danger Zone" (1900 - 2020)

Dependent Variable: Crisis Danger Zone
logistic OLS

(1) (2) (3) (4)
Damages(pcGDP )t−1 0.068 −0.009 0.008 0.006

(0.052) (0.035) (0.006) (0.006)
∆Creditt−1 5.493∗∗∗ 5.219∗∗∗ 0.213∗∗∗ 0.209∗∗∗

(1.073) (1.079) (0.079) (0.079)
∆GDPCreditt−1 −4.269 −4.253 −0.046 −0.044

(2.645) (2.675) (0.154) (0.154)
Damagest−1 ×∆Creditt−1 5.377∗∗∗ 0.108

(1.400) (0.083)
Constant −3.812∗∗∗ −4.023∗∗∗ −0.078∗∗∗ −0.079∗∗∗

(0.593) (0.647) (0.024) (0.024)
Country fixed effects Y es Y es Y es Y es
Year fixed effects No No Y es Y es
Restricted sample No No No No
Observations 1,985 1,985 1,985 1,985
Adjusted R2 0.312 0.312
Log Likelihood -544.567 -537.591
Residual Std. Error 0.234 0.234
F Statistic 7.612∗∗∗ 7.569∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Heteroskedasticity-robust standard errors are shown in parentheses.

6 Conclusion

The key remaining challenges and opportunities for research are: (1) To better identify

the granular channels through which disasters affect the financial system and when. (2)

Expand the analysis to a broader set of countries and overcome the issue of including

year effects in the probit models. (3) Use empirical methods to identify which crises were

affected by natural disasters and analyze if and how they were different to those that

weren’t.

Additionally, given the correlation between disasters and crises discovered in this study,

an extension of this research could be to explore whether disasters are a viable instrument

for crises. My findings already show that disasters would be a relevant instrument

(although the correlation is fairly small). Disasters are also exogenous to the financial

system and therefore unlikely to be correlated with the error term. Yet, the main challenge

is to overcome the exclusivity conditions since disasters, almost by definition, have such a

wide-ranging effect on the economy.
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The main goal of my research was to see whether the historic narratives of natural

disasters leading up to financial crises, were a more general phenomenon that could be

identified in the data. Indeed, the results show that the two-period lagged damage measure

from natural disasters is consistently positive and statistically significant across different

model specifications, indicating that large natural disasters raise crisis-risk in the future.

This effect is amplified during periods of credit expansions. Furthermore, my results

suggest that the reduction in economic output after a disaster and the ensuing fall in

bank equity returns are potential channels through which natural disasters increase the

likelihood of financial crises. When I control for GDP growth, for example, the size and

significance of the disaster coefficient shrink.

I conclude by noting that the relationship between disasters and crises presented in

my research hopefully further motivates and supports existing efforts by central banks to

study the impact of climate change on the stability of the financial system and prepare

for the challenges ahead.
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A Appendix

Table 15: Robust: Interaction credit expansions and natural disasters with GDP controls
(1900 - 2020)

Dependent Variable: Crisis in year = t

logistic OLS
(1) (2) (3) (4) (5) (6)

Damages(pctGDP )t −0.134 −0.133
(0.151) (0.151)

Damages(pctGDP )t−1 0.018 0.018
(0.030) (0.030)

Damages(pctGDP )t−2 0.067∗∗∗ 0.070∗∗∗

(0.011) (0.014)
Damages(pctGDP )t−3 0.072∗ 0.072

(0.043) (0.044)
∆Creditt−1 1.882 1.899

(2.211) (2.231)
∆Creditt−2 8.426∗∗∗ 8.443∗∗∗

(2.603) (2.614)
∆Creditt−3 1.272 1.282

(1.632) (1.643)
∆Creditt−4 2.842∗∗ 2.840∗∗

(1.314) (1.313)
∆GDPt−1 −5.766∗∗ −5.770∗∗

(2.680) (2.689)
∆GDPt−2 −1.998 −1.997

(2.851) (2.849)
∆GDPt−3 −5.357∗∗ −5.354∗∗

(2.252) (2.251)
∆GDPt−4 −3.489 −3.486

(2.772) (2.770)
Damages 5yr ma 0.149∗∗∗ −0.099 0.008∗∗∗ 0.003

(0.057) (0.080) (0.001) (0.002)
∆ Credit 5yr ma 14.854∗∗∗ 13.572∗∗∗ 0.273∗∗∗ 0.251∗∗∗

(3.120) (2.886) (0.066) (0.060)
∆ GDP 5yr ma −17.747∗∗∗ −17.939∗∗∗ −0.093 −0.094

(5.181) (5.267) (0.110) (0.110)
Damagest−2 ×∆Creditt−2 −0.219

(0.708)
Damages ma ×∆Credit ma 9.636∗∗∗ 0.299∗

(1.945) (0.180)
Constant −5.131∗∗∗ −5.130∗∗∗ −5.085∗∗∗ −5.397∗∗∗ −0.039∗∗∗ −0.042∗∗∗

(0.238) (0.237) (0.206) (0.199) (0.006) (0.008)
Country fixed effects Y es Y es Y es Y es Y es Y es
Year fixed effects No No No No Y es Y es
Observations 1,929 1,929 1,900 1,900 1,900 1,900
Adjusted R2 0.220 0.222
Log Likelihood -224.321 -224.304 -230.713 -225.531
Residual Std. Error 0.149 0.149
F Statistic 5.004∗∗∗ 5.019∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Cluster-robust standard errors are shown in parentheses.
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A.0.1 Multicollinearity

Although the main specifications in this paper include lagged independent variables,

there should not be a multicollinearity problem because the disaster shocks capture one

disaster each and are therefore unlikely to be correlated with their lags. In other words,

the probability of having a disaster this year is likely fairly uncorrelated with having a

disaster the next year. This is confirmed in the following correlation matrix among the

lagged disaster variables. The results indicate that there is no significant multicollinearity

issue the correlation coefficients all have values close to zero. This indicates that the

independent variables included in the models can be considered as distinct explanatory

variables.

Table 16: Correlation Matrix of Variables
Disaster DisasterL1 DisasterL2 DisasterL3

Disaster 1.00
DisasterL1 0.03 1.00
DisasterL2 0.04 0.03 1.00
DisasterL3 0.05 0.04 0.03 1.00
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