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Abstract

Using web-scraped consumer review data from booking.com, this paper examines

the effect of the November 2015 Paris attacks on hotel word-of-mouth. I apply a

difference-in-differences framework and find that the attacks led to a 3.4-5.4 per-

cent increase in review scores and a 13.8-21.8 percent increase in positive review

length in the wake of the attacks. I also find that the positive effect persist for

10-12 months, and that the short-term improvements in word-of-mouth is greater

than the medium-term increases. I further provide theoretical and empirical ev-

idence on the mechanism. There is no evidence that fear of terrorist threats is

adversely correlated with customers’ satisfaction with hotel stays immediately af-

ter the attacks. Using text mining techniques, I offer suggestive evidence that the

improved hotel service quality plays a important role in enhancing customer expe-

rience during the attack period, whereas the improved breakfast quality, reduced

hotel rates are more important in the medium term.
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1 Introduction

The November 2015 Paris attacks are considered among the worst acts of violence

in Europe over the last few decades. The attacks generated huge economic impacts

on travel and tourism, one of the world’s largest industries. According to the French

treasury, the attacks costed the French economy around two billion euros, mainly in

consumer spending and tourism [Estrada and Koutronas, 2016].

The empirical literature investigating the effect of terrorism on the hotel industry

and tourism is still scarce [Drakos and Kutan, 2003, Enz et al., 2011]. Enders and

Sandler [1991] is among the first to examine the relationship between terrorism and

tourism by using an vector autoregression (VAR) approach and find that terrorist events

had huge negative impacts on the number of tourists in Spain. More recently, Enz et al.

[2011] investigate how the 9/11 terrorist attacks affected the US hotel performance.

They find an immediate drop in aggregate occupancy, hotel price, and revenue per

available room but a strong rebound in hotel performance after four months. Besides

the direct economic impacts, terrorist acts have large and lasting impacts on human

behavior, and the indirect effect can be greater than the direct effect [Becker et al.,

2004].

In this paper, I examine the effect of the November 2015 Paris terrorist attacks on

word-of-mouth (WOM) in the hotel industry. Hotel word-of-mouth, as a reliable source

of information about the quality of experience goods [Li and Hitt, 2010], provides

an ideal setting to investigate how customers sentiments and subjective assessments

of hotel value evolved in the wake of the terrorist attacks. It also provides a new

perspective to observe the efforts of the hotel industry to response to negative exogenous

shocks.

Unlike standard measures of hotel performance being rocked by terrorist attacks,

hotel word-of-mouth may be affected in a more complex and uncertain way. On the one

hand, terrorism generates a disproportionate amount of fear and stress [Becker et al.,

2004]. Some research find that the attack-triggered fear can lead to less satisfaction
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with life [Frey et al., 2009] and work [Nandi et al., 2004]. Did the increased fear also

brings about less satisfaction with hotel stays? On the other hand, hotels offered a

range of promotion and marketing strategies to reduce losses in the face of the negative

demand shock. Accroding to JacTravel, a supplier of hotel accommodations, a large

number of hotels in Paris provided room upgrades, discounts and reduced minimum stay

requirements to attract customers after the Paris attacks. Hotel guests thus enjoyed

more benefits and may rate the overall experience in Paris hotels more positive.

I exploit rich web-scraped hotel reviews data from booking.com to construct com-

prehensive measures of hotel word-of-mouth. The first and foremost measure is review

scores which directly reflects customers’ subjective assessments of hotel quality. The

second measure is consumer sentiments. I use the length of positive reviews and the

length of negative reviews as proxies of consumer sentiments. The number of words

show customers’ willingness to provide feedback to their hotel stays. A longer positive

review may suggest a higher evaluation, whereas a longer negative review reflects a

worse assessment of the hotel quality.

I apply a generalized difference-in-differences framework to assess the effect of the

Paris attacks on hotel word-of-mouth. By comparing changes in word-of-mouth three

months before the attacks versus three months after the attacks for hotels in Paris

to changes in word-of-mouth pre- versus post-attack for hotels in the top 6 European

tourist cities other than Paris–London, Barcelona, Amsterdam, Milan and Vienna, I

find positive and significant effects on hotel word-of-mouth. Specifically, review scores

and the length of positive reviews in Paris increased relative to other cities, whereas

the length of negative reviews decreased compared with the control group. I also find

that the effects for all the three outcomes persist for approximately one year to the end

of 2016.

Two major sources of threats to identification come from seasonality and selection

bias. The divergence of word-of-mouth trends can be caused by cities’ composition of

traveler type. The share of leisure trip hotel guests in Paris is substantially higher than

that in London and Milan, and high seasonality of the leisure trip may drive the Paris
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hotel word-of-mouth to differ from others. To reduce bias from seasonality, I control

for differential time trends by cities’ one year lead of composition of traveler type and

include city specific time trends. The Paris attacks are still found to have positive

effects on hotel word-of-mouth in the medium-term.

To address selection bias, I next examine whether those attack-exposed customers

who stayed in Paris hotels when the attacks occurred rated hotels differently from

those attacks-unaffected guests who just left the hotel before the attacks. I exploit the

intertemporal variations in timing of hotel guests checking-in and checking-out around

the attacks. The attack-exposed cohorts are those who checked-in before the attacks

but checked-out after the attacks, and the attack-unexposed cohorts are those who left

the hotel just before the attacks and checked-in within one week before the attacks.

This strategy ensures randomness of the treatment status and therefore reduces self-

selection bias arising from that high risk-averse visitors may avoid going to Paris after

the attacks and those post-attack reviewers were inherently low risk-averse. I find that

the attack-exposed cohorts rated the hotel quality higher then their attack-unexposed

counterparts. Strikingly, the short-term positive effect is larger than the medium-term

effect. For instance, the average review scores increased by approximately 3 percent in

the three months after the attacks, but increased by around 5.5 percent immediately

after the attacks. How could this happen given that customers experienced greater fear

during and immediately after the attacks, which might reduce subjective assessments

of hotel stays, and that hotels were difficult to make systematic and proactive responses

to enhance the guest experience within a very short time after the attacks?

I propose a simple model and then provide suggestive evidence to explain why

the Paris attacks had positive effects on hotel word-of-mouth and, more importantly,

why the short-term word-of-mouth improvement was higher than the medium-term

improvement. The effect on word-of-mouth, in the model, relies on a direct quality

effect which was higher due to the improved service quality and attractive benefits

hotels offered and on an indirect physiological effect emphasizing the rivalry between

attack-triggered fear and hotel risk-management strategies mitigating customers’ fear
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and counteracting the negative impacts of fear.

To examine whether fear of attack threats is correlated with hotel word-of-mouth,

I test the relationship between guests’ geographical distance to the targets of the Paris

attacks and word-of-mouth. The results give no evidence that customers who stayed

closer to the attack sites and thereby had greater fear gave worse assessments of hotel

quality than customers who stayed further away. By using Google trends data on search

scores for safety concerns, I also find that safety concerns had no sizeable and significant

effects on hotel word-of-mouth. The above two results suggest that fear may play little

role in affecting guests evaluating their hotel stays. What matters probably is what

hotels do to reduce guests’ fear and improve guests experience, which can indirectly

increase hotel word-of-mouth.

I further use text mining techniques to extract high-frequency terms in hotel reviews.

The evolution of words prominence over time suggests what customers care and how

hotels did to improve visitor experience before and after the Paris terrorist attacks.

I find “staff” and its associated words “friendly” “helpful” were highly prominent in

positive reviews immediately after the attacks but were less salient before the attacks

and in the following three months after the attacks, suggesting that the hotel staff and

the improved service quality may explain the greater improvements in word-of-mouth

in the short term. In addition, the relative changes of “breakfast” and “expensive” in

the word prominence implies an improvement in breakfast and an reduction in hotel

room prices in the medium term.

The word-use frequency helps infer the evolution of hotel crisis-management strate-

gies and thus has clear managerial implications for the hotel industry to cope with

negative exogenous shocks. During the attacks, helpful staff took good care of those

attack-exposed hotel guests and made them feel less unsafe, so the indirect physiolog-

ical gain from reducing guests’ fear allowed hotel guests to rate their hotel stays more

positive. In the later months after the attacks when abating guests’ fear was no longer

crucially in satisfying customers, reducing hotel prices, improving breakfast quality also

helped raise hotel word-of-mouth, but to a lesser degree than providing good services
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did during the attack period. In a nutshell, well-trained and enthusiastic hotel staff is

the secret to a good reputation during hard times.

Broadly speaking, this study adds to the literature on the economic consequences of

terrorist attacks. Previous research mainly focuses on the negative effects of terrorism

on the macro-economy. For example, terrorist attacks generate huge and adverse effects

on airline demand [Drakos, 2004, Ito and Lee, 2005], tourism [Drakos and Kutan, 2003],

investment and public spending [Blomberg et al., 2004], employment [Fainstein, 2002],

capital markets [Drakos, 2004, Chen and Siems, 2004], GDP and productivity growth

[Abadie and Gardeazabal, 2003, Bloom, 2009], and trade [Nitsch and Schumacher, 2004].

The most relevant study is by Enz et al. [2011] who examine how 9/11 attacks affected

hotel performance using a simple control-of-variables strategy. My research relies on

micro-level consumer review data and thus contributes to a better understanding of

how terrorist attacks affect the hotel industry. To the best of my knowledge, this paper

is the first to identify the magnitude of the causal impact of terrorism on the hotel

industry.

This paper also contributes to the literature on the effect of terrorism on human

behavior. A stream of political science literature studies how trust in public institutions

evolves in the wake of terrorist attacks. Chanley [2002] and Perrin and Smolek [2009]

find that trust in the government increased in the months after the 9/11 attack. The

increased trust in public institutions reflects an appreciation and recognition of the

institution’ capacity to respond to the terrorist threats [Putnam, 2002]. In my study,

the subjective assessments of hotel quality increased during and after the attacks, which

can also be seen as a variant of “rally effect” which suggests an increase in approval

and appreciation of the “institution”–the hotel, in the face of the attacks.

The rest of the paper is organized as follows. Section 2 introduces the data and

provides an initial description of the data. Section 3 presents the identification strategy

and illustrates how I address threats to the identification. Section 4 attempts to provide

some suggestive evidence on the mechanism by proposing a simple theoretical model

and then performing a range of tests. Section 5 presents robustness checks and section
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6 offers concluding remarks.

2 Data

The primary source of data comes from web-scraped hotel customer review data from

booking.com.2 Booking is the biggest online travel agency for making hotel reservations.

For each hotel, booking.com provides rich consumer review information. In the review

section, a potential guest can observe previous guests’ review scores, detailed review

content including separate positive reviews and negative reviews, when guests post the

review, where they come from, how long did they stay in the hotel, who did they go

with. Figure 7 in the appendix displays how a typical review page looks like.

The dataset collects consumer review information of 1493 luxury hotels (4- and

5-star hotels) over a two-year period from August 3, 2015 to August 3, 2017 in the

six most visited European destinations, namely, Paris, London, Barcelona, Amster-

dam, Milan and Vienna. The total number of time-stamped hotel reviews is 514,146.

This data covers review scores and separate content of positive and negative reviews,

respectively. In addition, the data provides guests personal information, including cus-

tomers’ nationality,3 night stays in the hotel, trip type–business trip or leisure trip,

guest type–solo travelers, couples, stay with children or stay with others.

Online reviews are a good proxy for word-of-mouth [Dellarocas et al., 2004]. Existing

studies have been using measures such as mean of review scores/rating [e.g., Dellarocas

et al., 2004], number of reviews [e.g., Duan et al., 2008], and spread of reviews [e.g.,

Clemons et al., 2006] to measure word-of-mouth. I first use the average review scores,

the most commonly used measure, as a proxy of hotel word-of-mouth. Review scores

reflects customers’ subjective evaluation to the hotel quality [Li and Hitt, 2010]. The

2The data was released by Kaggle.com, an online platform facilitating participation of data miners

in competitions posted by companies.
3I group customers’ nationality into North America, Europe, East Asia, West Asia, Australia and

others.
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second measure of word-of-mouth is consumer sentiments which help better understand

the behavior of reviewers. I extract the length of positive reviews and length of negative

reviews from the raw review content. The word counts reflect customers’ willingness to

provide feedback to their hotel stays. A lengthy positive review usually shows the guest’s

satisfaction with her hotel experience, while a long-winded negative review usually arises

from the customer’s discontent over her stays. That is, a longer positive review implies

better word-of-mouth whereas a longer negative review reflects worse word-of mouth.

This two metrics combined with review scores constitutes the measures of hotel online

word-of-mouth in my research.

Summary statistics for all the important review variables are presented in table 1.

Table 2 compares the pre-attack with post-attack variable information by city.

I also collect Google trends data on search volumes to supplement the research.

Google trends provide relative frequency with which users search for certain terms over

time in a certain place. Google assigns a index of 100 for the time/region with the

highest search rate for the term. Indexes for other regions are being normalized to

this highest score. I collect worldwide search scores for “Is is safe to go to city Ams-

terdam/Barcelona/Paris/London/Milan/Vienna”,4 The search scores serve as a proxy

for safety concerns regarding city Amsterdam/Barcelona/Paris/London/Milan/Vienna.

Figure 8 in the appendix shows the distribution of the google trends information.

4I also search for French, Germany, Spanish, Italian and Dutch versions of “Is is safe to go to city

Amsterdam/Barcelona/Paris/London/Milan/Vienna”, Google does not have enough data to show the

trends. Since these six cities are top international tourist destinations and their hotel guests are quite

international, it would be difficult to use terms in many languages to construct a unified measure of

search scores. Using English terms alone would simplify the analysis without loss of generality.
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3 The Empirical Framework and Results

3.1 The identification strategy

The identification strategy relies on an interpretation of the Paris terrorist attacks as a

natural experiment. The terrorist attacks were completely unforeseen and hotel guests

were unable to cancel or adjust their travel plans in anticipation of the event. There-

fore, the timing of the attacks generated exogenous variations in consumer psychology,

hotel strategies and thereafter subjective assessments of hotel quality. Paris hotels, the

treated group, were unarguably subject to the terrorist attacks. To evaluate the causal

effect of the terrorist attacks on Paris hotel industry, ideally, we need to know how Paris

hotels would evolve in the absence of the terrorist attacks. A widely-used strategy is to

construct a control group that resembles the Paris hotel industry the most. Then the

pre- to after-attack time series variations on both groups can be used to identify the

causal effect of the Paris terrorist attacks. This is the so-called difference-in-differences

(DiD) strategy.

To motivate how to construct the comparison group, Figure 1 compares the evolution

of the hotel word-of-mouth in Paris to the changes of the word-of-mouth in other

five top European tourist destinations. In Figure 1, panel a and panel b, most cities

(Amsterdam, Barcelona, London and Milan), prior to the attacks, experience similar

paths of both the average review scores and the average length of positive reviews with

Paris, and only Vienna displays a non-parallel pre-attack trend. In Figure 1 (panel

c), the different pre-attack paths of the length of negative reviews for Amsterdam and

London to path for Paris suggest these two cities offer bad a counterfactual.

There are several ways for constructing the control group such that its pre-attack

trend is similar to trend for Paris. One is to simply take the average of all these five

cities considering that these cities are top European tourist destinations after Paris and

thus share similar economic and geographical characteristics with Paris. Another is to

select one or several cities among these five that one could reasonably argue resemble

Paris the most. For example, Barcelona may be a good candidate since its pre-attack
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paths of all the three outcome variables are parallel to trends for Paris. An alternative

strategy would be to take a data-driven approach and to construct a weighted average of

other five non-treated cities. The Synthetic control method, developed by Abadie and

Gardeazabal [2003], Abadie et al. [2010], can be seen as a generalization of difference-

in-differences and is an ideal approach to construct a synthetic control group.

It is worth noting that other cities may also be affected by the Paris attacks. In

the wake of the attacks, potential visitors to Paris may change their holiday plans and

turn to other European cities. To reduce the spillover effects, I look within a short time

window around the attacks in my main analysis.

3.2 Initial Approach

In this section, I compare the basic results from the synthetic control method with the

results from the traditional difference-in-differences method. By providing a graphical

comparison, I illustrate why a conventional difference-in-differences approach is prefer-

able.

3.2.1 Synthetic control methods

The objective of the synthetic control method is to choose a weighting vector to min-

imize distance in pre-treatment characteristics between the treated and the weighted

average of control. We assume that X1 is a vector of pre-attack predictors of the out-

come variables for Paris, which also includes pre-attack values of the outcomes, and X0

is a matrix of these variables for Amsterdam, Barcelona, London, Milan and Vienna.

Specifically, X1 and X0 collect pre-attack values of share of leisure trip, average night

stays, share of guests staying in the hotel alone and Google search volumes on safety

concerns.

The weighting vector W is chosen by minimizing

‖X1 −X0W‖ =
√

(X1 −X0W )′V (X1 −X0W ) (1)

11



where V is an semidefinite matrix of weights. The optimal V is obtained after assigning

weights to linear combinations of X1 and X0 to minimize the mean square error (MSE).

Table 3 displays the cities’ received weights in the construction of synthetic Paris for

three of our outcome variables. As can be seen, overall, Barcelona contributes the most

to the synthetic control group. Barcelona received weights for all the three outcomes

range from 0.462 for review scores to 0.938 for length of negative reviews. London is

almost as important as Barcelona in constructing the control group for review scores

and the length of positive reviews, but it receives zero weights for the length of negative

reviews. By contrast, Amsterdam and Milan plays no role in the construction of the

synthetic control group.

Table 4 compares the pre-attack characteristics of Paris hotels to those of hotels in

the synthetic Paris, and also to those of a simple average of the five cities in the donor

pool. The characteristics of the synthetic Paris is not more similar to characteristics of

Paris than those of the city average.

Figure 2 presents trends of the three outcome variables for Paris and the comparable

trends for its synthetic counterpart. For comparison, Figure 2 also compares trends

for Paris to those for the average untreated cities. This figure can be regarded as a

graphical comparison of results from the synthetic control method with results from

the standard difference-in-differences method. Before the Paris terrorist attacks, Paris

and the remaining top tourist cities average show similar paths of all the three word-of-

mouth variables. The synthetic Paris almost exactly reproduces the path of the negative

review length for Paris during the pre-attack period, but its fit for paths of both review

scores and the length of positive reviews is not strictly better than the fit using the

average of other cities. The moderate fit of the synthetic city is probably due to the

fact that there are limited number of cities in the donor pool so that any combinations

of those cities fail to closely reproduce the path for Paris. Considering the good pre-

attack trends provided by the average of untreated cities, and conceptual difficulties

with statistical inference in synthetic control methods, which uses placebo tests as

foundation of inference [Abadie et al., 2010], I prefer to construct the control group
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using the average of other cities and therefore to stick to the conventional difference-

in-differences approach.

In Figure 2 (panel a and panel b), Paris shows a strong increase in review scores and

the length of positive reviews immediately after the terrorist attacks, with a noticeable

drop in both measures around ten months after the attacks, suggesting a rebound of

word-of-mouth. For the average of other cities and the synthetic Paris, a mild increase

in review scores and the length of positive reviews can be observed in Figure 2 (panel

a and panel b). It is clear that both review scores and the length positive reviews

increase for Paris relative to the control group. As can be seen in Figure 2, panel (c),

there is an evident decrease in the length of negative reviews in Paris, with a moderate

increase three months after the attacks. The control group decreases immediately after

the attacks, though to a lesser degree. To sum up, Figure 2 shows an visible increase in

hotel word-of-mouth in the wake of the attacks. I will carefully estimate the magnitudes

of the increase in the following sections.

3.2.2 Difference-in-Differences and basic results

As discussed in the last section, I prefer to use the average of attack-unexposed cities to

construct the control group and therefore to employ a standard difference-in-differences

approach to obtain the treatment effect of the Paris attacks on word-of-mouth in the

hotel industry. I can run a difference-in-differences model on either individual level data

or aggregate data at the city level. Both regressions give the same estimates since the

regressors of interest vary at the city level. Although within-city variations provided

by individual level data does not matter for identification, using micro data facilitates

introducing covariates which may help reduce standard errors. For this reason, I mainly

employ customer level data in my analysis. The generalized difference-in-differences
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model is set as the following:5

ln(WOM ihct) = β(Parisc × Postt) + γt + αc + λh + εihct (2)

where WOM ihct is the measure of word-of-mouth given by reviewer i for hotel h of

city c in period t. To improve the model fit and ease interpretation, the outcome

variables are transformed by taking the natural logarithm. For the length of positive

reviews and negative reviews, add 1 to their original values before taking log since a

large amount of their values take on 0. The next set of terms is: αc, a city level fixed

effect controlling for observed or unobserved city heterogeneity; γt, a month fixed effect

capturing common economic or policy shocks that affect all cities equally; λh, a hotel

fixed effect controlling for hotel heterogeneity; and εihct, a random error term. Parisc

is 1 if the city is Paris, 0 otherwise. Postt is 1 if the customer posted the review after

Nov 14, 2015, the day when the Paris terrorist attacks occurred, 0 if the review was

posted before the attacks. β, the coefficient of the interaction of Parisc and Postt,

gives us DiD estimates of the effect of the Paris attacks.6 I define pre- and post-attack

periods as three months before and after Nov 14, 2015 as I only observe three-months’

information prior to the attacks in the data.

An easily ignored issue surrounding DiD inference is serial correlation when there

are many groups and more than two time periods. This issue is particularly severe in

this study since the outcome variables word-of-mouth is positively serially correlated.

A common practice to address serial correlation is to cluster standard errors at group

5Alternatively, I can estimate a simple difference-in-differences model as the following:

ln(WOM ict) = β1(Parisc × Postt) + β2Parisc + β3Postt + εict

Advantage of generalized differences-in-differences is that it can improve precision and provide better

fit of model. It does not assume all cities in treatment or control group have same average WOM ; it

allows intercept to vary for each city. It does not assume that common change in WOM around the

shock is a simple change in level; it allows common change in WOM to vary by month.
6In this generalized difference-in-differences model, Parisc and Postt dummies are absorbed by city

and month fixed effect, respectively.
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level. This approach, however, can potentially perform worse than standard robust

errors when clusters are small. Wild bootstrap, based on simulation information, is

generally accepted as the best method for clustered standard errors for few clusters

[Cameron and Miller, 2015]. Cameron et al. [2008] provide simulation evidence sug-

gesting this test works well even in situations with as few as five clusters. To examine

the robustness of standard errors, I report robust (Heteroscedasticity-consistent) stan-

dard errors, clustered standard errors at city level, as well as wild cluster bootstrapped

p-value.7

Table 5 reports the basic DiD regression results. For comparison, I also use Barcelona

alone as the control group to obtain DiD estimates in column 2, 4, and 6 since Barcelona

exhibits the most similar pre-attack trends of all the three outcome variables. Table 5

indicates that in the following three months after the attacks from Nov 14, 2015 to Jan

14, 2016, there is a 2.7 percent (column 1) increase in review scores and 6.9 percent (col-

umn 3) increase in length of positive reviews for Paris relative to other cities. Column 5

shows that the length of negative reviews drops by 5.9 percent for Paris compared with

the remaining tourist destinations. In addition, results obtained by setting Barcelona

as the control group are similar to results from comparing Paris with the average of

Amsterdam, Barcelona, London, Milan and Vienna. Overall, Table 5 suggests that the

Paris attacks had positive effects on word-of-mouth in the hotel industry.

As can be seen in Table 5, the simple robust (heteroscedasticity-consistent) standard

errors are larger than the clustered standard errors for all the DiD estimates, though

both methods lead to statistically significant results. For wild cluster bootstrapped

p-value, although all the p-values are less than the threshold of significance (0.1), the

explanatory power of the model declines compared with employing robust standard

errors or clustered standard errors.

7The wild cluster bootstrap method is unable to provide standard errors or confidence intervals.
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3.3 Dynamic specification and long-term impacts

The key identifying assumption in DiD models is that the treatment group have similar

trends to the control group in the absence of treatment. To formally test whether the

parallel trends hold and, more importantly, to investigate the dynamics of the effects

of Paris attacks on hotel word-of-mouth, I estimate the following equation:

ln(WOM ihct) =

q∑
j=−m

βj(Parisc × Postt+j) + γt + αc + λh + εihct (3)

All variables are as defined above in equation 2 but βj is a vector which takes on a

unique value for each month period from Aug 4, 2015 to Aug 4, 2017. Equation 3

estimates q leads and m lags of the treatment. In this exercise, there are 21 lags and 2

leads after setting the period from Aug 4, 2015 to Sep 4, 2015 as the reference group.

Figure 3 plots all the coefficients of the month-Paris interactions and 95% confidence

intervals for each outcome generated from equation 3. For the sake of simplification,

the confidence intervals are constructed based on the robust standards errors which are

more conservative than clustered standard errors,8 as can be seen in Table 5.

In Figure 3, the coefficients of the leads for all the three outcome variables are close

to zero, suggesting no existing difference in trends prior to the Paris attacks. This

dynamic DiD results are consistent with comparisons of raw trends in Figure 2. In

Panel (a) of Figure 3, there is a sizeable and positive effect on review scores in the

following ten months after the attacks, with the largest effect being observed after two

months. The positive effect persists for the entire year 2016, though fades gradually.

In year 2017, the positive effect is no longer exist–the point estimates fluctuate around

zero and have wide confidence intervals. Panel (b) shows a noticeable positive effect for

the length of positive reviews and panel (c) presents a negative effect for the length of

negative reviews within one year of the attacks. However, for these two outcomes, the

8The wild cluster bootstrap method is unable to provide standard errors or confidence intervals.

The wild cluster bootstrap method produces similar results in terms of explanatory power, so I report

robust standard errors in my following analysis.
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95% confidence intervals for most of the lags include zero, suggesting relatively weak

explanatory power.

The economics of terrorism literature argue that the effects of terrorism can have a

huge real impact, but rebound very soon [e.g., Lenain et al., 2002, Bloom, 2009]. For

example, Bloom [2009] finds that output and employment rebound 6 months after 9/11,

Enz et al. [2011] find that hotel performance measures return to pre-attack levels after 4

months of 9/11. Similar to existing studies, I also find rebounds of hotel word-of-mouth

in Figure 3, though taking longer time (10-12 months) to return to pre-attack levels.

3.4 Threats to identification and preferable specifications

So far, I have compared luxury hotels before and after the Paris attacks between Paris

and the controlled cities and found that hotels in Paris received higher review scores,

longer positive reviews, shorter negative reviews in the wake of the attacks. To what

extent should we believe these evidence? Even though the dynamic specification in

Figure 3 suggests that the pre-treatment point estimates are close zero and statistically

insignificant, a parallel trend prior to treatment is neither sufficient nor necessary for

the parallel trends to continue in the absence of treatment [Kahn-Lang and Lang, 2020].

Meanwhile, due to data availability, the pre-treatment periods is not long enough to

show the underlying trends. In this section, I will discuss several sources of threats to

the identification and employ corresponding strategies to mitigate these threats.

3.4.1 Seasonality

First, there may be concerns that a seasonal effect can affects hotels in Paris differen-

tially to other cities regardless of the attacks. For instance, The share of the leisure

trip hotel guests in Paris is substantially higher than in London and Milan as can be

seen in Table 2. Leisure trips are highly seasonal, and trends in hotel word-of-mouth

are likely to diverge because of different trends in word-of-mouth driven by travel type

(leisure trip or business trip). Leisure trip travelers are less picky in rating the hotel
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quality than business trip customers (I find that on average, leisure trip guests rate

the hotel 5.79 percent higher business trip guests), and if Paris had a larger proportion

leisure trip travelers in the absence of the attacks, the previous DiD estimates would

overestimate the effects on hotel word-of-mouth.

An ideal strategy to address seasonality would be taking advantage of the preceding

years’ data and employing a de-trended difference-in-differences methodology. Recently,

Draca et al. [2011] and Glover [2019] use de-trended difference-in-differences strategy to

account for seasonality in their outcomes. Due to data restriction, I apply an alternative

strategy to reduce concerns about seasonality.

I first include differential time trends by cities’ one year lead of composition of leisure

trip guests. The reason is because immediately after the attacks, composition of leisure

trip travelers was also affected, directly including a so-called “bad control” would worse

the estimates. But leisure trip composition of the following year (Aug 2016 to Jan 2017)

can be more close to the true composition in the absence of the attacks since visitors

usually have short memories [Löfstedt and Frewer, 1998] and travelers are less likely to

adjust their travel plans after 6 months the terrorist attacks [Floyd et al., 2004].

Next, I include city specific time trends which can help relax the parallel trends

assumption [Mora and Reggio, 2019]. For the parallel trends to hold, the slope of the

trend for the treated and control group, or the first derivative must be similar. Including

group specific linear time trends controls for the first derivative. I also introduce city

specific quadratic time trends so that only the third derivative is required to be similar

to satisfy the common trends assumption.

Table 6 presents the modified DiD results. Column 1 also presents the previous basic

DiD estimates for comparison. Focusing on the average review scores first, in column 2

of panel (a), the point estimate slightly decreases from 2.71 percent to 2.69 percent after

including the trip type specific time trend, which suggests that the varying composition

of leisure trip customers is not a severe source of threats to identification. Introducing

the group specific trends in columns 3 and 4 increase the size of the effect by around

0.5 percent to 3.3 percent. This can be because these trends reflect omitted variables,
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and thus adding group specific trends remedies the omitted variables bias. The size of

the interaction terms increase since factors associated with higher word-of-mouth are

negatively related to the Paris attacks. In panel (b) and panel (c), for the length of

positive reviews and negative reviews, similarly, including trip type specific trends in

column 2 has a small impact on the magnitudes of the DiD estimates. After adding

city specific time trends, the effects on positive review length increases from 6.9 percent

to around 14 percent. The estimates of the effect on negative review length become

statistically significant in column 3 and 4.

3.4.2 Selection bias

Second, selection bias may exist. High risk-averse travelers may choose not go to Paris

after the attacks and, as a result, those who still stayed in Paris after the attacks were

more likely to be inherently less risk averse. The utility losses caused by the attacks

were smaller for those less risk averse hotel guests and therefore, those post-attack

guests had less fear of attack threats and were more likely to rate positively about their

stays thanks to the reduced hotel rates, less crowded dining rooms, etc.

From the review information, we are able to identify when customers post reviews

and how long they spent in the hotel. Li et al. [2020] take advantage of restaurant

review data and find that most reviews are posted on the same day as the dining time

and that consumers who have extreme experiences (strongly positive or negative) tend

to post reviews earlier than consumers who have moderate experiences. We can infer

the check-in date from the review date and nights stayed in the hotel by assuming that

customers immediately leave the review on the same day when they check-out.9

Figure 4 tests whether there exists a discontinuity in review date and whether Nov

15, 2015 is the cutoff date. Panel (a) and panel (c) show that review scores and the

length of negative reviews display a sharp jump on Nov 15, 2015, suggesting that

customers experienced an exogenous shock on Nov 14, 2015, which had a significant

9For instance, if a reviewer posted the review on Nov 14, 2015 and he had stayed in the hotel for 3

days, we can infer that she checked-in on Nov 11, 2015.
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impact on their assessments of hotel stays. Figure 4 also offers suggestive evidence that

most customers post reviews on the same day as the check-out date, consistent with

the finding of [Li et al., 2020]. Otherwise, it is hard to justify why the cutoff date is

Nov 15, 2015.

After approximating check-in and check-out dates, I define attack-exposed cohorts

as hotel guests who checked-in before November 14, 2015 and checked-out at least one

day after the attacks. In the sample, only 4% those affected customers left the hotel

after one week of the attacks (Nov 21, 2015). I restrict the analysis to the remaining

96% customers who checked-out within one week of the attacks. The attacks-unaffected

cohorts are defined as guests who left the hotel before the attacks and checking-in within

one week prior to the attacks (from Nov 6, 2015 to Nov 12, 2015). It should be noted

that assuming the review date is the same as the check-out date only affect defining the

attack-exposed cohorts. For example, if a customer in fact checked-out on Nov 10, 2015

but decided to write a review 10 days later, then we would mistakenly categorize this

attack-unaffected customer into the treated cohorts. However, if she checked-out on Nov

1, 2015 but left the review on Nov 10, 2015, she would be still belong to the untreated

cohorts. In other words, we would potentially underestimate the positive effects on

hotel word-of-mouth if customers posted reviews a few days after they checked-out.

This strategy ensures customers having no control over treatment status. The

attack-exposed cohorts stayed in the same hotel before the attacks and could not

anticipate the terror acts before checking-in. Self-selection bias can thus be largely

reduced. Moreover, restricting the analysis to such short time window around the at-

tacks improves our confidence in attributing any pre- to after-attacks differences in hotel

word-of-mouth between Paris and other cities to the Paris attacks without worrying the

divergence of hotel word-of-mouth was driven by other events that occurred near but

after the Paris attacks.

The first test is to simply focus on time-series variation within Paris and to com-

pare differences in the outcome variables between attack-exposed and attack-unexposed

cohorts. The causal interpretation relies on randomness of exposure to the terrorist
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attacks–the average word-of-mouth would have been same for treated cohorts and un-

treated cohorts in the absence of the attacks. Because those treated customers checked-

in near Nov 14, 2015, their characteristics should be very similar to those untreated

cohorts who happened to leave the hotel just before the attacks. The only difference

between the two groups is the timing of check-in and check-out.

Table 7 presents the differences in word-of-mouth measures between attack-exposed

cohorts and attacks-unexposed cohorts. Focusing on the most important outcome

variable–review scores, the coefficient of the attack-exposed cohorts dummy in column

1 is 0.0582, showing that the treated cohorts gave 5.8 percent higher review scores than

attack-unexposed cohorts. The magnitude of the estimate is higher than 3.3 percent,

the medium-term DiD estimate in Table 6 (column 4). This suggests that there may

exist a spillover effect in the previous DiD specification.10 The Paris attacks posed

threats to most European countries and deterred every potential visitor interested in

Europe. If hotels in these controlled cities also strategically responded to the attacks

and adjusted their pricing or marketing strategies which help improve word-of-mouth,

the previous DiD estimates would underestimate the treatment effect on Paris hotels

as other cities also witnessed an increase in hotel word-of-mouth after the attacks.

Similarly, for the remaining two outcomes, the effect on positive review length in-

creases from 13.9 percent (column 4 of Table 6) to 18.6 percent (column 2 of Table 7),

and the effect on negative review length changes from -4.1 percent (column 4 of Table

6) to -7.1 percent (column 3 of Table 7), though remaining insignificant.

A potential identification challenge in such a setting is that those highly risk averse

customers may leave the hotel hurriedly and forgot to post reviews, and those post-

attack reviewers may be inherently less risk averse or more satisfied with their hotel

experience. If so, the treated cohort would be different to unaffected cohort in terms

of risk aversion, financial conditions and other traits that may bias the results. If this

10There is a trade-off between endogeneity and spillovers since including city fixed effects can increase

the bias due to spillovers. Because adding city fixed effects and focusing on within group variation are

always subject to within-group spillovers to control units [Berg and Streitz, 2019].
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is the case, we would expect to observe fewer reviews immediately after the attacks

since only less risk averse or satisfied guests were willing to post reviews. Figure 9 in

the appendix displays daily number of reviews in Paris around the attacks. There is

no noticeable drop in the number of reviews immediately after the terror attacks. It is

reasonable to conclude that such self-selection may not be a big issue in my analysis.

The second test is to apply a difference-in-differences framework to re-examine the

effect of terrorism exposure on hotel word-of-mouth. The sources of identification now

come from the inter-temporal variation across cohorts and the spatial variation across

cities. Considering the following relationship between the online review (WOM ijc)

given by customer i, from cohort j, in city c, and her exposure to the Paris attacks:

ln(WOM ijc) = β1Affect Cohortij + β2(Affect Cohortij × Parisc) + αc + εijc (4)

where Affect Cohortij is a dummy indicating whether individual i is from the attacks-

affected cohort. Parisc dummy is absorbed by the city fixed effect αc.

Table 8 shows the DiD regression results. Overall, the results are similar to previous

time-series difference results. In column 1, the estimated effect on review scores is 5.42

percent and significant at 10% level, suggesting that the attack-exposed customers gave

a 5.4 percent higher review scores in Paris than the attacks-unexposed cohorts relative

to other top European tourist destinations. The effect on positive review length is

21.8 percent and marginally significant. Again, the estimated effect on negative review

length is not statistically different from 0.

4 Further Discussion on the Mechanism

The Paris terrorist attacks is found to have a positive effect on hotel word-of-mouth.

For example, in the next three months after the attacks, there is a 3.3 percent increase

in review scores. Surprisingly, the positive effect increases to 5.4 percent for the attack-

exposed guests. How could it happen? In the medium-term, hotels could implement

a series of promotion and marketing strategies to improve the hotel quality. During
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and immediately after the attacks, however, hotels were difficult to make proactive

and systematic strategies (e.g., lowering hotel rates) in the response to the shock to

improve customer experience. More importantly, one might expect guests who stayed

in the hotel during the attack had greater fear and therefore, the physiological loss would

translate their fear and worry into lower subjective evaluations of the hotel value. In

this section, I first propose a simple model to explain the puzzle and then offer some

suggestive evidence on the mechanism.

4.1 Theoretical motivation

Hotel word-of-mouth (W ), the subjective evaluations of hotel stays, are mainly deter-

mined by hotel quality q. W is a stochastic function of q

W = F (q) + ε (5)

where ε is the individual idiosyncratic taste. After terrorist attacks, hotel guests usually

suffer from strong anxiety and fear. The fear can bring about utility losses and adversely

affect how they evaluate their hotel stays. Meanwhile, terrorism can trigger a series

of hotel risk management strategies such as providing discounts, room upgrades, free

breakfasts, etc. These initiatives can directly improve hotel quality, mitigate the fear

of guests through which indirectly reduce the psychological loss due to terror attacks.

I therefore model F (q) as

F (q(τ, π)) = q
(
π(τ), f(τ, π(τ))

)
(6)

where the quality q is affected by attack-triggered hotel risk-management strategies,

π, and by customers’ worry and fear, f . The amount of fear is affected not only by

the degree of terrorism τ , but also by whether the hotel can ease or control the fear

through a series of initiatives π. It is reasonable to assume that terrorism trigger more

hotel initiatives in response to the crisis (πτ > 0), and hotel strategies directly improve

hotel quality (qπ > 0). Terrorist attacks can unarguably incite more fear (fτ > 0)

which negatively affects the subjective assessments of hotel quality (qf < 0). It is also
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reasonable to assume hotel initiatives can mitigate customers’ fear (fπ < 0). To detect

how terrorist attacks affect hotel word-of-mouth, take the derivative of W with respect

to τ :

dW (.)

dτ
=
dF (q)

dτ
=

direct quality effect(+)︷ ︸︸ ︷
∂q(.)

∂π(τ)︸ ︷︷ ︸
+

· ∂π(τ)

∂τ︸ ︷︷ ︸
+

+

indirect psychological effect(±)︷ ︸︸ ︷
∂q(.)

∂f(τ, π)︸ ︷︷ ︸
−

· ∂f(τ, π)

∂τ︸ ︷︷ ︸
+

+
∂q(.)

∂f(τ, π)︸ ︷︷ ︸
−

· ∂f(τ, π)

∂π(π(τ))︸ ︷︷ ︸
−

· ∂π(τ)

∂τ︸ ︷︷ ︸
+

(7)

The first part in Equation 7 is a direct quality effect–terrorist attacks induce hotels

to raise service quality and offer some attractive schemes (e.g., room upgrades, free

breakfasts), which leads to higher customer satisfaction. The whole second part in

Equation 7 is an indirect psychological effect emphasizing the trade-off between attack-

triggered fear which generates a negative impact on customer experience and hotel

initiatives which mitigate customers’ fear and counteract the negative effect of fear.

The sign of the effect of terrorist attacks on hotel word-of-mouth relies on the rivalry

between utility losses due to fear of terrorist threats and improved hotel quality arising

from a series of risk management strategies.

To obtain a positive effect of terrorist attacks on hotel word-of-mouth, the hotel

need to operate a series of risk management strategies to improve hotel quality and to

simultaneously mitigate customers’ fear so that the direct quality improvements and

the indirect physiological gains are greater than physiological losses due to fear,

∂q(.)

∂π(τ)
· ∂π(τ)

∂τ︸ ︷︷ ︸
direct quality improvements

+
∂q(.)

∂f(τ, π)
· ∂f(τ, π)

∂π(π(τ))
· ∂π(τ)

∂τ︸ ︷︷ ︸
indirect fear reductions

>
∂q(.)

∂f(τ, π)
· ∂f(τ, π)

∂τ︸ ︷︷ ︸
negative fear effect
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4.2 How large is the negative fear effect

Fear of terrorist threats may be an important channel via which terrorist attacks influ-

ence hotel word-of-mouth immediately after the attacks. However, I have found that

the positive short-term effect on word-of-mouth is greater than the medium-term im-

pact. The most possible reason is that the negative fear effect was small–hotel guests

rarely shift their negative emotions caused by uncontrollable exogenous shocks to the

victimized hotel.

To test whether the psychological fear effect exists, I first exploit geographic vari-

ation in attack exposure across different locations within Paris. Taking advantage of

the longitude and latitude information of each hotel, I calculate the average distance of

each hotel guest to the exact locations where attacks occurred.11 If the fear effect was

important, a customer who stayed closer to the attack targets during the attack period

would expect to give lower assessments of the hotel value.

Table 9 reports the simple OLS estimates using different time windows. Overall,

the estimates for all the 6 models are very small in magnitudes and non-significant. For

example, in the first week after the attacks, 1 km further away from the attack targets

in Paris region is associated with a 0.25 percent increase in review scores (column 1),

a 0.19 percent increase in length of positive reviews (column 3) and a 0.99 percent

decrease in length of negative reviews (column 5). Considering the relatively large

standard errors, we can conclude that there is no evidence that the distance to attack

targets is correlated with hotel word-of-mouth.

Customers who stayed closer to the terrorist targets were unarguably more sensitive

to the terrorism risks and had more fear. But the fear was not translated into dissat-

isfaction with the hotel quality. Does it because hotels near the attack-hit places did

better in enhancing customer experience such that an improved hotel quality counter-

acted the negative fear effect. Probably no. Using text-mining techniques, I present

11Stade de France; Rues Bichat and Alibert Le Petit Cambodge; Rue de la Fontaine-au-Roi; The

Bataclan theatre; Rue de Charonne; Boulevard Voltaire.
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the top 10 most frequently used words in reviews of Paris hotels one week following the

attacks in Table 13 of the appendix. Hotels could not change their address or enlarge

the room size immediately after the attacks, but they could, for instance, adjust the

service quality after the attacks. Thus when investigating whether hotels that closer to

the attack targets reacted more to the terrorist attacks, we need pay less attention to

terms like “location”, “small” which used to describe unchanged hotel characteristics

but more attention to words like ”staff”, ”helpful”, etc. Table 13 shows that overall,

there is a lot of similarity in word prominence between hotels closer to the attacks and

hotels further away from the attacks. However, “location” was the most mentioned

positive term for hotels closer to the attack targets, whereas “staff” was used the most

for hotels further away from the attacks. Interestingly, the positive term “safe” ranks

higher for hotel less close to the attacks than hotels closer to the attacks. To sum up,

there is little evidence that hotels closer to the attacks improved the service quality to

a greater degree or made guests feel safer than hotels less close to the attacks.

Does it because people stayed in the hotel closer to the terrorist targets were system-

atically different from customers who went to hotels less close to the terrorist locations?

Even though I control for several guests characteristics including trip type, guest type,

stay length and national region, omitted variable bias may still a concern.

An additional test is to take advantage of Google trends data and to explore the re-

lationship between safety concerns and hotel word-of-mouth. Google global search rates

for the item “Is is safe to go to Amsterdam/Barcelona/Paris/London/Milan/Vienna”

reflect people’s safety concerns over a specific city. I first specify the following two-way

fixed effect model:

ln(WOM ct) = βln(Scorect) + αc + γt + εct (8)

where scorect denotes the Google trend search scores for safety concerns over city c

in week t. αc and γt are city and week fixed effects, respectively. This two-way fixed

effect model adjusts for unobserved group-specific and time-specific confounders simul-

taneously. The two-way fixed effect estimator is equivalent to the DiD estimator under
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setting with two groups and two periods [Bertrand et al., 2004].

As a comparison, I aggregate the city-week level Google search scores into a city

level measure and specify the following DiD model:

ln(WOM ct) = β(lnScorec × Post t) + αc + γt + εct (9)

where scorec, a continuous treatment variable, is the intensity of Google search volumes

for safety concerns in city c, and Postt is a post-attack dummy.

Table 10 reports the regression results. There is no evidence that the Google search

volumes for safety concerns have sizable and significant effects on hotel word-of-mouth.

In the first column of Panel (a), the coefficient of google search scores is -0.0001, which

implies that a 10 percent increase in google search scores for safety concerns is correlated

with a 0.001 percent decrease in reviewer scores. The size of the estimated effect in

column 1 of Panel (b) is also small and insignificant at conventional level. In column 2,

although the two-way fixed effect estimate and DiD estimate is marginally significant

at 10% level, the magnitudes of their coefficients (0.0059 and 0.0406, respectively) are

very small. These results suggest that Worrying about the safety has little impact on

how guests rate the hotel.

In a nutshell, I do not find evidence that fear or safety concerns could influence

hotel word-of-mouth. A possible explanation might be hotel guests are rational when

evaluating their hotel stays and they cannot be easily governed by irrational fear and

exogenous shocks out of the hotel industry’ control. The dominant factor affecting

word-of-mouth is probably what the hotel do to improve customer experience.

4.3 How Paris hotels responded to the crisis

In this section, I use text-mining techniques to investigate how Paris hotels responded

to the Paris attacks. This section also helps explain why the short-term hotel word-of-

mouth improvements are higher than the medium-term word-of-mouth improvements.

The Text mining method enables us to highlight the most frequently used keywords

from a big text corpus. To understand the prominence of terms that appear more
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frequently in reviews, I first process the textual data by removing unnecessary white

space, converting the text to lower case letters, removing common stop-words like “the”,

“we”,“was” “also”. I then create a term document matrix, a mathematical matrix

describes the frequency of terms that occur in the documents. I finally plot word

clouds in Figure 5 and Figure 6. The size of a word in the word cloud shows how

important it is, e.g. how often it appears in a text. In Table 11, I summarize the top

ten most frequently used words in both positive reviews and negative reviews of Paris

hotels. By comparing what customers wrote at varying time, we can infer what matters

to customers and what Paris hotels did before and after the Paris terrorist attacks.

As can be seen in Table 11, in positive reviews, “location” is the most importance

element, “staff” and its associated words “helpful” and “friendly” rank the 2rd, 5th and

6th, respectively, in prominence of words for all periods except for the first week after

the terrorist attacks. During the first week after the attacks, “staff” becomes the most

frequently used word, “friendly” and “helpful” climb up to the top four key words. This

change in word frequency suggests that the improved service quality was the decisive

factor of positive hotel reviews immediately after the Paris attacks. Interestingly, “safe”

becomes a highly used word within one week of the terrorist attacks but is no longer

mentioned a lot by reviewers when we zoom the post-attack period on three months

or longer, suggesting that the hotel made guests feel safe during the attack period.

After the attacks, “breakfast” comes into view, though ranking the 9th in positive

reviews for all the selected after-attack periods. At the other end, “breakfast” is the

second leading complaint before the attacks and in the first week after the attacks,

but down to 4th highly used word in negative reviews in the following three months

after the attacks. The relative change of “breakfast” in the word prominence implies a

constantly improved breakfast after the attacks.

Another interesting term is “expensive” which is marginally important before and

immediately after the attacks, but no longer a major worry in the medium term. During

the attack period, hotel room prices were fixed to some extent given that most guests

made bookings before the attacks. However, after some periods of time, hotels could
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flexibly lower hotel rates to attract customers. Lacking detailed hotel price data, I am

unable to precisely measure the contribution of the reduced hotel prices to the improved

word-of-mouth after the attacks, but the evolution of “expensive” yields some indirect

evidence on the role of hotel rates.

Taken together, a higher short-term word-of-mouth than medium-term word-of-

mouth may arise from friendly and helpful hotel staff taking good care of customers

and making them feel safe during the attacks. The indirect physiological gains from

mitigating fear allow customers to highly rate their hotel stays during the attack. After

some time when fear of terrorism faded, hotels made proactive strategies–lowering hotel

rates, improving breakfast quality to enhance customer experience. Some scattered

evidence drawn from the review content can help reinforce my findings. For example,

on Nov 15, 2015, a customer wrote “The staff took good care of us during a stressful time

the attacks in Paris”. On Nov 16, 2015, another guest wrote “We were very impressed

with your staff. We happened to stay the night of the ISIS attacks in Paris. They

were very helpful in arranging a shuttle and a taxi so that our family was safely able

to get to the airport to catch our flights out”. On Nov 17, 2015, “Excellent customer

service, my wife and I stayed during the recent attacks, hotel staff could not be any

more helpful. Great people Pray for Paris”. Such reviews help reveal the secret of the

higher short-term hotel word-of-mouth.

4.4 Heterogeneity in impacts

Heterogeneity of the effect on different types of customers is potentially important. The

pattern of the heterogeneous impact can help increase the understanding of why the

Paris attacks improved the word-of-mouth in the hotel industry.

The fear-of-crime literature argues that unfamiliar environments are more likely

to trigger fear of victimization [e.g., Warr, 1990, Yechiam et al., 2005]. Customers

from Islamic countries are more likely to be familiar with Islam State militant group

(ISIS) and ISIS terrorist attacks. The familiarity may lower customers’ perceived risks.
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Therefore, during the attacks, the attack-triggered fear may be smaller for them than

for hotel guests from non-Islamic countries. If the fear effect exists, I would expect

customers from Islamic countries to given higher evaluations to hotels after the Paris

attacks than customers from non-Islamic societies. I specify the following difference-

difference-differences (DDD) model:

ln(WOM icj) =β1Islami + β2Affected Cohortij + β3(Parisc × Affected Cohortij)

+ β4(Islami × Parisc) + β5(Islami × Affected Cohortij)

+ β6(Parisc × Affected Cohortij × Islami) + αc + εict
(10)

where Islami is a dummy variable taking on 1 if the customer comes from an Islamic

country.12 β3 is the DiD estimate for customers from non-Islamic countries, β6 is the

DDD estimate which captures how much larger effect is for the Islamic cohort.

Table 12 reports the DDD results. The loss of degrees of freedom reduces our power

to detect a true effect. The DDD estimates in all the three models are not different

from 0. Overall, I find no evidence that attack-exposed Islamic customers who had

less fear gave higher assessments of the hotel quality than non-Islamic customers who

had greater fear. The results suggest that fear of attack threats may play little role in

affecting hotel word-of-mouth, consistent with my previous findings.

5 Robustness Checks

5.1 A Placebo test

I perform a placebo test by estimating additional DiD models using a “fake” treatment

group from city Amsterdam, Barcelona, London, Milan and Vienna. The pre-attack

and post-attack periods are defined as three months before and after the attacks. Hotel

fixed effect and linear time trends are also introduced to improve the model fit.

12I group guests’ nationality into Islam and Non-Islam societies based on the country’s dominant

religion.
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Figure 10 presents the placebos test results. For outcomes reviewer scores and the

length of positive reviews, using all the cities other than Paris as the placebo treatment

group produces non-significant estimated effects. For outcome variable negative review

length, the point estimate obtained by treating London as the affected city is positive

and significant at 95% level, but estimates by using Amsterdam, Barcelona, Milan

and Vienna as placebo treated groups remain non-significant. Overall, the placebo

test shows that only treat Paris as the treatment group could generate statistically

significant effects of the Paris terrorist attacks on hotel word-of-mouth.

5.2 Aggregated Data to Two Time Periods

An alternative way to deal with serial correlation in difference-in-differences models

is aggregating data into one pre- and one post-intervention periods. This approach

performs well also with small number of groups [Donald and Lang, 2007]. I aggregate

data into city level with two time periods each: pre- and post-attack periods. Pre- and

post-treatment periods are defined as three months before and after the Paris attacks,

respectively.

Table 14 in the appendix shows the results. For all the three outcomes, the inter-

actions of Post and Paris dummies are statistically significant and the size of the effect

is close to that from disaggregated data.

6 Conclusion Remarks

In this paper I provide new evidence on the causal impact of terrorist attacks on hotel

word-of-mouth. I find strong evidence that the November 2015 Paris attacks lead to

substantial increases in average review scores, increases in the length of positive re-

views and reductions in negative reviews. The effect on hotel word-of-mouth persist

for approximately 10 months. Furthermore, I present evidence that the positive effect

is greater in the short term than in the medium term. I propose a simple model in
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which the effect of terrorist attacks on hotel word-of-mouth relies on the competition

between utility losses due to fear of terrorist threats and improved hotel quality. I

find striking evidence that the fear effect is small and insignificant. I further use text

mining techniques to extract the word-use frequency in reviews, and present suggestive

evidence that the improved hotel service explains the increase in word-of-mouth imme-

diately after the attacks and that an improved breakfast and a reduced hotel price in

the following months after the attacks play an important role in enhancing customer

experience.

In this research, although the parallel trends hold for all the three outcome variables,

the identification may still be undermined since the pre-attack period is not long enough

to show the underlying trends. Future research could supplement the data by obtaining

longer periods of pre-treatment information and by extracting review data from other

platforms such as Yelp.com, Tripadvisor.com to improve the robustness of the results.
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Tables and Figures

Table 1: Summary Statistics of Review Variables

N Mean S.D. Min. Max.

WOM measures

Review scores 514,146 8.32 1.64 2.36 10.20

Length of positive reviews 514,146 17.79 21.80 0.00 395.00

Length of negative reviews 514,146 18.52 29.69 0.00 408.00

Guests’ information

Leisure trip 499,171 0.83 0.37 0.00 1.00

Night stayed 513,953 2.36 1.65 1.00 30.00

Solo traveler 514,146 0.21 0.41 0.00 1.00
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Table 3: Cities Receiving Weights for the Synthetic Control Group

Review scores Length of positive reviews Length of negative reviews

Amsterdam 0.000 Amsterdam 0.000 Amsterdam 0.000

Barcelona 0.462 Barcelona 0.534 Barcelona 0.938

London 0.538 London 0.345 London 0.000

Milan 0.000 Milan 0.000 Milan 0.000

Vienna 0.000 Vienna 0.121 Vienna 0.062

Table 4: Hotel WOM Predictor Means Before the Paris Terrorist Attacks

Pre-attack characteristics Paris Average of other cities Synthetic Paris

Panel A: Review scores

Leisure trip 0.840 0.820 0.840

Solo traveler 0.215 0.224 0.219

Night stay 2.773 2.591 2.681

Google search volumes 12.402 2.944 4.719

Panel B: Length of positive review

Leisure trip 0.840 0.820 0.885

Solo traveler 0.215 0.224 0.220

Night stay 2.773 2.591 3.114

Google search volumes 12.402 2.944 2.677

Panel C: Length of negative review

Leisure trip 0.840 0.820 0.829

Solo traveler 0.215 0.224 0.206

Night stay 2.773 2.591 2.458

Google search volumes 12.402 2.944 7.304

Notes: Google search volumes represents Google trend

scores on searching for “Is is safe to go to Amster-

dam/Barcelona/Paris/London/Milan/Vienna”.
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Table 5: Basic Difference-In-Differences Estimates, Paris attacks and WOM

Outcome variable: ln(review scores) ln(length of positive reviews+1) ln(length of negative reviews+1)

Control group: Average of other cities Barcelona Average of other cities Barcelona Average of other cities Barcelona

Paris× Post 0.0272 0.0200 0.0693 0.0788 -0.0591 -0.0539

(0.0042) (0.0056) (0.0183) (0.0255) (0.0270) (0.0261)

[0.0016] [0.0001] [0.0044] [0.0001] [0.0141] [0.0163]

Wild cluster bootstrapped p-value 0.0938 - 0.0625 - 0.0938 -

Average dependent variable 8.303 8.409 16.443 17.258 16.642 15.461

City FE or Paris dummy Yes Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes Yes

Hotel FE Yes Yes Yes Yes Yes Yes

N 115,872 27,929 115,872 27,929 115,872 27,929

adj. R2 0.134 0.122 0.044 0.044 0.044 0.053

Notes: pre-attacks period and post-attacks period are defined as 3 months before and after the November 2015

Paris attacks. Robust standard errors in parentheses. clustered standard errors at city level in brackets.
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Table 6: Address Seasonality by Introducing Trip Type Specific and City Specific Time

Trends

(1) (2) (3) (4)

Panel A: Outcome variable: ln(reviewer scores)

Paris× Post 0.0271∗∗∗ 0.0269∗∗∗ 0.0334∗∗∗ 0.0334∗∗∗

(0.0042) (0.0042) (0.0084) (0.0085)

Average dependent variable 8.303 8.303 8.303 8.303

City FE & Month FE & Hotel FE Yes Yes Yes Yes

Trip type specific time trends No Yes Yes Yes

City specific linear trends No No Yes Yes

City specific quadratic trends No No No Yes

N 112,713 112,713 112,713 112,713

adj. R2 0.150 0.150 0.150 0.151

Panel B: Outcome variable: ln(positive review length+1)

Paris× Post 0.0693∗∗∗ 0.0682∗∗∗ 0.1471∗∗∗ 0.1393∗∗∗

(0.0184) (0.0185) (0.0372) (0.0377)

Average dependent variable 16.443 16.443 16.443 16.443

City FE & Month FE & Hotel FE Yes Yes Yes Yes

Trip type specific time trends No Yes Yes Yes

City specific linear trends No No Yes Yes

City specific quadratic trends No No No Yes

N 112,713 112,713 112,713 112,713

adj. R2 0.061 0.061 0.061 0.061

Panel C: Dependent variable: negative review length+1)

Paris× Post -0.0539∗∗∗ -0.0531∗∗∗ -0.0424 -0.0405

(0.0261) (0.0276) (0.0558) (0.0565)

Average dependent variable 16.642 16.642 16.642 16.642

City FE & Month FE & Hotel FE Yes Yes Yes Yes

Trip type specific time trends No Yes Yes Yes

City specific linear trends No No Yes Yes

City specific quadratic trends No No No Yes

N 112,713 112,713 112,713 112,713

adj. R2 0.055 0.055 0.059 0.061

Notes: Pre- and post-period are defined as 3 months before and after

November 14, 2015. The trip type specific time trends control for time

trends by one year lead of cities’ composition of leisure trip guests.

Significance levels: * 0.10 ** 0.05 *** 0.01. Robust standard errors in

parentheses.
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Table 7: Relationship Between WOM and Attack Exposure During the Paris Attacks

ln(review scores) ln(positive review length+1) ln(negative review length+1)

(1) (2) (3)

Attack-exposed cohort 0.0582∗∗ 0.1860∗∗ -0.0071

(0.0275) (0.0836) (0.1716)

Average dependent variable 8.443 17.450 14.163

N 317 317 317

adj. R2 0.007 0.016 -0.008

Notes: The sample is restricted to Paris. Affected cohort dummy equals 1 if customers checked-in just

before the attacks and checked-out within 1 week after the attacks, equals 0 if customers checked-in 1

week before the attacks and check-out just before the attacks. Significance levels: * 0.10 ** 0.05 ***

0.01. Robust standard errors in parentheses.

Table 8: Re-examine the Relationship Between WOM and Attack Exposure During the

Paris Attacks

ln(review scores) ln(positive review length+1) ln(negative review length+1)

(1) (2) (3)

Paris × Attack-affected cohort 0.0542∗ 0.2184∗ -0.1306

(0.0297) (0.1161) (0.1765)

Average dependent variable 8.236 15.811 16.561

Attack-affected cohort dummy Yes Yes Yes

City FE Yes Yes Yes

N 2046 2046 2046

adj. R2 0.038 0.027 0.007

Notes: Affected cohort dummy equals 1 if customers checked-in just before the attacks and checked-

out within 1 week after the attacks, equals 0 if customers checked-in 1 week before the attacks and

check-out just before the attacks. Significance levels: * 0.10 ** 0.05 *** 0.01. Robust standard errors

in parentheses.
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Table 9: Relationship between Distance to Attack Targets and WOM in Paris

ln(review scores) ln(positive review length+1) ln(negative review length+1)

post 1 week post 1 month post 1 week post 1 month post 1 week post 1 month

Distance to the attack targets 0.0025 0.0004 0.0019 -0.0005 -0.0099 0.0008

(0.0018) (0.0006) (0.0068) (0.0025) (0.0110) (0.0038)

Average dependent variable 8.221 8.274 15.747 15.831 16.697 16.221

Individual Controls Yes Yes Yes Yes Yes Yes

N 318 2291 318 2291 318 2291

adj. R2 0.073 0.030 0.126 0.053 0.022 0.007

Notes: The sample is restricted to Paris customer who posted reviews after the Paris terrorist at-

tacks. Control variables include: stay duration, guest type (solo customer, couple customers, stay with

children), trip type (business trip or leisure trip), and reviewer’s national location (North America,

Europe, East Asia, West Asia, Australia and others). Robust standard errors in parentheses.

Table 10: Relationship between Safety Concerns and WOM

ln(review scores) ln(positive review length+1) ln(negative review length+1)

(1) (2) (3)

Panel A: two-way fixed effect model

ln(Google search volumes) -0.0001 0.0059∗ 0.0036

(0.0010) (0.0034) (0.0049)

City FE Yes Yes Yes

Week FE Yes Yes Yes

N 636 636 636

adj. R2 0.497 0.663 0.391

Panel B: DiD model

Post×ln(Google search volumes) 0.0092 0.0406∗ 0.0381

(0.0085) (0.0161) (0.0300)

N 636 636 636

City FE Yes Yes Yes

Week FE Yes Yes Yes

adj. R2 0.504 0.670 0.397

Notes: Google search volumes represent google trend scores on searching for “Is is safe to go to

Amsterdam/Barcelona/Paris/London/Milan/Vienna”. In panel A, Google search volumes vary at

city-week level. In panel B, Google search volumes vary at city level. Pre- and post-attack periods are

defined as 3 months before and 12 months after the attacks, respectively. Significance levels: * 0.10

** 0.05 *** 0.01. Robust standard errors in parentheses.
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Table 11: Top 10 Most Frequently Used Words in Reviews of Paris Hotels

Positive reviews

before the attacks within one week within three months within one year

word frequent word frequent word frequent word frequent

location 4932 staff 156 location 2469 location 12994

staff 3967 location 148 staff 2253 staff 12170

good 1959 friendly 69 great 1137 great 6339

great 1884 helpful 67 good 1046 good 5959

helpful 1738 good 66 friendly 990 friendly 5325

friendly 1682 great 60 helpful 941 helpful 5298

clean 479 nice 57 nice 759 nice 5412

nice 1169 safe 51 clean 646 clean 3876

excellent 1031 breakfast 43 breakfast 588 breakfast 3633

comfortable 908 comfortable 41 excellent 554 comfortable 3387

Negative reviews

before the attacks within one week within three months within one year

word frequent word frequent word frequent word frequent

small 1241 small 41 small 642 small 3757

breakfast 1016 breakfast 38 rooms 366 rooms 2189

rooms 850 rooms 32 staff 271 staff 1731

staff 740 service 15 breakfast 260 breakfast 1297

bathroom 501 staff 15 bathroom 217 bathroom 1287

bed 405 night 14 night 216 shower 1073

night 393 front 14 shower 154 bed 1073

wifi 380 poor 13 service 154 night 1048

service 359 floor 12 poor 153 good 1073

expensive 358 expensive 12 bed 152 service 953

44



Table 12: Heterogeneous Impacts on Customers from Islamic or Non-Islamic Counties

ln(review scores) ln(positive review length+1) ln(negative review length+1)

(1) (2) (3)

Islam -0.0468 -0.3234∗∗∗ 0.1678

(0.0307) (0.1213) (0.1952)

Affected cohort -0.0043 0.0127 0.1024

(0.0137) (0.0542) (0.0873)

Islam× Affected cohort 0.0060 0.0866 -0.0404

(0.0405) (0.1603) (0.2580)

Paris× Affected cohorts 0.0071 0.1272 0.0328

(0.0321) (0.1271) (0.2046)

Paris × Islam -0.0799 -0.0833 0.0522

(0.0660) (0.2610) (0.4202)

Paris× Islam× Affected cohort 0.1153 0.2088 -0.3507

(0.0845) (0.3342) (0.5380)

City FE Yes Yes Yes

N 2029 2029 2029

adj. R2 0.038 0.022 0.007

Notes: Islam is 1 if the customer is from an Islamic country, 0 otherwise. Affected cohort dummy equals

1 if customers checked-in just before the attacks and checked-out within 1 week after the attacks, equals

0 if customers checked-in 1 week before the attacks and check-out just before the attacks. Significance

levels: *** 0.01. Robust standard errors in parentheses.
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Figure 5: Word Clouds of Positive Reviews of Paris Hotels
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Figure 6: Word Clouds of Negative Reviews of Paris Hotels
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A Appendix

Table 13: Top 10 Most Frequently Used words in Reviews of Paris Hotels One Week

following the Attacks

positive reviews negative reviews

closer hotels further hotels closer hotels further hotels

word frequency word frequency word frequency word frequency

location 67 staff 97 room 15 breakfast 25

staff 59 location 81 breakfast 13 small 20

friendly 35 helpful 40 small 11 room 17

good 33 friendly 34 service 10 expensive 10

helpful 30 great 33 staff 9 poor 9

great 27 good 33 floor 8 front 8

nice 25 nice 32 bathroom 8 staff 7

breakfast 24 safe 31 door 7 old 7

comfortable 22 comfortable 23 price 7 morning 6

safe 20 excellent 22 bed 6 service 6
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Table 14: Robustness Check: Aggregated Data to Two Time Periods

ln(review scores) ln(positive review length+1) ln(negative review length+1)

(1) (2) (3)

Paris × Post 0.0343∗∗∗ 0.0838∗∗ -0.0947∗∗∗

(0.0074) (0.0220) (0.0309)

Post 0.0106∗∗ 0.0690∗∗∗ 0.0475

(0.0030) (0.0090) (0.0249)

City FE Yes Yes Yes

N 12 12 12

adj. R2 0.957 0.968 0.879

Notes: Aggregate data to city level data with two time periods each: pre- and post-attacks periods.

Pre- and post-treatment periods are defined as three months before and after the attacks, respectively.

Significance levels: * 0.10 ** 0.05 *** 0.01. Standard errors in parentheses.
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Figure 7: An Review Page in booking.com
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