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Abstract

This paper investigates the effects of heterogeneous preferences on risk premia, on
asset price dynamics, and on distributions of wealth and consumption. I consider a
continuous time economy populated by an arbitrarily large number of agents whose
CRRA preferences differ in their risk aversion parameter. I derive closed form
expressions for the interest rate, the market price of risk, and drift and diffusion of
consumption weights. A closed form expression for asset prices being unattainable,
I derive an estimable expectation formula for the price of a risky stock. I then
simulate the economy using a parallelized/GPU implementation of path monte-
carlo methods to estimate asset prices and compare the qualitative and quantitative
features to real world observations. The model does well in replicating a falling
dividend to price ratio over time, low risk free rate, a high risk premium, and rising
inequality. I also study the effects of increasing the number of agents and the level
of disagreement and find that more agents and lower disagreement, corresponding
to a more equitable initial condition, produces lower individual leverage, lower asset
prices, and higher expected excess returns on risky assets.
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Introduction

Macroeconomic theory is evolving from a representative agent focus to a heteroge-

neous, agent-based one. When we study many agents we are implicitly stating that we

believe there exists emergence in economics. By emergence, I refer to the definition of

Miller, Page, and LeBaron (2008): ”... that individual, localized behavior aggregates

into global behavior that is, in some sense, disconnected from its origins.” When the

characteristics of a system as a whole cannot be explained as the sum of its parts, we say

it exhibits emergent properties In particular, we believe that differences between agents,

whether differences caused by situation, information, education, or inherent characteris-

tics, create economic outcomes that cannot be predicted through the simple study of a

single agent. One example of emergence is that of exchange. With a single agent, there

can be no exchange. When it comes to financial markets, this shortcoming of the repre-

sentative agent is never more apparent. Each day, trillions of dollars worth of financial

assets change hands.

When pricing a financial security, one must answer the question, what is a security in

the first place? Being simply a piece of paper, a financial security gives its bearer the right

to a stream (not very continuous) of future dividends and capital gains for the (possibly)

infinite future. The price of this abstract object is so difficult to determine that if you

ask two analysts for an exact price they will generally disagree. In fact, even two equally

informed analysts, in the exact same post, might disagree. It is this very disagreement

that underlies this paper. The fact that two people in the same situation might price a

risky asset differently could only be explained by differences in their preference towards

risk. When we allow there to exist inherent differences in the way that agents price risk,

we often end up with constantly shifting distributions of wealth and consumption, as well

as changing financial variables. Although these characteristics make models quite difficult

to solve, these are the very characteristics that bring them closer to the real world.

Since Dumas (1989), there has been both theoretical and empirical work on heteroge-

neous risk preferences. The field lay relatively dormant until Coen-Pirani (2004) studied

the introduction of Epstein-Zin preferences into an economy of two agents and found the

counterintuitive result that, under certain parameterizations, the most risk averse agent

could dominate. Since then, the empirical work has focused on trying to estimate the

distribution of risk aversion that might prevail in the economy, as in Kimball, Sahm, and

Shapiro (2008). Theoretical work has tried to identify how and why different agents with

different preferences participate in different ways. Guvenen (2006) uses participation

constraints to study the effects of allowing only low risk aversion agents to participate

in financial markets and are able to replicate well the real world wealth distribution. In

a more complete markets vain, Bhamra and Uppal (2014), Chabakauri (2013), Gârleanu

and Panageas (2008), and Cozzi (2011) have all worked on studying the interactions of
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two heterogeneous agents.

The majority of the theoretical work on heterogeneous risk preferences focuses on

agent survival, asymptotic properties, and attempts to derive closed form solutions for

asset prices when there are two agents, assuming that the results generalize to many

agents. These techniques often miss the dynamics of the market and the complexity one

would find using an economy populated by many heterogeneous agents. I try to fill this

gap in the literature by deriving expressions for the dynamics of agents’ consumption,

interest rates, the market price of risk, and an estimable expression of asset prices. Using

these I simulate an economy, studying its properties. My work most closely matches that

of Cvitanić, Jouini, Malamud, and Napp (2011), who study an economy populated by

agents who differ in their risk aversion parameter, their rate of time preference, and their

beliefs. However, they focus on issues of long run survival and price, while I am more

interested in simulating the short run dynamics of the model. Also, focusing on a single

dimension of heterogeneity makes the conclusions more clear and the formulation less

intimidating.

Apart from focusing on preferences, heterogeneous agent models take on several forms.

One approach has been to assume agents’ differ in their discount rate. Hendricks (2007)

finds that indeed heterogeneity in discount rates can explain some of the wealth inequality

we observe in the market. Possibly the most developed heterogeneous agent models are

those involving idiosyncratic risk, as in Aiyagari (1994). This type of heterogeneity was

studied by Krusell and Smith (1998) as a cause of the real world distribution of wealth.

A third type of heterogeneity is that of heterogeneous beliefs as in Blume and Easley

(1992) or Bullard and Duffy (1999). These types of models focus on the dynamics of

the economy and survival rates. One of the unifying factors in all of these models is

some form of market imperfection, be it imperfect insurance markets, imperfect financial

markets, or imperfect information, that drives exchange. This seems unsatisfactory, since

it is easy to think of an example where two people with the same information and the

same budgets might disagree on the price of some risky asset. A promising way to allow

for this type of disagreement is through heterogeneous preferences.

Another example of agent heterogeneity is that of heterogeneous financial constraints

or frictions. Articles such as Mankiw and Zeldes (1991) look at how limited participation

in financial markets can help explain the equity premium, but the participation assump-

tion is often exogenous. Heterogeneous preferences allows this participation decision to

be made endogenous. In fact, the formulas for the risk free rate and the market price of

risk derived in this paper resemble greatly those in Basak and Cuoco (1998), where one of

two agents is restricted from participating in the stock market. If we think of individual

agents as each having a supply and demand function for risky assets and risk free bonds,

it is possible to think of a model of heterogeneous risk preferences as one of market break

down. Each agent populates a single, theoretical market, but only one market can clear.
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The market which clears is the one corresponding to the agent who is indifferent between

buying or selling their shares or bonds. However, contrary to the limited participation

literature, the clearing markets for stocks and bonds do not have to correspond to the

same agent and, furthermore can vary over time.

The addition of more agents attempts to explain certain shortcomings of the standard,

representative agent framework. The explicit study of general equilibrium in financial

markets, ushered in by Arrow and Debreu (1954), has progressed along a line of inquiry

centered around a representative agent since the publication of the seminal paper by

Lucas (1978). However, the representative agent framework fails in many respects. First,

there is the infamous equity premium puzzle of Mehra and Prescott (1985), in which a

representative agent needs to be incredibly risk averse to generate a real-world equity risk

premium. At the same time, a high risk aversion implies a high risk free rate, creating

the risk free rate puzzle of Weil (1989). Debate abounds about the ”true” value of a

representative agent’s risk aversion parameter, but most work centers on a level around

2− 3 (e.g. Barro and Jin (2011)). Second, there is the observed phenomenon of positive

trading volume. In a representative agent economy with perfect financial markets, trading

volume is zero. Third, there is the existence of skewed distributions of income and wealth,

documented in works on inequality like Saez and Zucman (2014) and Piketty and Saez

(2001). Fourth, there is the leverage cycle documented by Geanakoplos (2010), where

collateral constraints augment the fluctuations in asset prices given a negative shock.

However, as with many other economic models, the representative agent has been a

springboard for researchers to attempt to explain these phenomena through modifications

and additions to the assumptions.

There have been several approaches taken in the literature to improve the explanatory

power of the basic representative agent framework. One approach has been to allow for

variable risk aversion parameters, using habit formation as in Campbell and Cochrane

(1999) or Abel (1990), or using hyperbolic absolute risk aversion as in Ogaki and Zhang

(2001). However, conflicting evidence has been found by Chiappori and Paiella (2011)

who find that individuals’ relative risk aversion is constant over time. Another approach

is to introduce imperfections into the financial market. Research such as that done by

Sharpe (1994) find significant impact of financial frictions on the real economy, while theo-

retical papers such as Bernanke, Gertler, and Gilchrist (1999) have studied the mechanism

driving the effects of frictions.

In this paper I will develop a continuous time model of a Lucas economy, populated

by an arbitrarily large number of agents who differ in their rate of relative risk aversion.

I will then solve the model and simulate its dynamics. The structure of the paper is as

follows: section 1 sets up and solves the model, section 3 give some simulation results,

and section 4 concludes. The more technical analysis and proofs have been relegated to

the appendix.
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1. The Model

In this section, I will describe the general setting of the model. The key components

are the definition of agent heterogeneity, the economic uncertainty, agent optimization,

and equilibrium. The solution method will be discussed in the following section.

1.1. Agents

I consider a continuous time economy populated by a finite number, N , of heteroge-

neous agents indexed by i ∈ {1, 2, ..., N}. Each agent has constant relative risk aversion

(CRRA) preferences such that their risk aversion parameter, γi, is drawn from a distri-

bution f(γ) whose support is open and bounded such that γi ∈ (γ, γ):

Ui(c(t)) =
c(t)1−γi − 1

1− γi
∀i ∈ {1, 2, ..., N}

γi ∼ f(γ)

This form of agent heterogeneity creates difficulties in solving the model analytically.

The system of equations generated tends to be highly non-linear. However, the use

of the continuous time model allows us to use Itô’s lemma as a form of second order

linearization, maintaining preferences towards risk while reducing the complexity of the

problem. Also, the definition of the distribution of risk aversion allows for a high degree

of freedom in simulations. This model encompasses a representative agent, a two agent

frame-work, and up to a countable, finite number of agents (although solution is limited

by computational power).

1.2. Uncertainty

Agents have available to them one risky asset, representing claims to a Lucas tree

whose dividend process follows a geometric Brownian motion, and risk free borrowing

and lending at an interest rate r(t) in zero net supply. All uncertainty in the model

is driven by a standard Wiener process, W (t), defined on a filtered probability space

(Ω,P,Ft). Thus the evolution of dividends in the economy is given by

dD(t)

D(t)
= µDdt+ σDdW (t) (1)

Agents continuously trade in claims to the dividend process. We will hypothesize that

the share price, S(t), also follows a geometric Brownian motion:

dS(t)

S(t)
= µs(t)dt+ σs(t)dW (t) (2)
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One of the main goal of this paper is to determine the values of µS(t) and σs(t). If we

think about a representative agent economy, we would expect the price-dividend ratio

to be constant over time, and thus the drift and diffusion coefficients for the stock price

are simply those of the dividend process. We should look in our analysis to see how this

model differs and is similar in this respect to the representative agent framework.

1.3. Individual Optimization

All agents are initially endowed with a share in the tree, which I will assume to be

uniformly distributed across agents, but this assumption can be easily relaxed and has

little effect on the dynamics of the model. Agents choose simultaneously their consump-

tion and portfolio choices. As a standard simplification, I will define the model in terms

of wealth. At any time t an agents budget constraint can be written as

dX i(t) =

[
r(t)X i(t) + ai(t)S(t)

(
µS(t) +

D(t)

S(t)
− r(t)

)
− ci(t)

]
dt+ ai(t)σs(t)S(t)dW (t)

(3)

where the set of variables {ci(t), ai(t), X i(t), D(t), S(t), r(t),W (t)} represent an agent’s

consumption, asset holdings, and wealth (defined as X i(t) = ai(t)S(t) + bi(t), bi(t) being

bond holdings), as well as the dividend, market clearing asset price, market clearing

risk free interest rate, and Wiener process governing the Brownian motion. The budget

constraint is standard and can be interpreted as the instantaneous change in wealth

being equal to the return on savings plus the net returns on holding the risky asset

plus a mean zero random term governed by the risk process. Using these facts we can

write an individual agent’s constrained maximization subject to instantaneous wealth

and dividend processes as:

max
{ci(u),ai(s),bi(u)}∞u=t

E
∫ ∞
t

e−ρ(u−t) c
i(u)1−γi − 1

1− γi
du

s.t. eq. (1), eq. (2), & eq. (3)

1.4. Equilibrium

Definition 1. An equilibrium in this economy is defined by a set of processes

{r(t), S(t), {ci(t), X i(t), ai(t))}Ni=1} ∀ t, given preferences and initial endowments, such

that {ci(t), ai(t), X i(t)} solve the agents’ individual optimization problems and the follow-
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ing set of market clearing conditions is satisfied:∑
i

ci(t) = D(t)∑
i

ai(t) = 1 (4)∑
i

X i(t) = S(t)

The definition of equilibrium can be interpreted as agents choosing their consumption

and portfolio choices to maximize their individual utilities. These choices in turn must

satisfy the market clearing conditions for consumption, asset holdings, and wealth. In

order to do so, interest rates and asset prices adjust.

2. Equilibrium Characterization

This section will derive a solution to each agent’s maximization problem and give

results on the characteristics of equilibrium. In deriving the equilibrium, it is interesting

to note that the choices of agents can be seen as determining first and foremost their

consumption, which in turn determines their portfolio choice. These choices give rise

to a market clearing price of risk, a risk free interest rate, and a stock price. All of

these outcomes can be compared (see appendix A) to an economy populated by a single,

representative agent.

2.1. Financial Markets

To solve an agent’s optimization we can discount future consumption to today’s value.

We do so by multiplying by a stochastic discount factor process. Given that there is only

one market and one risky asset, there is only one stochastic discount factor for the market.

Following Karatzas and Shreve (1998) we can define the stochastic discount factor as

H0(t) = exp

(
−
∫ t

0

r(u)du

)
exp

(
−
∫ t

0

θ(u)dW (u)− 1

2

∫ t

0

θ(u)2du

)
(5)

where

θ(t) =
µs(t) + D(t)

S(t)
− r(t)

σs(t)
(6)
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represents the market price of risk. This implies that the dynamics of the the stochastic

discount factor also follow a geometric Brownian motion:

dH0(t)

H0(t)
= −r(t)dt− θ(t)dW (t) (7)

It is important to keep in mind that agents are not discounting at their own rate, but

at a market rate. This is because each agent knows that their only choice is to buy or

sell assets at the market rate, assuming that there is no arbitrage. If it were possible for

there to be many markets, each one clearing at an individual agent’s price, one could buy

risky assets in a market with a risk averse agent and sell them in a market with a risk

neutral agent at a higher price, making a positive profit.

2.2. The Static Problem

Using the stochastic discount factor, defined in (5), we can rewrite each agent’s dy-

namic problem as a static one

max
{ci(u)}∞u=t

E
∫ ∞
t

e−ρ(u−t) c
i(u)1−γi − 1

1− γi
du

s.t. E
∫ ∞
t

H0(u)ci(u)du ≤ X i
0

If we denote Λi as the Lagrange multiplier in individual i’s problem, then the first order

conditions can be rewritten as

ci(u) = (eρuΛiH0(u))
−1
γi (8)

which holds for every agent in every period. Note here that, because the problem is

static, there is only one Lagrange multiplier, Λi.

2.3. Consumption Weights

Given each agent’s first order conditions, we can derive an expression for consumption

as a fraction of total dividends.

Proposition 1. One can define the consumption of individual, i, at any time, t, as a

share ωi(t) of the total dividend, D(t), such that

ci(t) = ωi(t)D(t) (9)

where ωi(t) =
(Λie

ρtH0(t))
−1
γi∑N

j=1 (ΛjeρtH0(t))
−1
γj

(10)
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This expression is very similar to one derived in Bhamra, Coeurdacier, and Guibaud

(2014) where two agents face imperfectly integrated financial markets. There, the stochas-

tic discount factor is equally weighted by the two log agents, but it differs thanks to the

introduction of a tax. Here, the value of the stochastic discount factor is equal across

agents, but differs in its weight for each agent as they differ in risk aversion. This leads

one to think that perhaps it would be better to think of this as an incomplete market. If

markets were fully complete, there would be a risky asset for each agent, but here agents

are forced to bargain over a single asset. Also, since in this economy agents can only

consume their share of the dividend process, which in not tradeable, their consumption

weight is equal to their asset holdings, i.e. ωi(t) = ai(t).

To derive an expressions for a risk free rate and the market price of risk, it is necessary

to derive a quick lemma about the drift and diffusion of agents’ consumption processes:

Lemma 1. If we model an agent’s consumption as a geometric Brownian motion with

time varying drift and diffusion coefficients µci(t) and σci(t), then for a given r(t) and

θ(t), and for all i ∈ {1, ..., N}

µci(t) =
r(t)− ρ
γi

+
1 + γi
γ2
i

θ(t)2

2

σci(t) =
θ(t)

γi

Notice first that the diffusion process for an agent is equal to the market price of risk

scaled down by risk aversion. This makes sense as we would expect risk averse agents

to desire a lower volatility in consumption. Also notice that the drift coefficient is made

up by two terms. The first term incorporates the agent’s time preference: if the interest

rate is higher than the agents’ rate of time preference, this will increase the growth rate

in consumption, as they see a gain in saving today to consume tomorrow. However, this

term is again scaled down by risk aversion, as CRRA preferences have the characteristic

that risk aversion is the inverse of the elasticity of inter-temporal substitution. Thus, the

higher an agent’s risk aversion, the lower their elasticity of inter-temporal substitution,

and the less they are willing to adjust their consumption choices in the face of changes

in the interest rate. The second term incorporates preferences towards risk. If an agent’s

risk aversion is greater than 1, this second term will be less than 1. This implies that

changes in the market price of risk cause a proportionally smaller change in the growth

rate in individual consumption. Conversely, if an agents risk aversion is less than 1, this

term will be greater than 1, implying that changes in the market price of risk have an

amplified effect on their consumption growth. Also, this term is decreasing in γi, implying

that the higher the risk aversion, the lower the effects of changes in the market price of

risk on the growth rate in an agent’s consumption.

Given Lemma 1, we can derive expressions for the market price of risk and the risk
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free rate:

Proposition 2. The interest rate and market price of risk are fully determined by the

sufficient statistics ξ(t) =
∑N

i=1
ωi(t)
γi

and φ(t) =
∑N

i=1
ωi(t)

γ2i
such that

r(t) = ρ+
µD
ξ(t)
− 1

2

ξ(t) + φ(t)

ξ(t)3
σ2
D (11)

θ(t) =
σD
ξ(t)

(12)

by Lemma 1 and eq. (4).

Proposition 2 is in terms of only certain moments of the joint distribution of consump-

tion and risk aversion. We can compare these formulas to those for any individual agent

(see appendix A). In (12), we can see that the market price of risk in the heterogeneous

economy is equal to the market price of risk that would prevail in a representative agent

economy populated by an agent whose elasticity of inter-temporal substitution is equal

to the consumption weighted average in our economy. This is driven by the fact that

individual agents choose their risky asset holdings such that their private valuation of

the entire economy equals the valuation of all other agents. However, they hold only a

portion of the total market portfolio, and so they have a limited weight in the outcome.

Looking at (11), the first two terms are very reminiscent of the interest rate in a

representative agent economy populated by the same agent that would determine the

market price of risk. However, the last term of (11) is slightly different. If it were the

case that φ(t) = ξ(t)2, then the interest rate and market price of risk in this model could

be exactly matched by those in an economy populated by a representative agent with

time varying risk aversion, as in the model of habit formation by Campbell and Cochrane

(1999). However, in numerical simulations this is not the case (see section 3) and we tend

to have φ(t) > ξ(t)2. This is driven by the non linearity in the elasticity of inter-temporal

substitution as a function of risk aversion (namely that E 1
x
6= 1

Ex). This causes the second

term to be larger, and the risk free rate thus to be lower, than it would be in an economy

populated by a representative agent. This introduces a sort of ”heterogeneity wedge”

between the price of risk and the price for risk free borrowing. As we’ll see in section 3,

this fact takes a step towards explaining the equity risk premium puzzle of Mehra and

Prescott (1985) and the risk free rate puzzle of Weil (1989), but does not solve them

entirely.

2.4. Consumption Weight Dynamics

We can study the dynamics of an agent’s consumption weight by applying Itô’s lemma

to the expression given in Proposition 1.
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Proposition 3. Assuming consumption weights also follow a geometric Brownian motion

such that

dωi(t)

ωi(t)
= µωi(t)dt+ σωi(t)dW (t)

an application of Itô’s lemma to (10) gives expressions for µωi(t) and σωi(t):

µωi(s) = (r(t)− ρ)

(
1

γi
− ξ(t)

)
+ θ(t)2

[(
1

γ2
i

− φ(t)

)
− 2ξ(t)

(
1

γi
− ξ(t)

)
+

(
1

γi
− ξ(t)

)]
(13)

σωi(t) = θ(t)

(
1

γi
− ξ(t)

)
(14)

The expressions in Proposition 3 describe how an agent’s position relative to the

consumption weighted average of elasticity of inter-temporal substitution (and its square)

in the economy determines the growth rate in their relative share in consumption and

the covariance of that share with the risk process. For this analysis, define γ∗ such that

ξ(t) = 1
γ∗

.

Consider first (14), which describes how an agent’s consumption weight co-varies

with the risk process. If an agent i is more risk averse than the weighted average, that

is γi > γ∗ ⇔ 1
γi
< 1

γ∗ = ξ(t), then (14) < 0 and agent i’s weight is negatively correlated

to the market. This implies that if an agent is more risk averse than the average then

their asset holding will increase when there are negative shocks and decrease when there

are positive shocks. This is a prudence motive and these agents can be thought of as

playing a ”buy low, sell high” strategy. Conversely, if an agent is less risk averse than

the average their asset holdings covary positively with the market. These agents are

essentially buying high and selling low, a strategy that in the long run will leave them

under water in terms of wealth (see section 3). An agent with a lower risk aversion has a

higher elasticity of inter-temporal substitution and, thus, can be thought of as less patient.

Given a shock to the dividend process, the expected growth rate remains constant, but

level shifts permanently because of the martingale property of the Brownian motion.

Since less patient agents see the current output of the dividend as more important than

its long-run behavior present shocks have a greater effect on their personal price. Thus,

a negative shock causes them to reduce their price and in turn their asset holdings.

Consider next (13), which describes how an agent’s consumption weight grows over

time. The first term is the product of two separate terms: one involving the interest

rate and rate of time preference, the other the agent’s position in the distribution. If

the interest rate is above the rate of time preference, the first term is positive. This

is intuitive, as if the agent is being compensated through r(t) by more than their time

discount rate, ρ, then they should desire to transfer wealth to tomorrow and their growth
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rate will be larger. This is reminiscent of the equation of motion for capital in a standard

Ramsey model, but multiplied by a function of individual risk aversion. If the agent is

more risk averse than the weighted average, as in the analysis of eq. (14), then the product

will be negative and this first term will contribute negatively to their growth rate µωi(t).

The combined effect of these two terms is to say that if an agent is less risk averse than

the average and the interest rate is greater than their rate of time preference, they will

want to grow their consumption faster than the rate of growth in the economy, while if

they are more risk averse than the average then they will grow their consumption more

slowly than the rate of growth in the economy. This, again, is driven by the elasticity

of inter-temporal substitution and a prudence motive. More risk averse agents have

lower elasticity of inter-temporal substitution and they are thus less willing to accept

fluctuations in their consumption. Because of this, if the interest rate is greater than

their rate of time preference they will desire more to divest from the risky assets and

accumulate risk free bonds.

The second term is quite a bit more complex. The term in brackets is a sort of

quadratic in deviations from the weighted average of risk aversion. Whether this term is

positive or negative depends in a complicated way on ξ(t) and φ(t) 1. It is sufficient to

note that, when the distribution is not too skewed, there exists a level of risk aversion

such that if an agent is above this the second term in (13) is negative and that this level

of risk aversion is not equal to γ∗. Thus at any point in time there will be three groups:

one whose drift is strictly positive, one where it is ambiguous, and one where it is strictly

negative. The first group is willing to invest no matter the risks, the second is prudent

but still willing to grow their portfolio, and the third would like to divest from the risky

stock. Finally, as ξ(t) and φ(t) converge toward each other in the long run, only the least

risk averse agent will have a positive drift (again see section 3).

2.5. Asset Prices

Now, given that we have found expressions to describe the evolution of consumption

choices over time, we can give a formula describing asset prices. Bear in mind that it is

not trivial to solve for each individual agent’s asset price, as it depends in a non-linear

way on their consumption weight. However, given that we know how consumption will

evolve we can use market clearing to derive the expression in Proposition 4.

Proposition 4. Under a transversality condition on wealth, that is if we assume

1It can be shown that the roots of this quadratic are 1
γi

=
2ξ(t)−1±

√
1+4φ(t)−8ξ(t)2

2 . Taking only the

positive root, we have 1
γi

= ξ(t)− 1
2 +

√
1
4 + φ(t)− 2ξ(t)2. Under certain distributions of ωi(t) there is

no real root and the term is strictly positive.
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Et
[

lim
s→∞

H0(s)X i(s)
]

= 0, then it can be shown that asset prices satisfy the following:

S(t) = Et
∫ ∞
t

H0(u)

H0(t)
D(u)du (15)

Proposition 4 defines asset prices today in terms of expectations of the future outcome

of the dividend process, discounted at the market rate. Consider (15), which we can

rewrite by substituting for H0(t) using (8) as

S(t) = Et
∫ ∞
t

e−ρ(u−t)
(
ci(u)

ci(t)

)−γi
D(u)du

for every i, which is exactly equal to the asset pricing formula derived from the Euler

equation in a representative agent economy. Notice, however, that the dynamics of the

consumption process causes the two to differ. It may be possible to construct an agent

whose consumption share remains fixed over a short period of time and thus whose price

in a representative agent economy would equal the price in the heterogeneous economy,

but it is not necessarily true that that agent exists in the model being solved here. For

instance, in the case of two agents, the price will always be somewhere between the price

that would prevail in the two individuals’ autarkic economies.

The last proposition involves leverage. We are interested in the evolution of wealth,

which is made up of risky assets and bond holdings. So, we should study how an indi-

vidual’s bond holdings and economy-wide borrowing evolve over time. First, we need a

lemma about individual drift and diffusion coefficients.

Lemma 2. Individual savings, bi(t), have the following dynamics:

dbi(t) = µbi(t)dt+ σbi(t)dW (t)

where

µbi(t) = r(t)bi(t)− ωi(t)S(t)(µωi(t) + σS(t)σωi(t)) (16)

σbi(t) = −σωi(t)ωi(t)S(t) (17)

First, consider (17) and recall our analysis about σωi(t). If an agent is more risk averse

than the weighted average, then their diffusion for consumption weight is negative, and

thus their bond holdings co-move positively with the market. These risk averse agents

are thus divesting from the risky asset and investing in risk free bonds as prices rise.

When prices fall, they do the opposite, selling their bonds to purchase risky assets. The

opposite is true of an agent who is less risk averse than the weighted average. Following

a positive shock, agents with low risk aversion desire to increase their holdings of the

risky asset to profit from the higher dividends being paid. To do so, they will leverage
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their position and will thus borrow more. In this way, agents with low risk aversion

are financing their portfolio growth by borrowing on the bond market. We will see in

section 3 that as the low risk aversion agents dominate, their price dominates the market

as well, causing prices to rise. So, their borrowing is indirectly causing rising asset prices.

Next, consider (16). An agents savings increases with their returns on savings,

r(t)bi(t), and falls with the change in their risky asset holdings. The change in their

risky asset holdings is equal to the value of their holdings, ω(t)S(t), times the drift in

asset holdings, µωi(t), plus the covariance in their asset holdings and the stock price. Here

it is important to note that the drift and diffusion of bond holdings are scaled by the

price of the asset, so if there is a precipitous rise in asset prices, this has a scaling effect

on borrowing. An agent whose bond holdings are low and has a high exposure to asset

prices could move to a negative drift in their bond holdings that becomes reinforcing, as

the first term now drags down the drift even further. In this way, it is possible for agents

in this economy to fall into debt spirals where they borrow to pay off old debt and their

wealth falls precipitously.

Now, we can use Lemma 2 to study the evolution of total borrowing and total financial

leverage in the economy.

Proposition 5. If we define total borrowing in the economy as Γ(t) = 1
2

∑N
i=1 |bi(t)| and

total financial leverage as L(t) = Γ(t)
S(t)

, then it can be shown that these processes have the

following dynamics:

dΓ(t) = µΓ(t)dt+ σΓ(t)dW (t)

dL(t)

L(t)
= µL(t)dt+ σL(t)dW (t)

where

µΓ(t) =
1

2

N∑
i=1

[
sgn(bi(t))

(
µbi(t)−

1

2
σbi(t)

2

)
+

1

2
|bi(t)|σbi(t)

]

σΓ(t) =
1

2

N∑
i=1

sgn(bi(t))σbi(t)

µL(t) =
µΓ(t)− σΓ(t)σS(t)

Γ(t)
− µS(t) + σS(t)2

σL(t) =
σΓ(t)

Γ(t)
− σS(t)

Although these expressions are quite complicated, there are a few interesting features

to note. First, notice that total debt, Γ(t), cannot be written as a geometric Brownian

motion, but that it will be positive by definition. Also, notice that the drift in leverage
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is determined by several terms in Γ(t) and drift and diffusion of stock prices. First, you

have a term involving Γ(t), which is determined by the covariance of stock prices and

total debt. Only if debt, its drift, and its diffusion grow proportionally, will the drift in

leverage be more or less constant. Finally, notice that diffusion in leverage is decreasing in

the diffusion of stock prices. In fact, if Γ(t) were to grow faster than σΓ(t), then leverage

would move counter-cyclically This will indeed be the case.

Many of these propositions are complex and difficult to grasp in the abstract. They

describe the evolution of either an individual agent or the entire economy and involve

relative terms and sums. They also reference each other and co-move throughout time.

It is because of this complexity that it is easiest to understand how this economy behaves

by using a numerical simulation. Armed with Propostions 1 to 5, we can now simulate

an economy and study its dynamics over time.

3. Simulation Results and Analysis

In this section, we’ll review some simulation results and compare them. For all of

the simulations, we will hold the following group of parameters fixed at the given values:

µD = 0.03, σD = 0.06, and ρ = 0.01. These settings correspond to a yearly time

discretization. Additionally, for simulating asset prices by Monte Carlo, we need to

specify a truncation level T = 1000, as well as the number of path iterations M = 15360
2. Finally, we’ll simulate forward 50 periods. We’ll begin with simulations using two

agents 3 to see how well this model matches previous research. Then we’ll move to more

agents, focusing on the effects of increasing the number of agents over a fixed support

for risk aversion and increasing the spread of the support, holding the number of agents

fixed.

Throughout this section we’ll focus on two main topics: distributional outcomes and

financial market outcomes. In terms of distributional outcomes we will look at consump-

tion shares, wealth distributions, and dominant agents. In terms of financial market

outcomes we’ll focus on asset prices, dividend yield, interest rates, market price of risk,

and risk premia. The model will match better certain variables under some parameteri-

zations and others under other parameterizations. The degrees of freedom are large and

the goal of this section is not to perfectly match the real world, but to study in what

ways different forms of heterogeneity effect the model.

2A multiple of 512 for technical reasons. For a full description of the numerical method, see ap-
pendix C. The programs are available on request.

3Results for a single agent match the theoretical solution given in appendix A.
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3.1. Two Agents

Let’s begin with two agents with CRRA parameters γ1 = 1.0 and γ2 = 2.5. You’ll

notice in Figure 1 that the agent with the lower risk aversion (the blue line) is dominating

the market for consumption. However, an interesting thing to note is that they do not

dominate the market for wealth, or at least their position is more volatile and seems to

break down as time goes on. The more risk averse agent, although divesting from the

risky asset, is buying risk free bonds supplied by the less risk averse agent. So the less

risk averse agent is financing the growth in their consumption share through borrowing

and, as the rate of growth in asset prices slows (see Figure 3) their leverage tends to rise

until their wealth collapses. This also makes their wealth more susceptible to negative

shocks. A final interesting feature of Figure 1 is that the variable φ(t) is never equal

to ξ(t)2, which tells us that even the two agent economy could not be matched by a

representative agent with time varying risk aversion. This fact is illustrated in the lower

pane of Figure 1, which graphs the evolution of the ratio φ(t)
ξ2(t)

. If this ratio is equal to

one, then the economy could be modeled by a representative agent, but we see here that

it is greater than one. This drives a wedge between interest rates and the market price

of risk, increasing the risk premium.

Fig. 1. Distributional outcomes for two agents when γ1 = 1.0 (blue) and γ2 = 2.5 (red).

Next, consider Figure 2, which describes the financial leverage in the two agent econ-
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omy. First you’ll notice that financial leverage in the whole economy is growing over time.

You’ll also notice that the dynamics of total leverage in the economy quickly converge to

their long run values. Finally, it is very interesting to note that the total financial lever-

age is counter cyclical, represented by the negative diffusion coefficient in the long run.

This is contrary to the assertion in Geanakoplos (2010), that leverage be pro-cyclical

That does not mean the two conclusions are opposing, but driven by different forces.

In Geanakoplos (2010), a behavioral argument for the effects of heterogeneous beliefs

on leverage is given. When there is bad news, credit constraints tighten which causes

leverage to fall. Meanwhile, here the change in the level of leverage is driven by agents

inter-temporal consumption smoothing motives. They choose their consumption weights

without considering asset prices. The market asset price then determines the value of

their shares, and the residual is their borrowing. Thus, when the value of their portfolio

falls, their borrowing does not necessarily fall. This causes their leverage to rise.

Fig. 2. Financial leverage for two agents when γ1 = 1.0 and γ2 = 2.5.

Last for this economy, consider Figure 3. Here you’ll notice a falling risk free rate

and falling market price of risk. Similarly, you’ll notice a falling dividend yield, as can

be found in the data. This will be a feature of any model with more than one agent,

where risk aversion is heterogeneous. Over time, the least risk averse agent is dominating

the market for risky assets. You’ll notice in Figures 1 to 3 that many of the previously

mentioned effects seem to begin to reverse. Towards the end of this simulation, there was

a series of large negative shocks that caused the economy to contract. This caused the

sudden collapse in the least risk averse agent’s wealth and the rise in the dividend yield.

In order to better study the effects of heterogeneity, we will now focus on simulations

where the risk process realizes at its expectation every period. This will allow us to

ignore the effects of shocks, while still studying the dynamics of the economy is a sort of

deterministic steady state.
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Fig. 3. Financial variables for two agents when γ1 = 1.0 and γ2 = 2.5.

3.2. Increasing Number of Agents

Let’s see how the results change as we increase the number of agents over a fixed

support. Throughout this section, the risk aversion parameter of agents will be evenly

spaced over the support [1.0, 5.0]. As the number of agents increases, the distance between

agents shrinks and their initial share in the endowment becomes smaller. This change in

the initial share and reduction of concentrations of financial holdings in single points of

the distribution will effect on the evolution of consumption shares, wealth processes, as

well as financial variables.

First, consider the evolution of consumption shares. Figure 4 shows how individual

agents consumption weights evolve over time in each economy. You’ll notice that in

every case the least risk averse agent dominates the market for consumption in the long

run. Also note that the rate of change in their consumption share is greater as the

number of agents increases. This implies that they are growing their consumption and

asset holdings more quickly when there are more agents. However, the level of their

consumption share is much smaller and the most risk averse agent has a consumption

share that is falling more slowly as the number of agents increases. So, the lower the initial

consumption share and the more evenly spread over the support is the total financial

share, the greater is the highest growth rate and the less negative is the lowest growth

rate. This is particularly interesting when we compare to the single agent case, where the

growth rate in consumption weight would be zero. Moving from one to two agents implies

a very large increase in the growth rate of the least risk averse agent’s share and a very

large decrease in the growth rate of the less risk averse agent’s share. However, increasing

the number of agents beyond two, which in turn reduces the initial share, increases the

growth rate of all agents.

Next, we can examine how increasing the number of agents affects individual wealth.

In Figure 5 you see that the increase in the number of agents has an effect of reducing
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Fig. 4. Evolution of consumption shares for different numbers of agents. Note that the
upper most line in each graph corresponds to the agent with the lowest risk aversion,
while the lower most line corresponds to the highest risk aversion.

the level of individual wealth. This is caused by two forces. First, the reduction in the

agents weight reduces their share of total wealth. Second, the change in the concentration

of relative risk aversion reduces asset prices, as will be discussed shortly. Additionally,

you’ll notice that as the number of agents increases, the wealth of the bottom agent tends

to be pulled down into negative territory earlier and earlier. As was just mentioned, the

least risk averse agent is able to grow their share of consumption at a faster rate when

there are more agents. They do this by borrowing large amounts. In fact, the growth

in their borrowing will out-pace the growth in the value of their asset holdings and they

will deterministically drift towards a negative wealth. It is important to note that this is

true of all of the models, but that this occurs earlier for economies with more agents.

Now, consider how these changes affect the financial market. Figure 6 shows the

evolution of ξ(t) and φ(t), as well as the heterogeneity wedge φ(t)
ξ2(t)

. The addition of more

agents has the effect of reducing both ξ(t) and φ(t), which in turn increases both the risk

free rate and the market price of risk. You’ll notice first that in all cases the variables

are converging towards their long run value 1.0. This is to be expected as the least risk

averse agent dominates the market for consumption in the long run. Also, you’ll notice
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Fig. 5. Evolution of wealth for different numbers of agents. Note that the upper most
line in each graph corresponds to the agent with the highest risk aversion, while the lower
most line corresponds to the lowest risk aversion. This is the opposite of Figure 4.

that the level of both ξ(t) and φ(t) is falling as the number of agents rises. The reason

that this occurs is that each of these variables is an average of a non-linear transformation

of the relative risk aversion, namely the elasticity of inter-temporal substitution 1
γ
. So,

increasing the number of agents without changing the average risk aversion will have the

effect of moving the average elasticity of inter-temporal substitution. These variables

determine two averages of the elasticity of inter-temporal substitution and we would

expect the lower these values, the higher the risk free rate and market price of risk.

Likewise the heterogeneity wedge moves in a non-linear, non-monotonic way with

the number of agents. Moving from two to three agents increases this wedge, while

moving from three to five, five to 20, and so forth reduces its value. However, the rate of

convergence is affected in the opposite way, as the larger the number of agents the longer

the wedge will stay high. These values are quite abstract, but they fully determine the

evolution of asset prices and risk premia in this economy. A higher wedge should lead to

a higher risk premium.

Given that the risk free rate and the market price of risk are functions of the present

realization of ξ(t) and φ(t), and since these values fall as the number of agents rises
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Fig. 6. Weighted averages of elasticity of intertemporal substitution for different numbers
of agents, as well as the ”heterogeneity wedge” φ(t)

ξ2(t)

.

Fig. 7. Interest rate and market price of risk for different numbers of agents.
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we expect the risk free rate and market price of risk to rise with the number of agents.

Figure 7 shows the level and evolution of r(t) and θ(t) for different numbers of agents.

You’ll notice that increasing the number of agents does indeed increase both the risk free

rate and the market price of risk. You’ll also notice that increasing the number of agents

initially increases the speed at which both variables fall, but as the number of agents goes

from 5 to 20 and from 20 to 50, this speed falls. As it takes a longer period of time for

a single agent to dominate the economy, prevailing interest rate and market price of risk

remain high longer.

Next, consider the combined effect of all that we’ve discussed on asset prices. Re-

call that asset prices are a sum of the present discounted value of dividends, where the

stochastic discount factor is determined by ξ(t) and φ(t). If these two variables are low,

they cause the risk free rate and market price of risk to be high, as we’ve just seen, which

means the discount is greater. By a larger discount I mean that the stochastic discount

factor falls more quickly, discounting more future dividends. So, we would expect the

price of assets to be lower in an economy with higher average risk aversion and since

increasing the number of agents increases this average, increasing the number of agents

should reduce asset prices. This is indeed the case, as can be seen in Figure 8, where

economies with more agents have a higher dividend yield. Additionally, you’ll notice that

the dividend yield is falling for every simulation. This matches the real world, in which

the market dividend yield has been trending downward since the beginning of financial

liberalization of the 1980s

Fig. 8. Dividend yield, D(t)
S(t)

, for different numbers of agents.
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In this economy, expected excess returns are identical to the equity risk premium

and the addition of more agents does in fact increase this equity risk premium. We will

examine each component of ERP (t) = µS(t) + D(t)
P (t)
− r(t) individually (Table 2 contains

simulation results) and try to come to a justification for this claim. First, the dividend-

yield is falling in an economy with more than one agent. This implies that the price of

the risky asset is growing more quickly than the dividend process. Thus, the expected

growth rate in prices must be greater than the expected growth rate in dividends. Since

in a representative agent economy, µS(t) = µD it has to be that µS(t) is strictly larger

in an economy with more than one agent than in an economy with a single agent. The

magnitude of the difference between µS(t) and µD is determined by how quickly S(t)

is converging towards the price that would prevail in a representative agent economy

populated by the agent with the lowest risk aversion. You’ll notice in Figure 8 that the

slope of the dividend yield as a function of time seems to be increasing as the number of

agents rises. However, the difference between 20 and 100 agents is not so clear and could

even move in the opposite direction. This non-linearity/non-monotonicity in the effect of

increasing the number of agents is similar to that discussed in regard to the heterogeneity

wedge.

Number of Agents µS(0) D(0)
S(0)

r(0) ERP (0)

2 0.041 0.016 0.050 0.007
3 0.045 0.020 0.057 0.008
5 0.049 0.025 0.062 0.012
20 0.043 0.035 0.067 0.010
100 0.038 0.038 0.068 0.008

Number of Agents µS(50) D(50)
S(50)

r(50) ERP (50)

2 0.032 0.011 0.040 0.003
3 0.033 0.012 0.042 0.003
5 0.035 0.014 0.045 0.004
20 0.037 0.019 0.050 0.006
100 0.039 0.022 0.052 0.008

Number of Agents µ̄S
D̄
S

r̄ ¯ERP
2 0.035 0.013 0.044 0.004
3 0.039 0.015 0.048 0.006
5 0.041 0.018 0.052 0.007
20 0.041 0.025 0.058 0.008
100 0.040 0.029 0.059 0.010

Table 1: This table reports the initial period, terminal period, and the average (denoted
by a bar, e.g. x̄) outcomes from simulations spanning 50 periods, using different numbers
of agents, and with a zero realization for the risk process every period (dW (t) = 0 ∀ t)
to abstract away from the influence of random shocks. The RRA parameter in these
simulations are uniformly distributed over [1.0, 5.0].

Next, the dividend yield is increasing in the number of agents. Recall that the price
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of the risky stock is the discounted sum of future dividends. Since the discount factor

converges toward zero at a rate determined by the interest rate and the market price

of risk, if these remain high then the discount is larger, reducing asset prices. Again,

with more agents the interest rate converges more slowly, as does the market price of

risk. Since the interest rate and market price of risk remain high for a longer period

of time, the price of risky stocks is lower when there are more agents, and in turn the

dividend-yield higher. So, a higher growth rate muS(t) and a higher dividend-yield D(t)
S(t)

increase the equity risk premium.

Finally, the risk free rate is increasing in the number of agents. This has the effect

of pushing the equity risk premium in the opposite direction. The question of which

effect will dominate is not clear. Table 1 gives the values of µS(t), D(t)
S(t)

, and r(t) in

the initial period, the terminal period, and on average for several simulations. Indeed

the risk premium is increasing in the long run and on average, but in the initial period

the relationship is non-monotonic. Moving from 2 to 5 agents we see a doubling of the

risk premium in the first period, while the increase all but disappears in moving from

5 to 100 agents. First, the dividend yield is monotonically increasing in the number of

agents, although the rate of change is falling. Second, as the number of agents increases,

the economy is slower to converge to its long run level and so the expected growth

rate in stock prices begins to fall, partially or completely canceling out the increase in

dividend yields. Finally, the interest rate is monotonically increasing in the number of

agents, pulling down the risk premium. This is a manifestation of the initial fall in the

heterogeneity wedge seen in Figure 6. However, the fact that the equity risk premium

remains high in the long run is caused by the slow decay of this wedge seen in the same

figure. We can conclude that on average the equity risk premium is higher for an economy

with more agents.

The last thing to consider is the evolution of leverage. Figure 9 shows the drift and

level of leverage for the different economies. For this short simulation of only 50 periods

there is little divergence between the different economies and the drift of leverage seems

very close across models. However, you’ll notice that the level seems to be diverging over

time. This is because in the many agent case, as the economy begins to converge there

are more and more agents whose risk aversion is above the weighted average and are thus

willing to purchase bonds. So, the supply of bonds is rising in the economy and the less

risk averse agents are more than happy to demand those bonds in order to purchase the

risky asset. In this way when there are more agents total leverage tends to rise more

quickly.

Taking into account only total leverage neglects the individual outcomes. Figure 10

plots the average over agents of total financial leverage and total debt for each economy.

In economies with more agents the average leverage per individual is very small, as is

the average debt. However, this calculation divides total leverage by the total number of

23



Fig. 9. Leverage and its drift for different numbers of agents.

agents, even though the number of agents borrowing is much lower. For instance, in the

three agent economy there is only one borrower, so the average leverage, conditional on

being leveraged, would be three times the number given in the graph. In the 20 agent

economy there are 5 borrowers, so the number is four times as large as that given in the

graph. So, if we were to graph the average leverage, conditional on being a borrower, the

effect of higher leverage in economies with fewer agents would be smaller and the level of

leverage would be much higher. That being said, we can conclude that an economy with

more agents has a lower level of individual leverage and borrowing.

To summarize, economies with more agents, and thus a lower individual share of total

consumption initially, exhibit slower convergence towards a long run where one agent

dominates, lower individual wealth, a higher interest rate, a higher market price for risk,

lower asset prices, higher expected growth in asset prices, a higher equity risk premium,

greater total leverage, and lower individual leverage.

3.3. Increasing Spread

We can also study the effects of widening the support for risk aversion. To accomplish

this we’ll look at an economy populated by only two agents and centered around a widely

accepted value for the average relative risk aversion in the economy: 3.0. Then we’ll

look at outcomes for the model for different values for these agents relative risk aver-

sion, moving them progressively further apart. This essentially increases the amount of

disagreement between the two agents, in that if they were alone in the economy their re-
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Fig. 10. Average individual leverage for different numbers of agents.

spective prices and interest rates would be more and more different the wider the spread.

As we’ve already seen, the outcome of the model is determined by weighted averages of

the EIS, or 1
γ
. Since this is a non-linear, convex transformation, the increase in the spread

of the support will cause the initial values of ξ(t) and φ(t) to fall, the combined effect

of which will change the initial level of financial variables and the speed of convergence.

This change will have a large effect on the risk premium and distributional outcomes in

the model.

First, consider how the evolution of consumption shares changes as the spread between

agents grows. Figure 11 illustrates how increasing the spread between the two agents

causes their consumption shares to diverge more quickly. Increasing the spread causes

each individual’s preferences to be further from the average, increasing their level of

disagreement. This causes the more risk averse agent to desire to divest and the less risk

averse agent to desire to invest.

Next, we can think about how the change in the spread affects the evolution of indi-

vidual wealth. Figure 12 shows individual wealth for each economy. You’ll notice that

the level of individual wealth is increasing as the spread grows. You’ll also notice that

the rates of change in the wealth of the two agents seem to move in opposite directions.

Increasing the spread in their risk aversion from 0.2 to 1.0 or 2.0 seems to increase the

growth rate in the most risk averse agents wealth and decrease that of the least risk

averse agent’s wealth. However, increasing the spread above 2.0 seems to reverse this

effect. In the first case, the economy is converging slowly enough that the growth in asset

prices cannot out-pace the growth of the less risk averse agents borrowing. However, as

the spread increases the economy converges more quickly and the rate of growth in asset

prices (as you’ll see shortly in Table 2) is enough to out-pace their borrowing.
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Fig. 11. Evolution of consumption shares for different values of γ2 − γ1.

Now, consider how the dynamics of consumption shares affect the values of ξ(t) and

φ(t), represented in Figure 13. The effect is opposite to that of increasing the number

of agents, as both ξ(t) and φ(t) rise as the spread increases. Also, the effect on the

heterogeneity wedge is opposite, as increasing the spread between the two agents causes

the ratio φ(t)
ξ2(t)

to rise. The direct effect of this is to reduce interest rates and the market

price of risk. In Figure 14 you see that increasing the spread between the two agents

has the effect of simultaneously reducing both the interest rate and market price of risk,

as well as increasing their rate of change. The larger difference in the two agents’ risk

aversion parameters, the higher the values of ξ(t) and φ(t). So the increase in the spread

has the effect of pushing down the weighted average of risk aversion in the economy.

This effect will cause increasing the spread of the distribution to have opposing effects

to those from increasing the number of agents. Also, the faster rate of convergence in

consumption increases the rate of change in r(t) and θ(t). Finally, the reduction in the

risk aversion of the least risk averse agent reduces the long run value of both the interest

rate a market price of risk.

Next, notice the effect on the heterogeneity wedge in Figure 13. As this heterogeneity

wedge rises, the difference in the interest rate and the market price of risk grow, in that

26



Fig. 12. Evolution of individual wealth for different values of γ2 − γ1.

the values one would obtain using a representative agent become less and less accurate.

One could match either the market price of risk or the interest rate, but not both. Since

we are widening the spread, pushing down the average risk aversion, the effect of this

wedge is to hold up interest rates while reducing the market price of risk, reducing the

equity risk premium.

Using this information, we can study the evolution of asset prices. Figure 15 shows

how the dividend yield evolves for each economy. The most striking feature of this graph

is that as the spread increases the level of the dividend yield is much lower. This is because

as the spread grows, the interest rate and market price of risk fall, increasing the value

of the stochastic discount factor each period and in turn increasing asset prices. Second,

you’ll notice that the dividend yield is falling over time for economies with a larger spread.

This is again matching more closely the real world, as in Figure 8. However, increasing

the spread between agents has an effect on the level of the dividend yield that moves in

the opposite direction to that of increasing the number of agents.

Indeed, the increase in the spread also has the opposite effect of the increase in the

number of agents on the equity risk premium, while increasing the expected growth rate

in stock prices and decreasing the dividend yield. Table 2 shows the outcomes for the
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Fig. 13. Weighted averages of elasticity of intertemporal substitution for different values
of γ2 − γ1, as well as the ”heterogeneity wedge” φ(t)

ξ2(t)
.

Fig. 14. Interest rate and market price of risk for different values of γ2 − γ1.
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Fig. 15. Evolution dividend yield for different values of γ2 − γ1.

γ2 − γ1 µS(0) D(0)
S(0)

r(0) ERP (0)

0.2 0.035 0.059 0.078 0.016
1.0 0.028 0.057 0.077 0.008
2.0 0.027 0.049 0.072 0.004
3.0 0.039 0.035 0.063 0.011
4.0 0.042 0.016 0.051 0.007

γ2 − γ1 µS(50) D(50)
S(50)

r(50) ERP (50)

0.2 0.031 0.059 0.078 0.012
1.0 0.028 0.054 0.075 0.007
2.0 0.032 0.042 0.065 0.009
4.0 0.034 0.027 0.053 0.008
5.0 0.032 0.011 0.040 0.003

γ2 − γ1 µ̄S
D̄
S

r̄ ¯ERP
0.2 0.030 0.059 0.078 0.010
1.0 0.029 0.055 0.076 0.008
2.0 0.032 0.045 0.068 0.009
3.0 0.034 0.031 0.058 0.007
4.0 0.036 0.013 0.044 0.005

Table 2: This table reports the initial period, terminal period, and the average (denoted
by a bar, e.g. x̄) outcomes from simulations spanning 50 periods, using two agents, and
with a zero realization for the risk process every period (dW (t) = 0 ∀ t) to abstract
away from the influence of random shocks. The RRA parameter in these simulations are
progressively further apart, implying a greater and greater disagreement between the two
agents.
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expected growth rate in stock prices, the dividend yield, and the interest rate. As we

increase the spread, the two agents disagree to a larger degree and so the more risk averse

agent will divest more quickly from their risky asset position, causing the price to rise

more quickly and to a higher level, given the fact that the long run dominant agent is less

risk averse. Simultaneously the average EIS will rise, pushing up the level of asset prices

and reducing the dividend yield. This rise in the average EIS also reduces interest rates,

but the fall in the dividend yield outweighs the rise in expected returns minus the interest

rate. The overall effect is that an increase in the spread of the distribution reduces the

equity risk premium.

Finally, consider the amount of leverage in the different economies, represented in

Figures 16 and 17 show the evolution of total leverage, the drift of total leverage, average

individual leverage, and average individual debt. You’ll notice that the level differs

greatly, as do the long run growth rates. The same disagreement in asset prices that

drove consumption choices is at work here. Increasing the spread between the two agents

causes their level of disagreement to be greater and the rate of change in their consumption

weights to be larger. They finance this change through debt. However, a higher spread

implies higher asset prices. For a large enough spread the higher asset prices reduce the

level of long run leverage.

Fig. 16. Expected growth rate and level of leverage for different values of γ2 − γ1.

To summarize, economies with two agents whose risk aversion parameters are farther

apart exhibit faster convergence towards a long run where one agent dominates, higher

individual wealth, a lower interest rate, a lower market price for risk, higher asset prices,
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Fig. 17. Average individual leverage for different values of γ2 − γ1.

lower expected growth in asset prices, and a lower equity risk premium. However, the

effect on total leverage and individual leverage is ambiguous.

4. Conclusion

As we’ve seen, the addition of more agents to a model with heterogeneous preferences

has a substantial effect on model predictions. Similarly, increasing the degree to which

agents differ in their risk preferences has an opposing effect, in many respects. This could

be interpreted in several ways, but I will attempt to do so in an inequality sense. Increas-

ing the number of agents can be thought of as decreasing inequality, while increasing the

spread between two agents can be thought of as increasing inequality. As the number of

agents increases over a given spread, the share each agent holds falls and the distance

between each agent in terms of risk preferences falls. Increasing the spread between two

agents has exactly the opposite effect, increasing the distance between preferences. In

this sense, the one is decreasing inequality while the other is increasing it.

Increasing inequality in this model leads to several phenomena for further study. First,

inequality grows more quickly in an unequal society. As individual agents command larger

shares of financial markets and as their preferences differ to a greater degree with their

compatriots, they accumulate financial shares at a larger rate. Second, more unequal

societies see higher levels of asset prices. As one individual begins to dominate the

economy, financial shares will accumulate to the least risk averse agent, whose price will

prevail in the market. Since this agent has the highest individual asset price, the market

price will be high. Third, excess returns in the market will be lower in a more unequal

society. When the least risk averse agent dominates the market, expected growth in asset
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prices and dividend yield fall, but more quickly than interest rates. This has the effect

of reducing the equity risk premium. Finally, in an economy populated by agents who

differ in their risk preferences, the most risk averse agent will dominate the market for

wealth and all other agents will eventually see their debt-financed consumption turn their

financial wealth negative. However, in a more unequal society, this will occur much later.

This last point can be interpreted in two ways. Consider a world where when an

agent’s financial wealth becomes negative they default and their assets are redistributed

to their lenders. On first glance, one would say that in a more equal society, default

will occur more often as agents are unable to finance their consumption growth on the

crowded market. This is true, but what is more important is the size of the default. In a

more unequal society, when an agent does eventually default, which they surely will, the

amount of borrowing they hold will be larger, and the collapse in asset prices larger, as

their shares are transferred to more risk averse agents. Thus, in a more unequal society

financial default of individual agents would have greater spillover effects into the larger

economy. If this is true, it would imply that financial crises in societies with greater

inequality are more severe.

This paper represents only a first step towards, hopefully, very enlightening aspects

of heterogeneity and complexity in finance. Here, we’ve seen that simply increasing the

number of agents over the same support of a distribution of relative risk aversion or the

spread in the support can have effects on the amount and volatility of leverage in an

economy, the rate of change in the dividend price ratio, and can cause a glut of lending.

Further research on this topic could include an OLG framework that would allow for finite

horizons, financial frictions that limit borrowing, or allowing for default in borrowing.
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Appendix A. The Representative Agent Solution

This appendix contains (without proof) the solution to the representative agent econ-

omy, i.e. the case where N = 1.

r(t) = ρ+ γµD −
1

2
γ(1 + γ)σ2

D

θ(t) = σDγ

S(t)

D(t)
=

1

ρ+ µD(γ − 1)− 1
2
σ2γ(γ − 1)

(18)

µS(t) = µD

σS(t) = σD

Appendix B. Proofs

Proof of Proposition 1. Taking ratios of consumption first order conditions for two arbi-

trary agents, i and j we find

ci(t)

cj(t)
= Λ

1
γj

j Λ
−1
γi
i

(
H0(t)eρt

) 1
γj
− 1
γi

To solve for the consumption weight of an individual i, take the market clearing condition

in consumption and divide through by agent i’s consumption

N∑
j=1

cj(t) = D(t)

⇔
∑N

j=1c
j(t)

ci(t)
=
D(t)

ci(t)

⇔ ci(t) =
ci(t)∑N
j=1 c

j(t)
D(t)

⇔ ci(t) =

 (eρtΛi(t)H0(t))
−1
γi∑N

j=1 (eρtΛj(t)H0(t))
−1
γj

D(t)

⇔ ci(t) = ωi(t)D(t)

Proof of Lemma 1. Modeling consumption as a geometric Brownian motion implies that

for every agent i the consumption process can be described by the stochastic differential
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equation

dci(t)

ci(t)
= µci(t)dt+ σci(t)dW (t) (19)

Armed with this knowledge, take the first order condition for an arbitrary agent i’s

maximization problem, solve for H0(s), and apply Itô’s lemma:

H0(t) =
1

Λi

ci(t)−γie−ρt

⇒dH0(t)

H0(t)
=

(
−ρ− γµci(t) + γ(1 + γ)

σci(t)
2

2

)
dt− (γiσci(t)) dW (t)

Now, match coefficients to those in (7) to find

r(t) = ρ+ γiµci(t)− γi(1 + γi)
σci(t)

2

2

θ(t) = γiσci(t)

Solving for µci and σci gives

µci(t) =
r(t)− ρ
γi

+
1 + γi
γ2
i

θ(t)2

2

σci(t) =
θ(t)

γi

Proof of Proposition 2. Recall the definition of consumption dynamics in (19) and the

market clearing condition for consumption in (4). Apply Itô’s lemma to the market

clearing condition:

N∑
i=1

ci(t) = D(t)⇒
N∑
i=1

dci(t) = dD(t)

⇔
N∑
i=1

(
ci(t)µci(t)dt+ ci(t)σci(t)dW (t)

)
= D(t)µDdt+D(t)σDdW (t)

⇔
∑N

i=1 (ci(s)µci(t)dt+ ci(t)σci(t)dW (t))∑N
i=1c

i(t)
= µDdt+ σDdW (t)

⇔
N∑
i=1

ωi(t)µci(t)dt+
N∑
i=1

ωi(t)σci(t)dW (t) = µDdt+ σDdW (t)
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By matching coefficients we find

µD =
N∑
i=1

ωi(t)µci(t)

σD =
N∑
i=1

ωi(t)σci(t)

Now use Lemma 1 to substitute the values for consumption drift and diffusion, then solve

for the interest rate and the market price of risk to find

θ(t) =
σD
ξ(t)

r(t) =
µD
ξ(t)

+ ρ− 1

2

ξ(t) + φ(t)

ξ(t)3
σ2
D

where

ξ(t) =
N∑
i=1

ωi(t)

γi

φ(t) =
N∑
i=1

ωi(t)

γ2
i

Proof of Proposition 3. Assume that consumption weights follow a geometric Brownian

motion given by

dωi(t)

ωi(t)
= µωi(t)dt+ σωi(t)dW (t) (20)

Recall the definition of consumption weights in (10) and gather terms:

ωi(t) =
(ΛieρtH0(t))

−1
γi∑N

j=1 (ΛjeρtH0(t))
−1
γj

⇔ ωi(t) =

[
N∑
j=1

Λ
−1
γj

j Λ
1
γi
i (eρtH0(t))

1
γi
− 1
γj

]−1

(21)

Recall the definition of Itô’s lemma, where ωi(t) is a function of H0(t) and t:

dωi(t) =
∂ωi(t)

∂t
dt+

∂ωi(t)

∂H0(t)
dH0(t) +

1

2

∂2ωi(t)

∂H0(t)2
(dH0(t))2

Substituting for dH0(t) by (7) and using the Itô box calculus to see that (dH0(t))2 =

35



H0(t)2θ(t)2dt, we see that

dωi(t)

ωi(t)
=

1

ωi(t)

(
∂ωi(t)

∂t
− r(t)H0(t)

∂ωi(t)

∂H0(t)
+H0(t)2θ(t)2 1

2

∂2ωi(t)

∂H0(t)2

)
dt

− θ(t) 1

ωi(t)

∂ωi(t)

∂H0(t)
dW (t)

Matching coefficients with those in (20) it is clear that

µωi =
1

ωi(t)

(
∂ωi(t)

∂t
− r(t)H0(t)

∂ωi(t)

∂H0(t)
+H0(t)2θ(t)2 1

2

∂2ωi(t)

∂H0(t)2

)
σωi = −θ(t) 1

ωi(t)

∂ωi(t)

∂H0(t)

Differentiating the expression in (21), carrying out some painful algebra, and simplifying

gives

µωi(t) = (r(t)− ρ)

(
1

γi
− ξ(t)

)
+ θ(t)2

[(
1

γ2
i

− φ(t)

)
− 2ξ(t)

(
1

γi
− ξ(t)

)
+

(
1

γi
− ξ(t)

)]
σωi(t) = θ(t)

(
1

γi
− ξ(t)

)

Proof of Proposition 4. Following a trick in Gârleanu and Panageas (2008), we can arrive

at an expression for asset prices. Take a straight forward application of Itô’s lemma to

the time t present value of time u wealth:

d(H0(u)X i(u)) = X i(u)dH0(u) +H0(u)dX i(u) + dH0(u)dX i(u)

= X i(u) (−r(u)H0(u)− θ(u)H0(u)dW (u))

+H0(u)

[(
r(u)X i(u) + ai(u)S(u)

(
µS(u) +

D(u)

S(u)
− r(u)

)
− ci(u)

)
du

ai(u)S(u)σS(u)dW (u)

]
− θ(u)H0(u)ωi(u)σS(u)S(u)du

Now, notice that in this economy agents asset holdings are simply their consumption

weight (ie ci(s) = ωi(s)D(s) and ai(s) = ωi(s)) and that σS(t)θ(t) = µS(t) + D(t)
S(t)
− r(t)

by (6). This implies that the above expression simplifies to

d(H0(s)X i(s)) = −H0(u)ωi(u)D(u)du+H0(u)[ωi(u)σS(u)S(u)−X i(u)θ(u)]dW (u)
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By the definition of the Itô differential this is equivalent to

lim
u→∞

H0(u)X i(u)−H0(t)X i(t) = −
∫ ∞
t

H0(u)ωi(u)D(u)du

+

∫ ∞
t

H0(u)[ωi(u)σS(u)S(u)−X i(u)θ(u)]dW (u)

If we take expectations, then the first term on the left hand side is zero by a transversality

condition on the present value of wealth. Also, notice that the Brownian integral on the

right hand side is zero in expectation by the martingale property (Oksendal (1992)). So

we can write

−H0(t)X i(t) = −Et
∫ ∞
t

H0(u)ωi(u)D(u)du

Finally, we arrive at an expression for wealth today

X i(t) = Et
∫ ∞
t

H0(u)

H0(t)
ωi(u)D(u)du

Now take the market clearing condition for wealth and substitute this new formula

S(t) =
N∑
i=1

X i(t)

=
N∑
i=1

Et
∫ ∞
t

H0(u)

H0(t)
ωi(u)D(u)du

= Et
∫ ∞
t

H0(u)

H0(t)

(
N∑
i=1

ωi(u)

)
D(u)du

= Et
∫ ∞
t

H0(u)

H0(t)
D(u)du

Proof of Lemma 2. Individual savings is determined by wealth and asset holdings: bi(t) =

X i(t)−ω(t)S(t). By an application of Itô’s product rule (d(XY ) = Y dX+XdY +dXdY )

and by (3), (2), and Proposition 2, we can arrive at an expression for the dynamics of
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individual savings:

dbi(t) = dX i(t)− S(t)dωi(t)− ωi(t)dS(t)− dωi(t)dS(t)

=
[
r(t)X i(t) + ωi(t)S(t)(µS(t)− r(t))

]
dt+ ωi(t)σS(t)S(t)dW (t)

− S(t)ωi(t)(µωi(t)dt+ σωi(t)dW (t)− S(t)ωi(t)(µS(t)dt+ σS(t)dW (t))

− ωi(t)S(t)σωi(t)σS(t)dt

Substituting the definition for bi(t) and simplifying gives

dbi(t) = [r(t)bi(t)− ωi(t)S(t)(µωi(t) + σS(t)σωi(t))]dt− σωi(t)S(t)ωi(t)dW (t)

Finally, matching coefficients gives the result:

dbi(t) = µbi(t)dt+ σbi(t)dW (t)

where

µbi(t) = r(t)bi(t)− ωi(t)S(t)(µωi(t) + σS(t)σωi(t))

σbi(t) = −σωi(t)ωi(t)S(t)

Proof of Proposition 5. For this proof we need an intermediate result about Itô’s lemma

and absolute values. If we think of |X(t)| = (X(t)2)
1
2 = f(X(t)) where dX(t) = µX(t)dt+

σX(t)dW (t), then we can use Itô’s lemma to show that

d|X(t)| =
(
X(t)

|X(t)|
µX(t) +

1

2

|X(t)|2 −X(t)

|X(t)|
σX(t)2

)
dt+ σX(t)

X(t)

|X(t)|
dW (t) (22)

Now, we can use (22), along with Lemma 2 to find the dynamics of total debt in the

economy:

dΓ(t) = d

(
1

2

N∑
i=1

|bi(t)|

)

=
1

2

N∑
i=1

d|bi(t)|

=
1

2

N∑
i=1

[(
bi(t)

|bi(t)|
µib(t) +

1

2

|bi(t)|2 − bi(t)
|bi(t)|

σib(t)
2

)
dt+ σib(t)

bi(t)

|bi(t)|
dW (t)

]
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Notice that bi(t)
|bi(t)| = sgn(bi(t))...

dΓ(t) =
1

2

N∑
i=1

[
sgn(bi(t) +

1

2
(|bi(t)| − sgn(bi(t)))σbi(t)

2

]
dt+

1

2

N∑
i=1

sgn(bi(t))σbi(t)dW (t)

Which implies that total debt follows the following stochastic process

dΓ(t) = µΓ(t)dt+ σΓ(t)dW (t)

where

µΓ(t) =
1

2

N∑
i=1

[
sgn(bi(t))

(
µbi(t)−

1

2
σbi(t)

2

)
+

1

2
|bi(t)|σbi(t)

]

σΓ(t) =
1

2

N∑
i=1

sgn(bi(t))σbi(t)

Next, define total financial leverage to be L(t) = Γ(t)
S(t)

and recall Itô’s quotient rule:

dX
Y

= X
Y

(
dX
X
− dY

Y
− dX

X
dY
Y

+
(
dY
Y

)2
)

. So, we can define the dynamics of total financial

leverage:

dL(t) = d
Γ(t)

S(t)
=

Γ(t)

S(t)

(
dΓ(t)

Γ(t)
− dS(t)

S(t)
− dΓ(t)

Γ(t)

dS(t)

S(t)
+

(
dS(t)

S(t)

)2
)

=
Γ(t)

S(t)

[(
µΓ(t)− σΓ(t)σS(t)

Γ(t)
− µS(t) + σS(t)2

)
dt+

(
σΓ(t)

Γ(t)
− σS(t)

)
dW (t)

]
Thus, total financial leverage follows a geometric Brownian motion such that

dL(t)

L(t)
= µL(t)dt+ σL(t)dW (t)

where

µL(t) =
µΓ(t)− σΓ(t)σS(t)

Γ(t)
− µS(t) + σS(t)2

σL(t) =
σΓ(t)

Γ(t)
− σS(t)
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Appendix C. Numerical Simulation Method

Gathering all of the stochastic processes we have the following definitions to describe

the evolution of the economy:

dD(t)

D(t)
= µDdt+ σDdW (t)

dωi(s)

ωi(s)
= µωi(s)dt+ σωi(s)dW (t)

dH0(t)

H0(t)
= −r(t)dt− θ(t)dW (t) (23)

θ(t) =
σD
ξ(t)

r(t) =
µD
ξ(t)

+ ρ− 1

2

ξ(t) + φ(t)

ξ(t)3
σ2
D

where

µωi(t) = (r(t)− ρ)

(
1

γi
− ξ(t)

)
+ θ(t)2

[(
1

γ2
i

− φ(t)

)
− 2ξ(t)

(
1

γi
− ξ(t)

)
+

(
1

γi
− ξ(t)

)]
σωi(t) = θ(t)

(
1

γi
− ξ(t)

)
ξ(t) =

N∑
i=1

ωi(t)

γi

φ(t) =
N∑
i=1

ωi(t)

γ2
i

given a set of initial conditions {ωi(0)}Ni=1 and D(0). All of the above variables can be

determined as a function of the realization of the risk process W (t). If we combine those

values with an estimation of asset prices and the following formulas

θ(t) =
µs + D(t)

S(t)
− r(t)

σs(t)

dS(t)

S(t)
= µs(t)dt+ σs(t)dW (t)

we can back out the coefficients µS(t) and σS(t) and study the dynamics of the economy,

as well as characteristics of asset prices.

Note that it can be shown (Oksendal (1992)) that if a stochastic process Z(t) follows

a geometric Brownian motion with drift and diffusion µZ(t) and σZ(t), then

Z(t+ ∆t) = Z(t)e(µZ− 1
2
σ2
Z)∆t+σZ(W (t+∆t)−W (t)) (24)
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The numerical scheme follows the following steps:

1. Specify a time discretization such that t ∈ {0, 1, ..., T} and a time step ∆t. Note that

the specification of parameters and this time step will determine the discretization

as being yearly, quarterly, monthly, etc.

2. Specify a set of agents indexed by i ∈ {1, ..., N} for some number N and each

agent’s risk aversion parameter γi.

3. Specify initial conditions {ωi(0)}Ni=1 and D(0).

4. Simulate a process {dW (t)}Tt=0 where dW (t) ∼ N (0,∆t).

5. Using (23), (24), and the simulated Wiener process, for each period t ∈ {0, 1, ..., T}
calculate {D(t), {ωi(t)}Ni=1, r(t), θ(t), ξ(t), φ(t)}.

6. Using the monte-carlo approach described in appendix C.1, for each period t ∈
{0, 1, ..., T} calculate Ŝ(t), σ̂S(t), and µ̂S(t).

7. Given the process for Ŝ, calculate wealth X i(t) for each period using the definitions

X i(0) = ωi(0)S(0) + bi(0) = ωi(0)S(0) (where bi(t) is risk free bond holdings and

we assume agents enter the model with no savings/debt) and (3).

8. Calculate any measures you might find enlightening!

C.1. Estimating Asset Prices

The expression we wish to estimate is given by

S(t) = Et
∫ ∞
t

H0(u)

H0(t)
D(u)du

In order for the integral to be defined, it must be that the integrand converges towards

zero as u→∞. If this is the case, then we could estimate the integral by truncating the

upper bound at some level, t + T . In this way we would look to approximate the true

asset price in the economy by another:

S(t) ≈ S∗(t) = Et
∫ t+T

t

H0(u)

H0(t)
D(u)du

This expression can easily be estimated by monte-carlo. To estimate the integral, I’ll use

the trapezoid rule, but note that in the numerical simulation this is exact, given that

time is discretized. Define the discretization by partitioning the interval (t, t + T ) into

H evenly spaced intervals such that ∆t is the distance between points in the partition.

To estimate the expectation, I will use monte-carlo (see Casella and Robert (2013)) by

sampling M paths for the process W (t) and simulating the economy along these paths to

extract processes H0 and D. Indicating draws by a super-script m the estimator is given
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by:

Ŝ∗(t) =
1

M

M∑
m=1

[
1

2

(
D(t) +

Hm
0 (T )

H0(t)
Dm(T )

)

+
M−1∑
i=1

Hm
0 (t+ ∆ti)

H0(t)
Dm(t+ ∆ti)

]
(25)

Given the computational simplicity of this expression, it can be calculated quite eas-

ily using parallel methods on a graphics processing unit (GPU). I use an element-wise

product and pairwise summation to calculate the expectation, resulting in a 300 times

speed up (code available upon request).

To estimate, the steps are as follows for a given distribution of {γi}Ni=1 and an initial

condition for the distribution of wealth {ωi(t)}Ni=1:

1. Simulate M sample paths for dW (t) of length T , where M is an integers, using the

knowledge that dW (t) ∼ N (0, t).

2. Using the M sample paths, simulate the evolution of M different economies popu-

lated by the same agents under the same initial condition. Extract the values for

(H0(t), D(t)).

3. Calculate asset prices at period t as the Monte carlo approximation given in (25).
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