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Abstract

Do homeowners know about flood risk? When does this knowledge translate into beliefs, as

measured by flood risk discounts on real estate prices? To answer these questions, I built a

new dataset of articles from local US newspapers, from which I derive an index of flood risk-

related local media pressure in North and South Carolina. This paper proposes a two-step

empirical strategy to disentangle the impact of flood risk information shocks on risk awareness

and on beliefs. In a first step, I study the impact of local flood-related information shocks on

flood risk awareness and, in a second step, on real estate prices. I recover the geographical

and temporal heterogeneity awareness using Google Trends. I show that upward flood risk-

reclassification induces a discount in real estate prices (1) when properties are valued above

$250,000, which is the maximum deductible under the National Flood Insurance Program,

and (2) in high awareness regions. Besides, I show that awareness increases when flood

risk-related media pressure is substantial. The more dramatic the insurance-related articles

published around flood map updates, the larger the impact on both awareness and real estate

prices.
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1 Introduction

Real estate assets are the main source of savings for most Americans, but up to $900 billion dollars of

real estate investments should be exposed to Sea Level Rise (SLR) risk by 21001. This is equivalent

to no less than 13% of household real estate equity losses between 2005 and 20082. While people

love to live on the coast and are willing to pay for it, under-pricing current and future, climate

change driven increasing flood risk, could lead the coastal property bubble to burst.

I believe the absence of consensus about flood risk capitalization by the housing market in

the literature can find its roots in the difficulty of measuring flood risk belief updates through

real estate prices. I identify 3 main challenges of this revealed preferences approach. First is the

technical difficulty of disentangling positive local amenities and flood risk, as both are likely to

be captured by a property’s flood risk status. The second challenge comes from the necessity to

account for the existence of flood insurance. Its effect could go both ways. On the one hand, the

price of a property may reflect the capitalized value of flood insurance premiums (Bin et al. (2008)).

On the other hand, flood insurance may create “a costly and dangerous system of socialized risk

to indulge beach lovers”3. A third challenge is to distinguish between flood risk awareness and flood

risk beliefs.

In this paper, I contribute to the literature by discussing the importance of this distinction.

While the implications are important both for policy and for modeling risk updating in structural

models, no paper, to my knowledge, has explicitly studied this difference empirically.

I build a new dataset of flood risk-related articles from 187 local newspapers between 2006 and

2016 in North and South Carolina, two coastal American states increasingly vulnerable to flood risk.

I identify 63,170 unique articles related to flood risk and use text mining techniques to automate

the analysis of their content. This leads me to consolidate a monthly newspaper panel returning an

index of local flood-risk related media pressure, which I combine with a monthly index of flood risk

awareness at the Designated Market Level (DMA) using Google Trends. I recover temporal and

geographic heterogeneity in flood risk awareness and related media pressure.

This unique database allows me to design a two step identification strategy to (i) identify the

sources of flood risk awareness and (ii) study the causal relationship between awareness and beliefs

through changes in real estate prices.

In a first step, I delve into the causal relationship between flood risk information shocks and flood

risk awareness, as measured by a monthly Google Index. In addition to flood events and flood map

updates, I elaborate on Bernstein et al. (2017)’s case study of the 2013 Intergovernmental Panel for

Climate Change release and consider a broader definition of information shocks by exploiting the

1https://www.zillow.com/research/climate-change-underwater-homes-2-16928/.
2https://furmancenter.org/files/publications/HousingandtheGreatRecession.pdf.
3https://www.reuters.com/investigates/special-report/waters-edge-the-crisis-of-rising-sea-levels/.
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aforementioned local newspaper panel.

In a second step, I move to the capitalization of flood risk into real estate market values. I ob-

tain transaction data from the Zillow Transaction and Assessment Database (ZTRAX)4. I extract

from this newly available housing database all real estate transactions in the region covered by

my awareness index between 2006 and 2016, as well as all houses and owners’ characteristics. Us-

ing Geographic Information System techniques, I recover all transacted properties’ estimated flood

risk, as defined by the Federal Emergency Management Agency. I estimate the price of risk by

successively running a hedonic analysis and a property fixed effects model. I finally analyze the

evolution of flood risk capitalization into the housing market (the evolution of flood risk beliefs)

with regards to geographical and time variations in flood risk awareness and related media pressure.

Studying separately awareness and flood risk beliefs allows me to answer two questions.

The first question is When are people aware of flood risk? Non surprisingly, floods drive aware-

ness up by 12.0 to 16.1 on Google Index’s 0-100 scale. Although I do not estimate such a large

impact for any other information shock, I show that floods are not the entire story of flood risk

awareness. I underscore the role of flood risk-related local media pressure. When accounting for lo-

cal newspaper circulation, I find that additional flood related articles, both by themselves and when

covering a disaster, increase Google searches, even after controlling for the official disaster damage

estimates. Using variations in local newspapers’ focus on flood risk-related topics could therefore

capture a broader range of “information shocks” than the ones traditionally covered by the litera-

ture. Regarding the impact of flood map updates on awareness, I find that it is larger in counties

covered by more newspapers and not precisely identified in all my specifications. The impact of

these updates on Google searches is magnified when accompanied by a large number of insurance

related articles with a low sentiment score. I conclude that local newspaper networks are key to

spread local official information and that their absence may induce measurable ill-informativeness

about environmental risk.

The second question is When do real estate market participants capitalize flood risk if they know

about it? The underlying reason for formulating the question this way is that homeowners seem to

be more aware of flood risk than to believe they are actually at risk themselves.

Although sometimes negative, none of my estimates for the impact of a property’s floodplain status

on its transaction price is statistically significant when estimated on my full sample. However, I

estimate that upward risk-reclassification lead properties valued above $250,000 to appreciate 4.4

percentage points less than non-affected properties. Insights from behavioral economics are crucial

to interpret these results. Handel and Schwartzstein (2018) review situations where people fail to

use available information to make decisions and insist on the existence of “mental gaps”. Limited

financial, scientific literacy or a high discount rate could lead people to under estimate flood risk.

This holds both for sea level risk risks in the long term (excessive discounts of losses in the far

4I am very thankful to Florian Oswald for sharing with me the access to this database.
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future) and for annual flood risk in the near future (excessive underestimation of scientific annual

flood predictions), which is the focus of this paper’s analysis. Because this ability is likely to be

correlated with homeowners socio-economic status and wealth, a first part of the answer may be

that wealthier homeowners better internalize flood risk. This is consistent with Bernstein et al.

(2017), who find that sophisticated investors price sea level risk, but non-sophisticated investors

only do so in counties very worried about climate change.

I argue that this is the second part of the answer. I show that properties facing upward risk-

reclassification experience a price increase 13.2 percentage points lower than properties remaining

low-risk in Designated Market Areas (DMA) with high awareness levels, as recovered from Google

Trends. This coefficient is estimated on the full sample of properties sold multiple time, including

properties sold for less than $250,000. This penalty for high awareness DMAs drops to 10.3 per-

centage points when excluding counties that have been flooded in the past, suggesting that flood

experience is a key component to accurate flood risk pricing.

Last but not least, disentangling between flood risk awareness and beliefs supports the point made

above for the role of insurance. Indeed, among the broad range of information shocks I find having

an impact on flood risk awareness, only a handful of them translate into changes in real estate prices

and those shocks are related to insurance concerns. Their impact vanishes very fast. Such finding

is also consistent with a Bayesian learning model with forgetting (Gallagher (2014)) and with the

existence of an availability bias as theorized by Tversky and Kahneman (1974).

To summarize, my findings suggest that local media pressure improves risk awareness, but ex-

perience or strong insurance-related concerns are necessary for homeowners to appropriate this

abstract knowledge and believe they are themselves at risk.

This paper’s contribution to the literature is therefore threefold.

First, it adds to the canonical literature on the real estate price of risk. This literature features

ambiguous evidence on the impact of flood risk signals on real estate prices, and especially of floods

and flood map status. Indaco et al. (2018) demonstrate that properties in the floodplain sell at a

discount in New York but they do not in Miami Beach and Virginia Beach. They even estimate a

positive coefficient for the impact of a property’s floodplain status on its price in Virginia Beach. In

a similar manner, Kousky (2010) does not observe any impact of flood zone status on house prices

in St Louis County, Missouri, after the 1993 flood. Other papers attempt to minimize post-flood

changes in amenities to focus on changes in flood expectations by looking at neighboring floods

not directly affecting a property. These events are interpreted as pure information shocks about a

property’s underlying flood risk. Hallstrom and Smith (2005) find a price decline of no less than

19% after the 1992 hurricane for properties in flood prone areas that have not been inundated. Bin

and Landry (2013) reach similar conclusions in a study on Pitt County, North Carolina.

Second, in line with recent developments of the literature, this paper discusses the relevance of

a broader range of flood risk-related information shocks and the role of insurance. Also using the
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ZTRAX database but looking at Sea Level Rise, a long-term flood risk, Bernstein et al. (2017) show

that the release of the 2013 IPCC report, reevaluating upwards SLR predictions for most US coastal

regions, impacted housing prices negatively on the segment of the housing market occupied by the

most sophisticated participants. Gibson et al. (2017) also emphasize the importance of information

signals more generally as well. The dominant position of the literature is that the flood insurance

take-up is too low (Kunreuther (2006), Kunreuther et al. (2009), Gallagher (2014)). However,

estimating how much of flood risk capitalization (or absence of capitalization) can be explained

by the existence of flood insurance is complex. On the one hand, in a study on Carteret County

(NC), Bin et al. (2008) find that most of price discounts associated with the location of a property

in the floodplain is captured by the capitalized value of flood insurance premiums. On the other

hand, Gibson et al. (2017) study the impact of the Biggert-Waters Act of 2012, which increased

flood insurance premia by rulling out a large share of existing premium subsidies. They find that

this price signal of risk decreased sale prices of affected properties by about 1.7%, but the estimate

was imprecise and much lower than the estimated impacts of Hurricane Sandy in 2012 and of the

release of new FEMA floodplain maps.

Third, this paper contributes to the media economics literature. While the role of media coverage

and especially newspapers on political outcomes and behavior has been widely covered by Gerber

et al. (2009), Gentzkow et al. (2011), Snyder and Stromberg (2010), the literature on the role of

media as vectors of environmental risk information transmission is more limited. McCluskey and

Rausser (2001) randomly sample a community’s main newspaper and show that increased media

coverage of a local waste site increased perceived risk and lowered prices of neighboring proper-

ties. Freybote and Fruits (2015) focus on the development of underground natural gas transmission

pipeline and find that the larger the media coverage of locally unrelated explosions, the more neg-

ative the impact on prices of properties further away from the pipeline (with no actual risk). More

directly related, Gallagher (2014) exploits the geographic media TV coverage of floods and shows

that flood insurance take-up increases in counties located in the same TV market than a flooded

county, even when the counties have very different flood histories. My paper distinguishes itself

from these studies by exploiting both geographical and temporal variations in media pressure, and

by explicitly distinguishing not only media pressure and risk awareness, but also risk awareness and

risk beliefs.

The rest of the paper is organized as follows. Section 2 describes the different datasets, Section

3 and 4 present the first and second steps of the identification strategy respectively, and finally

Section 5 discusses the results and details possible extensions.
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2 Data

In order to estimate the real estate price of flood risk in light of the distinction between flood risk

awareness and beliefs, I map real estate transaction data (2.1) to flood risk (2.2) at the property level

using Geographical Information System techniques. This consolidated database is leveraged with

counties flood history, as recovered from the Presidential Disaster Declarations (2.3), a monthly-

DMA awareness index (2.4) and a unique panel of flood risk related news articles at the local

newspaper level (2.5) for the 2006-2016 period5.

2.1 Housing data

I obtain real estate transaction and housing characteristic data from the recently released Zillow

Transaction and Assessment Dataset (ZTRAX).

This database is known to be one of the most comprehensive listings of real estate transactions and

contains information on many characteristics of a property, including, among others, square footage,

rooms, number of bedrooms, number of bathrooms, age of the property, presence of a driveway or

a fence.

Table 1: Variables and Summary Statistics

Variable Description Mean St. Dev. Min Max Observations

Structural
Sales Price Transaction price of property 243,262 289,582 50,000 10,000,000 621,787
Price per square foot Transaction price per square foot 247.790 514.055 0.008 61,728.390 621,787
Size Building size, square feet 2,308 32,611 95 6,642,498 621,787
Age Building Age 29.986 17.810 7.000 282.000 294,123
Bedrooms Number of Bedrooms 3.186 0.614 1.000 4.000 435,280
Baths Number of Bathrooms 2.128 0.537 1.000 3.000 531,931
Driveway 1 = Property with a driveway 0.011 0.104 0 1 621,787
Fence 1 = Property with a fence 0.019 0.137 0 1 621,787

Location
Distance to Coast Blockgroup’s distance from the coast 89.302 55.816 0.026 205.892 585,617
Floodplain 1 = In an active floodplain 0.036 0.187 0 1 621,787
Block Floodplain 1 = Block partly in the floodplain 0.267 0.442 0 1 621,787
Coast 0.25m 1 = Within 0.25 mile from the coast 0.004 0.065 0 1 585,617
Coast 0.5m 1 = Within 0.5 mile from the coast 0.012 0.109 0 1 585,617
Coast 1m 1 = Within 1 mile from the coast 0.034 0.181 0 1 585,617
Coast 2m 1 = Within 2 miles from the coast 0.074 0.262 0 1 585,617
Coast 5m 1 = Within 5 miles from the coast 0.158 0.365 0 1 585,617

This table includes summary statistics from ZTRAX. Observations are identified at the property-transaction level. Floodplain
status is obtain from FEMA flood maps.

In line with Gibson et al. (2017), I filter the ZTRAX database so as to retain only residential

5This period corresponds to the common support of my different datasets.
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properties6 between $50,000 and $10,000,000. Transactions outside this range are likely to include

non-commercial sales, like family transfers (for less than $50,000 sales) and non-individual sales (for

sales above $10,000,000), which are outside the scope of this paper. In addition, I exclude properties

with non-valid geo-coded location or within a Census Blockgroup not mapped on the flood maps7.

My final sample contains 621,787 transactions (475,183 properties )over 12 DMAs between Jan-

uary 2006 and December 2016. Property structural and location characteristics are described in

Table 2.

2.2 Flood risk data

Housing data is combined with flood risk data at the property level by geographically merging the

ZTRAX database with the Flood Insurance Rate Maps (FIRM). The FIRMs are produced by the

Federal Management Agency (FEMA) in the context of the National Flood Insurance Program

(NFIP) enacted by Congress in 1968. As such, it these maps are an established source of flood risk

information.

In the 1980s, FEMA released the first hard-copy FIRMs maps for communities participating

into the Flood Insurance Program. These hard-copy maps were later digitalized by FEMA and

commonly referred to as Q3 maps, or simple Q3. Starting in the beginning of 2000s, these maps

have been updated in an effort to improve the accuracy of the estimated flood risk. Because updating

these maps is a costly and time intensive process, updates have been on a regular but local basis

and some communities still rely on the original Q3 for flood risk prevention. This digital maps are

known as the National Flood Hazard Layer, or NFHL. Because it was produced directly as a digital

products, the NFHL is considered to be more accurate than the Q3.

The program is also the nation’s main flood insurer as more than one million policies insured

$1.2 trilllion of building and contents in January 2017 (FEMA (2017) and Moore (2017)). This

corresponds to roughly only half of the properties in the floodplain (Harrison et al. (2001)) and

faces a $250,000 policy per property upper bound. Not all flood risk is therefore covered by the

National Flood Insurance Program.

In order to tract the evolution of properties’ flood status over time, three digital flood risk data

sources were combined for this analysis. I complement my main source for pre-update flood map

data, the Q38, with an extract of the NFHL as of November 2009 when the Q3 data was missing. I

therefore have to exclude from my analysis pre-2009 transactions in communities for which I do not

6See Appendix B for a comprehensive filtering rule.
7I exclude all Census Tract for which I do not have information on the original flood map status, as on

the Q3 shapefile.
8I am very thankful to Crowell et al. (2010) for sharing this data with me.
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have access to the Q3, as I cannot recover properties’ flood status. Third, I merge this pre-update

map with the NFHL most recent version, which I extracted from FEMA’s website in April 20199.

Because FEMA systematically makes most discarded maps unavailable10, I only have access to the

flood insurance map at the three points in time described above.

I make the assumption that maps in each community were updated only once throughout the whole

time period. I then map pre-update (Q3 and 2009 NFHL) and post-update (2019 NFHL) properties’

flood status to real estate transactions. This assumption relies on a rich literature documenting

the very low frequence of flood map updates by FEMA, mainly because of financial constraints

(Pralle (2017)). I recover the list of each community’s most recent update from the Letters of Final

Determination11 (LFD), released by FEMA, and listing the communities affected by each update12.

Using Geographic Mapping Software I extract the precise location of the Special Flood Hazard

Areas (SFHA) and intersect these map with the geographical coordinates of all properties in my

sample. These areas are defined by FEMA as the areas “that will be inundated by the flood event

having a 1-percent chance of being equaled or exceeded in any given year”. The 1-percent annual

chance flood is also referred to as the base flood, or 100-year flood13. Figure 1 maps the SFHA

coverage for the Greenville-New Bern-Washington DMA (as of April 2019) and illustrates the het-

erogeneity of the floodplain at a very disaggregated level.

According to the Special Flood Hazard Area definition, buildings falling into this floodplain

should theoretically be inundated in the case of a flood similar in intensity to one happening every

100 years according to scientific models.

This statistic should however be taken cautiously for two main reasons. First, this probability

should be renewed every year: the probability of not being inundated in a 30 years period is therefore

equal to only 0.9930 = 0.74. Second, the National Flood Hazard Layer has been criticized for not

accounting for predictions of increasing risks in the future because of both sea level rise and the rise

in disasters frequency because of climate change (Pralle (2017)). It should therefore be considered

as a lower bound. Flood maps also map a 500-year floodplain, which I exclude from the floodplain

variable because flood insurance is never mandatory for houses located in these areas.

9https://data.femadata.com/FIMA/Risk_MAP/NFHL/.
10As of May 2019, are only available on FEMA’s website the 2019-04-01, the 2018-11-01 and the 2012-09-28

versions. Except the most recent release, no map is complete. Source : https://data.femadata.com/FIMA/
Risk_MAP/NFHL/.

11https://www.fema.gov/national-flood-insurance-program-community-status-book.
12See Appendix A.3.
13Source: https://www.fema.gov/flood-zones.
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Figure 1: SFHA as of April 2019

This map illustrates the coverage of the Special Flood Hazard Areas (1 percent flood risk areas, SFHA) for
the DMA Greenville-New Bern-Washington as of April 2019. Floodplain data are recovered from FEMA.

2.3 Flood History

Flood risk history might influence how the housing market capitalizes flood risk in two main ways.

First, floods and other natural disasters impact amenities. Second, it has been argued that floods

act as flood risk information shocks (Kousky (2010)) .

I recover each county’s flood history from FEMA’s Presidential Disaster Declarations (PDD) list14.

In addition to the dates of the disaster, this database contains damage estimates for most PDD, as

well as whether each county benefited from Public and/or Private assistance. Figure 2 shows the

geographical distribution of these disasters, at the Designated Media Market Level. The distribution

of disasters over time is available in Appendix A.4.

14https://www.fema.gov/disasters/year.
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Figure 2: Number of mentions in PDDs (at the DMA-month level)
2006-2016

This map shows how many months the DMA was mentioned in a PDD for a Flood or a Hurricane between
January 2006 and December 2016. The Norfolk-Portsmouth-Newport News DMA (North-East corner) was
in 5 different Flood or Hurricane PDD. PDD data are extracted from FEMA’s website.

From FEMA’s list of PDDs, I keep the Major Disaster Declarations (DR) but not the Emergence

Declarations (EM) because all the disasters in my dataset resulting in an EM also resulted in a DR.

Each observation refers to a month-county-disaster pair. This pair exists if a given county was

under a PDD for at least one day. For example, a disaster starting on September, 26thand ending

on October 2nd will appear both in September and October. I keep PDD for Floods, Hurricane

because of the flooding and potential flooding respectively associated with these events.

Table 2 presents descriptive statistics of the Presidential Disaster Declaration Data. The average

public and individual assistance values are taken from the final declaration. If such information is

not available, preliminary estimates from the Preliminary Damage Assessment Report 15 are used

instead.

The number of houses affected is provided by the Preliminary Damage Assessment report when

available. It is otherwise approximated by the number of approved individual applications.

For some disaster declarations, the countywide per capita impact is directly provided by the Prelim-

inary Damage Assessment report. I also compute the average assistance per capita using aggregate

final county public and individual assistance variables and county population.

15“The Preliminary Damage Assessment (PDA) process is a mechanism used to determine the impact
and magnitude of damage and resulting needs of individuals, businesses, public sector, and community as a
whole. Information collected is used by the State as a basis for the Governors request for a major disaster or
emergency declaration, and by the President in determining a response to the Governors request” (44 CFR
206.33).
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Table 2: Flood and Hurricane PDD Descriptive Statistics

Statistic Description Mean St. Dev. Min Max N

Public Assistance 1 = county received public assist 1.0 0.1 0 1 243
Individual Assistance 1 = county received individual assist 0.7 0.5 0 1 243
Average Public Assist. Avg public assist / PDD 3,793,870 2,514,563 0 14,023,770 243
Average Individual Assist. Avg individual assist / PDD 1,225,362 1,102,480 0 3,757,233 243
Houses Affected Houses partially destroyed 369.4 254.6 0.0 782.9 243
Impact / Capita Damage per capita 31.6 40.2 0.1 185.7 49
Individual Assist. / Capita Individual assist per capita 39.5 64.1 0.0 539.1 243
Public Assist. / Capita Public assist per capita 126.2 176.3 0.0 1,433.3 243
Flood 1= the PDD is for a “Flood” 0.2 0.4 0 1 243
Hurricane 1= the PDD is for a “Hurricane” 0.8 0.4 0 1 243

This table presents descriptive statistics of the Presidential Disaster Declarations in my sample. PDD are extracted from
FEMA’s website. PDD are issued a the disaster level and split by county in my dataset. Each observation corresponds to a
different county mentioned in a PDD. When available, county specific data is used. PDD level data is used otherwise. All
Flood and Hurricane PDD for the 199 counties covered by the Designated Market Areas (DMA) spanning over North Carolina
and South Carolina (see Appendix A.1) are included for the 2006-2016 period.

2.4 Google Search Index

In order to measure local flood risk awareness and its evolution over time, I adopt a revealed

preferences approach by using Google’s measure of the relative popularity of Google searches: Google

Search Index (GSI).

This tool has been widely used as a proxy for contemporary awareness in academic research (see

for example Choi and Varian (2012), Land and Ryder (2016)), including to measure the evolution

of climate change interest in response to changes in temperatures or unemployment (Kahn and

Kotchen (2010)).

Google Search data presents many advantage for social science and economics researchers. First,

it is robust to survey bias, as searchers online are forthcoming and benevolent (Stephens-Davidowitz,

2014). Second, it is a source to track changes in awareness over time and across space.

So far, GSI has mostly been used in the literature on flood risk beliefs for descriptive evidence.

Gibson et al. (2017) for example look at state level GSI for one single state, NY. The only paper

to exploit the most disaggregated available geographic level, the Designated Media Market (DMA)

at the monthly level is Lang and Ryder (2006). They show that experiencing a hurricane increases

people’s internet searches related to climate change with a lag of a few months.

From Google Trends16 I download two relative Google Search Index (GSI) at the Designated

Market Area (DMA)-month level: one for searches containing the term “Flood”, and one for searches

containing any of the following expressions: “Flood” or “Flood Map” or “Flood Risk” or “Floodplain”

or “Flood Plain” or “Flood Layer” or “Flood Insurance”.

16https://trends.google.fr/trends/.
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Figure 3: Google Search Index at the DMA level - 2009

These maps were obtained from data downloaded at https://trends.google.fr/trends/. They display
the relative Google search intensities of the expressions containing “Flood” by DMA for the DMAs covering
North Carolina and South Carolina. Large variations in flood-related searches can be observed.
Darker purple areas correspond to low flood-related google searches, while orange areas reflect peaks in such
searches.
Searches being normalized to 100 over the whole period 2007-2017, using a logarithmic scale allows to enhance
variations in at lower levels of Google searches. Most periods and DMA areas feature a search index between
5 and 20, while very high relative search index (between 80 and 100) correspond to rare flood events

While the term “Flood” is included in all the terms used to build the second index, both

indexes do not hold the same values. Additional investigation into the Google Trends algorithm

would be necessary to understand exactly what drives precisely this discrepancy. In a attempt to

both capture broader flood risk concerns than would an index built simply on the term “Flood”,

and avoid capturing searches too unrelated to flood risk concerns as it could be an issue with the

second index, I average over these two indexes to create my main Google Search Index. In the rest

of the paper I refer to this index as Google Index (1), or simply Google Index.

I build a pooled dataset covering the 12 DMAs spanning over North and South Carolina17 be-

tween January 2006 and December 2016.

Google Trends releases its search index on a 0-100 scale: 100 is the maximum search share

over the months and geographies of interest. Note that zero-valued observations mean that there

were not enough searches of such query in the given period-geography. For example, the datapoint

observed for the Charlotte (NC) DMA in May 2010 with value =10 means that the share of Google

requests containing “flood” in Charlotte in this month was 10% of the share of similar Google

requests in Columbia in October 2015, the maximum GSI (GSI=100), which corresponds to the

month of the North American storm complex which caused historic flooding in North and South

Carolina. This index does not say anything about the volume of searches.

17See Appendix A.1 for a map of geographical coverage.
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My dataset features both time and geographic variations: out of my 1534 monthly observations

(12 DMA across 11 years), only one equals 100. All shares of the total volume of searches related

to these searches are relative to this maximum search share.

The average monthly Google Index is between 3 and 20, with higher indexes only observed on

very specific periods including the October 2015 North American Storm Complex and Hurricane

Matthew in 2016. Using 2009 as an example, figure 3 highlights that marginal changes in low GSI

are important.

Appendix A.5 provides evidence that GSI for the different DMAs do not systematically differ

over the period and that flood related searches do not follow traditional seasonal searches like other

neutral terms like wine. Results do not change significantly if the Google Index is based on the only

term “Flood”

2.5 Local Newspaper articles

In order to investigate channels and alternative sources of information shocks, I consolidate a unique

panel dataset of flood risk related articles from local newspapers in North Carolina, South Carolina,

parts of Virginia and of Georgia.

I collect all articles published in 187 local newspapers between 2006 and 2016 containing flood-

related terms18. These terms were chosen after reading through a large sample of flood and flood

map related news articles and picking up related keywords.

Table 3: Sample of Newsbank database

Newspaper Bryan County Now
Date August 22, 2013
Title Program focuses on threats to the Georgia coast
1st paragraph Threats to the Georgia coast, ranging from hurricanes to sea level rise,

will be the topic of a Ships of the Sea Museum “Coastal Connections”
lecture program on Aug. 22, at 7:30 p.m. in the museum’s North Garden.
University of Georgia Skidaway Institute of Oceanography professor Clark
Alexander will present a lecture offering informative and visual program on
the hazards facing Georgia’s coastal regions. Drawing on two decades of
work in the area, he will discuss coastal hazards

Dynamic summary to the Georgia coast, ranging from hurricanes to sea ... level rise,
will be the topic of a Ships of the ... Georgia coast, ranging from hurricanes..

Using data from usnewsdeserts and Factiva’s lists of current local newspapers at the county

level, I recover a comprehensive list of local newspapers in each 199 counties covered by my anal-

18See appendix A.6 for a comprehensive list of such terms.
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ysis at each point in time between January 2006 and December 2016. I account for newspaper

consolidations and closures. I am able to get articles from 187 local newspapers, out of the 356

of the aforementioned list. I recover circulation estimates from Factiva, abcas3.auditedmedia.com,

the American Newspaper Representatives, the South Carolina Press Association, newspapers’ web-

sites and personal online investigation19 for 172 of these 187 newspapers, as well as for 142 of the

169 newspapers not covered in my panel. Comparing the circulation of newspapers in an out of my

sample allows me to confirm that all largest newspapers are included in my panel (see Appendix ??).

For all articles in my sample, I extract the date, the title, the first paragraph, as well as

a “dynamic summary”, which contains samples of the article featuring the keywords mentioned

above. An example of this content is displayed below in Table 3.

For some newspapers, I also know the number of pages and columns of the publication. Un-

fortunately, my database contains neither the number of words of each article, nor the number of

articles published daily/weekly by each newspaper. I am thus neither able to normalize my data

by the number of articles published in each newspaper release, nor to weight it by each article’s

number of words.

Instead, I scale the number of articles published monthly by each newspaper (alternatively in

each county) in a similar way as my Google awareness index. This scale goes from 0 to 100, with

100 the maximum number of articles published by a newspaper in a given month.

19In this order.
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Table 4: Summary Statistics - Newspaper Panel

Variable Description Mean St. Dev. Min Max Count

Newspapers
Oldest Record First release on Newsbank 2005 5.617 1985 2016 24,684
Most Recent Record Last release on Newsbank 2017 2.559 2006 2019 24,684
Circulation Newspaper circulation estimate 15,381 21,846 400 142,097 22,704

Articles
Articles Number of Articles 1.627 4.419 0 136 24,684
Flood Articles Number of flood articles 0.852 3.057 0 122 24,684
Flood Recovery Articles Number of flood recovery articles 0.374 1.744 0 77 24,684
Insurance Articles Number of insurance articles 0.411 1.245 0 37 24,684
Law Articles Number of law articles 0.280 0.927 0 17 24,684
FEMA Articles Number of FEMA articles 0.442 1.534 0 42 24,684
Change Articles Number of change articles 0.624 1.745 0 39 24,684
Flood Map Articles Number of flood map articles 0.500 1.373 0 28 24,684
Meeting Articles Number of meeting articles 0.162 0.577 0 12 24,684
Climate Change Articles Number of climate change articles 0.133 0.676 0 31 24,684

Sentiment Score
Score Average monthly sentiment score −0.543 8.869 −337 96 24,684
Flood Recovery Score Average score for flood recovery articles −0.828 5.588 −278 31 24,684
Insurance Score Average score for insurance article −0.070 3.638 −108 50 24,684

Articles are collected using Newsbank. Circulation data are obtained from Newsbank, Factiva, the South Carolina Press
Association and the University of North Carolina. The newspaper panel dataset is at the Newspaper-monthly level and
covers 187 newspapers between January 2006 and December 2016.

I analyze the articles’ abstracts (title, first summary) using Natural Language Processing (NLP)

techniques. I first define 10 categories related to flood risk and classify the articles into these cat-

egories according to a word matching algorithm. These categories are Insurance, Law, FEMA,

Change, Flood Map, Meeting, Flood Recovery, Flood, Climate Change and Housing20. For example,

an article containing at least one of the words Premium, Insurance, Rate, Ordinance, Insured, Cov-

erage, Covered, will fall into the Insurance category. Note that these categories are not exclusive.

An article may therefore falls into more than one category. When considered separately, the number

of articles published for each categories will also be scaled from 0 to 100.

Finally, I extract each article’s sentiment score. I argue that this sentiment score, although

imperfect as only based on a subset of each articles, reflects the intensity of the experienced flood

or flood related events. Ultimately, such measure could be used to calibrate people’s reaction to

communication tone.

20See Appendix A.6 for the list of words belonging to each category.
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Figure 4: Articles’ sentiment score by category

Article contents is obtained from NewsBank. This figure plots the average article sentiment score, by month,
for all articles published by the newspapers in my panel (in red) and for two categories of articles separately
: insurance articles (in blue) and flood recovery articles (in green).
Figure 4 shows the evolution of scores for the articles in my sample and for some article categories more
specifically. The curve of scores for flood recovery articles follows the aggregate curve, especially on its drops.
This is not the case of the insurance articles’ score curve. This should not be surprising, as, conditional on
being released, articles about flood recovery are more likely to be negative, especially when related to major
flood events.
Because scores of flood recovery articles is likely to reflect a flood’s seriousness, unlike scores for flood insurance
articles, it should not be considered as an exogenous variation in flood-risk related media pressure.
This descriptive evidence motivates the addition of article sentiment score to analyses on flood risk awareness
for insurance related articles only.
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3 What drives flood risk awareness ?

The literature has traditionally interpreted the impact of floods and flood map updates on real

estate prices as the ability of homeowners to account for scientific information and to accurately

foresee the impact of rare events on future outcomes.

This approach however assumes that these events are indeed shocks on real estate participants’

risk awareness. No work, to my knowledge, has explicitly attempted to disentangle flood risk

awareness and flood beliefs or, in other words, the difference between receiving flood information

and believing it is relevant to you. Gallagher (2014) is the work with the closest focus, as he showed

that news shocks (TV coverage of a flood in a neighbor county) lead to an increase in flood insurance

take up almost as large as in the flooded county.

I test this assumption and discuss more broadly the relevance and scope of flood risk information

shocks including flood risk related news pressure in the following section.

3.1 Empirical Strategy

I study the impact of 3 types of shocks on contemporary awareness at the DMA-monthly level using

Google Trends. This device gives the relative intensities of different Google searches and has been

widely used as a proxy for awareness (see Choi and Varian (2012)).

Googledct = α+ σ1 ∗ Flood+ σ2 ∗Mapct + σ3 ∗Newsct+
θ1 ∗ Flood ∗Newsct + θ2 ∗Mapct ∗Newsct+

γdcn + εdct
(1)

Google Search Index Google (from 0 to 100) is regressed on a dummy equal to 1 if part of the

DMA d is in a Hurricane of Flood PDD Flood in month t, on a dummy for a flood map update

Map in county c in period t, a measure of news pressure News at the county-month as well as

possibly DMA, county, newspaper and month fixed effects, depending on the specifications.

As described in Section 2.5, I develop two complementary measures of media pressure from flood

risk-related articles published in local newspapers. First, I scale the number of articles published

in a given month-county from 0 to 100 in a similar way to Google. Second, I compute a monthly

average of these articles’ sentiment score at the county (alternatively newspaper) level. Relying on

the assumption that for a given flood or map update, variations in the number of newspaper articles

(or score) is as good as random after controlling for location and time fixed effects, the coefficients

θ1 and θ2 give the causal effect of additional media pressure of Flood and Map respectively on

awareness.
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3.2 Reduced form results

Table 5 presents the ordinary least squares estimates corresponding to equation (1) on a panel

dataset at the county level and aims at isolating the drivers of flood risk awareness. Table 7 pro-

poses a more granular approach as it displays results obtained from a newspaper panel dataset. All

specifications have county, year and month fixed effects. All standard errors are clustered at the

county level and newspaper level for Table 5 and 7 respectively. Google Index correspond to the

built measure of Google Index described in Section 2.4 and goes from 0 to 100.

Table 5: The drivers of awareness
Main

Dependent variable:

Google Index

(1) (2) (3) (4)

Flood 16.085∗∗∗ (1.240) 14.441∗∗∗ (1.411)
Ln (Flood damage) 1.080∗∗∗ (0.081) 0.976∗∗∗ (0.093)
Map Update 0.269 (0.174) 0.267 (0.174) 0.140 (0.179) 0.138 (0.179)
Articles 0.072 (0.047) 0.069 (0.046)
Flood * Articles 0.239∗∗ (0.104)
Ln (Flood damage) * Articles 0.014∗∗ (0.007)
Map Update * Articles 0.185 (0.161) 0.185 (0.161)

County FE Y Y Y Y
Year FE Y Y Y Y
Month FE Y Y Y Y

R2 0.281 0.29 0.288 0.296
Within R2 0.169 0.18 0.178 0.187
Observations 26,268 26,268 26,268 26,268

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the ordinary least squares estimates corresponding to equation (1). The dataset covers 199
counties between 2006 and 2016 (132 months). The dependent variable is Google Index, which is an index of
relative shares of Google searches at the month-DMA level from 0 to 100. It is defined in Section 2.4 as Google
Index (1). Flood is a dummy equal to 1 if a county was mentioned in a Presidential Disaster Declaration (PDD)
in month t and Flood damage is the corresponding damage estimate from the PDD. Map Update is a dummy
equal to 1 if part of the county’s flood map was updated in month t. Articles is the number of articles about flood
risk published in the county in month t scaled in a similar way to Google Index (from 0 to 100). All specifications
include year, month and county fixed effects. Standard errors are presented next to estimates and are clustered
at the county level.

In Table 5, Google Index is regressed on a measure of flooding and a dummy equal 1 if a map

update happened in county i in month t.

The positive significant coefficients for Floods in all specifications confirm that disasters can

be considered as Information shocks as they affect people’s flood risk awareness, as measured by

Google Index. The coefficients for map update are positive but not statistically significant at tra-
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ditional confidence intervals. Moreover, the coefficients for floods and map updates are of different

magnitudes. Where a flood causes Google Index to jump by 16.085∗∗∗ points (on a 0-100 scale)

in Designated Media Markets (DMA) where at least one county was mentioned in the Presidential

Disaster Declaration, a map update only increases this index by 0.269(0.174) (significant at the 88%

confidence interval). In columns (3), and (4), the specifications from (1) and (2) are augmented

with covariates for the scaled number of flood risk related articles published in county i in month t.

When the model is run on the monthly panel of newspaper articles at the county level (Table 11,

the coefficients for Articles and Map Update * Articles are not statistically significant. Weighting

the number of articles by newspaper circulation suggests that the lack of statistical significance in

the previous table may be due to an imprecise specification.

Table 6: The drivers of awareness
Weighted

Dependent variable:

Google Index

(1) (2)

Flood 12.530∗∗∗ (1.514)
Ln (Flood damage) 0.843∗∗∗ (0.100)
Map Update 0.415∗ (0.234) 0.414∗ (0.234)
Articles (weighted) 0.117∗∗∗ (0.023) 0.113∗∗∗ (0.022)
Flood * Articles (weighted) 0.115 (0.110)
Ln (Flood damage) * Articles (weighted) 0.007 (0.007)
Map Update * Articles (weighted) 0.207 (0.201) 0.206 (0.201)

County FE Y Y
Year FE Y Y
Month FE Y Y

R2 0.322 0.329
Within R2 0.198 0.206
Observations 12,624 12,624

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the ordinary least squares estimates corresponding to equation
(1). Unlike in Table 5, counties with no newspaper or missing circulation data for
newspapers in the panel are excluded from the analysis. The aggregated (weighted)
number of articles at the county-month level is then normalized from 0 to 100. Ob-
servations are weighted by the share of the county’s recovered circulation (circulation
of newspapers in the panel / total estimated county circulation). Standard errors
are presented next to estimates and are clustered at the county level.

Indeed, when normalizing the number of articles by the estimated newspaper circulation and

weighting observations at the county level by the share of the county’s recovered circulation (circu-

lation of newspapers in the panel / total estimated county circulation), the coefficient for Articles

is positive and statistically significant at the 99% confidence interval (0.117∗∗∗). This coefficient
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suggests that there exists other flood risk related information shocks than the ones previously con-

sidered. One could think of floods too small to lead to a PDD, public discussions about flood risk

or newspaper investigations about flood preparedness.

That the coefficient for Map Update becomes significant in this specification deserves some com-

ments. Counties with missing circulation of with 0 newspaper are excluded from the panel. Thus,

a larger, or statistically significant coefficient for Map Update in Table 6 columns (1)-(2) than in

Table 5 columns (3)-(4) suggest that the impact of map update on awareness, and the a county’s

newspaper coverage are correlated.

Following this hint about the importance to account for newspaper coverage (the number of

newspapers per county), and in order to improve the accuracy of my analysis, I then run the same

model on a newspaper panel dataset (observations at the newspaper-month level). Results are

presented in Table 7. Columns (1) and (2) correspond to the specifications presented in Table 5’s

columns (2) and (4) and columns (3) and (4) consider separately Insurance- and Flood recovery-

related articles.

The coefficient for Map Update is positive and statistically significant. This is consistent with

the intuition developed above that giving more weights to counties with more newspapers (the

newspaper panel has one observation per newspaper-month) leads to estimate a positive impact of

map updates on flood risk awareness. I will be interested in studying whether an increasingly doc-

umented phenomenon like the emergence of “news deserts” has a systematic impact on awareness,

these deserts being likely correlated with other local and community degrees of public life.

The interaction between the number of articles and the flood dummy is positive and significant,

and robust to the replacement of the flood dummy by an estimate of flood damage.

Finally, in columns (2)-(4), I exploit differences in articles’ content and tone. I split the number

of articles by articles related to flood recovery and articles related to flood insurance, and add to the

latter the article’s Score, a measure of the article’s tone. Both the coefficient for flood recovery article

and the interaction between flood recovery articles and flood damage are statistically significant

(0.113∗∗∗ and 0.013∗∗ respectively). The number of insurance articles and the interaction of map

update with the number of insurance articles weighted by their sentiment score have statistically

significant impact on Google searches (0.025∗ and −0.021∗∗∗ respectively). For a given map update

in month t, and a given number of flood insurance-related articles published by a given newspaper in

this month, a drop of the articles’ score from 0 to −10 leads to an increase in flood risk awareness,

as measured by Google Index, of 0.21. While this coefficient may seem small at first, it means

that if 10 articles were published by newspaper i in month t with an average sentiment score of

−10, awareness rises by more than 2, in addition to the map update impact on Google Index itself.

No other article category’s score interacted with Map Update lead to similar estimates (Table 19),
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suggesting that flood risk awareness is mainly driven by insurance concerns.

Table 7: The drivers of awareness
Newspaper panel dataset

Dependent variable:

Google Index

(1) (2) (3) (4)

Flood 11.964∗∗∗ (1.198) 12.335∗∗∗ (1.213)
Ln (Flood damage) 0.809∗∗∗ (0.078) 0.833∗∗∗ (0.079)
Map Update 0.527∗∗∗ (0.190) 0.524∗∗∗ (0.190) 0.577∗∗∗ (0.164) 0.574∗∗∗ (0.164)
Articles 0.093∗∗∗ (0.012) 0.091∗∗∗ (0.012)
Flood *Articles 0.283∗∗∗ (0.080)
Ln (Flood damage) * Articles 0.017∗∗∗ (0.005)
Map Update * Articles 0.053 (0.144) 0.054 (0.144)
Flood Recovery Articles 0.116∗∗∗ (0.026) 0.113∗∗∗ (0.026)
Insurance Articles 0.025∗ (0.015) 0.025∗ (0.015)
Insurance Articles * Articles score −0.002 (0.002) −0.002 (0.002)
Flood * Flood Recovery Articles 0.222∗∗ (0.104)
Ln (Flood damage) * Flood Recovery Articles 0.013∗∗ (0.007)
Map Update * Insurance Articles 0.007 (0.058) 0.007 (0.058)
Map Update * Insurance Articles * Score −0.021∗∗∗ (0.005) −0.021∗∗∗ (0.005)

County FE Y Y Y Y
Year FE Y Y Y Y
Month FE Y Y Y Y

R2 0.328 0.333 0.335 0.34
Within R2 0.217 0.223 0.225 0.232
Observations 24,684 24,684 24,684 24,684

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the results of equation (1) estimated on a monthly newspaper panel of 187 local newspapers between 2006 and
2016. The dependent is Google Index, which is an index of relative shares of Google searches at the month-DMA level from 0 to 100.
Flood is a dummy equal to 1 if a county was mentioned in a Presidential Disaster Declaration (PDD) in month t and Flood damage
is the corresponding damage estimate from the PDD. Map Update is a dummy equal to 1 if part of the county’s flood map was
updated in month t. Articles is the scaled number of articles about flood risk published by newspaper i in month t. This scale goes
from 0 to 100, with 100 the maximum number of articles (per category) published by a single newspaper i in a given month t. In
columns (3) and (4) I consider separately articles about insurance and about flood recovery and add a measure of insurance article’s
sentiment score (the lower the more negative the article). All specifications are presented with year, month and county fixed effects.
Standard errors are presented next to estimates and are clustered at the Newspaper level.

3.3 Robustness Checks

I check that these conclusions are robust to modifications of the specifications.

More precisely, I run the analysis without county fixed effects (Tables 17 and 18) and results

are overall consistent with Tables 5 and 7 respectively. Notably, when one does not control for

county fixed effects, the coefficient for Map Update is no more significant at conventional confidence

intervals when the model is run on the county panel. It is still positive and statistically significant
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for the newspaper panel model (0.385∗∗ in column (3)). Besides, the positive significant coefficient

for the interaction between Flood and Flood Recovery Articles resists to the addition of flood damage

measures for the second awareness measure.

I also run the the newspaper panel analysis on a panel where each observation is weighted by

the newspaper’s circulation. Results are presented in Table 17 and do not systematically differ from

the main specification displayed in Table 7.

4 Flood risk and the housing market

People respond to flood risk related information shocks by increasing the relative share of flood

risk related Google searches. In this section I investigate whether homeowners price flood risk in

their real estate decisions and whether heterogeneity in awareness can explain uneven flood risk

capitalization.

4.1 Empirical Strategy

4.1.1 The value of being located in the floodplain

All else equal, a property located in the Special Flood Hazard Area should sell at a discount

compared to a property located outside the floodplain. This claim assumes that FEMA designated

floodplain, the SFHA, is believed to be a credible prediction of a property’s actual flood risk, and

that participants in the real estate market discount the associated future potential losses.

The empirical strategy is designed such as to compare properties with equivalent characteristics

located in the same neighborhood, and selling in the same time period in order to isolate the causal

effect of flood risk status on real estate prices.

Because the Zillow Transaction Assessment Dataset contains a large number of property and

building attributes that help to explain a property’s price, I am able to run a full hedonic analysis

on house prices to estimate the value of being located in the floodplain.

Following the hedonic analysis methodology developed in Rosen (1974), my main specification

is:

ln(Yit) = βtFPit +Xitφ+ λFEitz + εit (2)

The dependent variable ln(Yit) is the log of the transaction price for property i in period t, or

alternatively the log of the transaction price per square foot. The period is defined at the year-

month level so as to match my other datasets’ time definition. The explanatory variable of interest,
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FPit is a dummy equal to 1 if property i is in a floodplain active at the time of sale t. This

encompasses properties in the floodplain on the old map sold before the map update, properties in

the floodplain on the new map sold after the update as well as properties in the floodplain on both

map versions. Xit includes 4th order polynomials of the property’s area in square meters and its

age21. Finally λFEitz is at the core of the identification strategy. It is a matrix of all interacted

fixed effects for neighborhood z defined as Census Tract; distance to the coast buffer22; property

type (single-family or multiple family dwelling, apartment, condominium, mobile home...); number

of bedrooms b; number of bathrooms a and whether the aforementioned size measure designates

area of the gross full building, of the living or heated space etc23 The addition of distance to the

coast fixed effect to more traditional interactions is guided by Bernstein et al. (2017) identification

strategy. They show that the value of properties increases non-linearly with their proximity to the

coastline, even after controlling for neighborhood and time fixed effects and explain this relationship

by the presence of coastal amenities and local accesses to the beach. Figure 5 illustrates the same

relationship for my sample. In order to identify the causal impact of flood risk status, also positively

correlated with proximity to the coast, distance to the coast must therefore be interacted with time

and location fixed effects. β can then be interpreted as the causal effect of an active floodplain

status on house prices if one accepts that the remaining variations in flood risk status is random.

My main specification is ran on properties within 0.25 mile from the coast. This distance threshold

follows directly from Bernstein et al. (2017) and is chosen to be the optimal geographical limit for

the specification with interacted fixed effects including distance-to-coast buffers.

21I do not have a precise enough measure of distance to the coast to be able to add it as covariate in
addition to coast distance buffers fixed effects.

22Cutoffs are every 0.05 mile up to 0.5 mile, every 0.1 mile up to 10 miles.
23Bernstein et al. (2017) add occupancy status, condominium indication and elevation bucket above sea

level. Unfortunately, as of today, I do not have access to these characteristics.
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Figure 5: A case for distance-to-coast fixed effects

(a)

(b)

Notes: Figure 5 presents supporting evidence for the choice of a specification with distance-to-coast fixed
effects. Figure (a) displays the relationship between the log of the transaction price per square foot and the
distance to the coast using local polynomial regression fitting methods. Figure (b) is obtained with similar
method and presents the relationship between the residual of the log transaction per square foot on Census
Tract and month interacted fixed effects, and the distance-to-coast in miles.
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4.1.2 The impact of risk-reclassification on house prices

Whether properties in the floodplain sell at a premium or a discount could still capture differ-

ences in nature between these properties and properties not classified at risk if non-observed house

characteristics (orientation, soil, water system) were to increase both its hedonic value and flood

risk.

To address this potential omitted variable bias, the literature has exploited flood events (Kousky

(2010), Kunreuther (2006)).

These findings are consistent with the existence of an availability bias first theorized by Tversky

and Kahneman (1974) stating that one reason why people do not account for all existing information

in forming their beliefs about the likelihood of uncertain events is because this information in not

readily available. However, while these events can be interpreted as information shocks about

a property’s underlying flood risk, they also affect amenities by potentially damaging both the

property and its neighborhood.

Alternatively, flood map updates carry new information without changes in neighboring ameni-

ties (Kousky (2010) , Indaco et al. (2018))24. As argued before, these flood map updates are

potentially valid information shocks as they induce an increase in flood risk awareness as measured

by Google Index 25. This information transmission is especially important when newspapers empha-

size the implications with regards to expensive flood insurance.

In order to identify the effect of map updates, which imply changes in flood insurance premium

for affected properties, I follow Indaco et al. (2018) and Hallstrom and Smith (2005) and run a

unit fixed effect model with a post coefficient on the panel of repeated sales that bracket the map

updates. More precisely, I sample my transaction database so as to keep only properties sold at

least once before the update and once after (not all communities were updated at the same time,

so I have in practice as many treatments as different map updates). If a property was sold more

than twice, I keep the closest sale on each side of the update date.

Accordingly, I classify the properties into categories: properties entering the floodplain after the

map update (OutIn), properties leaving the floodplain after the update (InOut), properties always

in the floodplain (InIn) and properties never on the floodplain (OutOut).

Similarly to Indaco et al. (2018), my main specification is a model with property (unit), year

and month (time) dummies, as well as a “Post” treatment dummy.

ln(Yizt) = σi + λt + θPostizt + βtPostizt ∗ Categoryi + εizt (3)

Unit fixed effects σi are defined at the property level and do not interact with year fixed dummies

24New flood map may require that communities update their flood resilient installations (levees).
25Statistically significant at the 88% confidence interval when estimated on an unweighted county panel at

the monthly level. See Table 5.
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λt. PostUpdate is a dummy equal to 1 if the property is sold after its community map update and

Category is a categorical variable with a property i’s four possible map status: InIn, OutOut, OutIn,

InOut.

This specification assume that property fixed effects are time invariant. It is useful to think

about this assumption as the unit fixed-effect version of the canonical difference-in-differences’ com-

mon trend assumption, but adapted to a difference-in-differences model with unit fixed effects by

conditioning on on the unit rather than the group.

For the sake of clarity, I run this difference-in-differences with fixed effect model on two different

samples of the repeated sales panel. First, I compare OutOut properties to OutIn properties. I

expect to find a negative coefficient for the interaction Post * OutIn if an upward reevaluation of a

property’s flood risk (OutIn) has a negative impact on its price. Second, I focus on InIn and InOut

properties. I expect to find a positive coefficient for the interaction Post * InOut if a downward

reevaluation of a property’s flood risk (InOut) has a positive impact on its price.

4.1.3 The role of awareness

A general approach on awareness and risk reclassification

In Section 3, I have discussed the impact of flood-related information shocks traditionally considered

by this literature (floods and map updates) on flood risk awareness and shown that some of these

shocks’ heterogeneous impact on flood risk awareness were partly driven by media pressure and

coverage of these events.

I propose here to exploit this heterogeneity in the effectiveness of information shocks, and more

specifically flood map updates, to understand whether awareness and beliefs are related one-to-one.

Few studies have attempted to estimate whether differences in local flood risk awareness may

drive flood risk premia/discounts on house prices or, in other words, the impact of awareness on

flood risk beliefs as measured by real estate prices.

Using the Yale Climate Opinion data providing county level survey data of flood climate change

concern, Bernstein et al. (2017) find that owner-occupied houses in counties with a reported score

of worry in the highest decile sell at a 10% discount when exposed to Sea Level Rise risk.

Sea Level Rise risk is of a different nature than the flood risk measured by the Special Flood

Hazard Areas (SFHA) as the former is long term (30-50 years) while the latter is short term and

continuous. Rather than concerns about climate change, looking at real estate participants’ con-

cerns about contemporaneous climate risk is therefore more relevant here.

I use the same unit fixed effect model described above (Equation (3)), which I augment with

High Awareness DMA, a dummy equal to 1 if the average Google Index in the property’s DMA
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is above the median of Google Index averages and High Awareness Month, a dummy equal to 1 if

the monthly-DMA Google Index is above the 75th percentile of the sample’s monthly-DMA indexes.

Eliciting a candidate mechanism: focus on the flood map updating process

Lastly, I delve into the flood map updating process itself. Updating a flood maps is not a one-

time event, but a process starting months before the map actually becomes effective. This timeline

is summarized in figure 6 below.

Figure 6: Flood Map Update Timeline

Preliminary
BFE

Appeal
Period

Letter of Final
Determination

Compliance
Period

Map
Effective

Months
−12 −9 −6 0

Ten to Twelve months before the new maps finally becomes effective, FEMA releases the Pre-

liminary Base Flood Elevations (Preliminary BFE). Within a two weeks period, it then publishes

a notice of this release in two local newspapers. Then starts a ninety days appeal period where

homeowners and communities can submit map corrections or appeals. At the end of this period,

FEMA will finalize the maps and publish a Letter of Final Determination. The new map will be

pending during 6 months. By the end of this period, homeowners and communities must have

complied with all legal requirements, including getting a flood insurance when buying a house with

a government-backed mortgage26.

In an event study, I regress transaction price on each period of the map updating process and

isolate the additional effect of high awareness months.

ln(Yit) = βtFPit +Xitφ+ λFEitz +
J∑

j=1

βjPerioditj +
J∑

j=1

θjPerioditjHighAwarenesszt + εit (4)

Where J indexes the different periods properties experiencing risk reclassification go through:

Pre Update Process ; Preliminary Base Flood Elevation ; Appeal Period ; Map Pending ; Map

Update Month and Post Update.. The sample is restricted to OutIn properties.

26https://www.fema.gov/media-library-data/1468504201672-3c52280b1b1d936e8d23e26f12816017/

Flood_Hazard_Mapping_Updates_Overview_Fact_Sheet.pdf.
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4.2 Reduced Form Results

In this section, I first discuss the results of the hedonic analysis before moving to a difference-in-

differences set up. Finally, I run an event study on the flood map updating process in an effort

to discuss the role of awareness and insurance concerns in the pricing of flood risk on the housing

market.

4.2.1 The value of being located in the floodplain

I present the full results of the hedonic model (Equation (2)) in Table 8 and show that houses in

the floodplain do not sell at a premium or discount within 0.25 miles from the coastline.

I regress the log of the property’s transaction price on different combinations of covariates and

fixed effects. The absence of statistically significant coefficient in columns (1)-(4) suggests that

floodplain status does not on average have an impact on a property’s value on the real estate

market. Column (6) presents results for the same specification as in column (2) but the dependent

variable is the log of the price per square foot.

Column (5) is included to emphasize the importance of the hedonic specification with interacted

fixed effects to isolate the causal relationship between floodplain status and house prices, and more

specifically to account for the positive correlation between coastal amenities and flood risk.
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Table 8: Full Regression Results - Main

Dependent variable:

Ln Price Ln Price per square foot

(1) (2) (3) (4) (5) (6)

Floodplain 0.079 0.074 0.114 0.028 0.308∗∗∗ 0.074
(0.077) (0.081) (0.235) (0.113) (0.026) (0.081)

Ln(Square Feet) 53.267∗∗ 71.901 58.641 52.267∗∗

(23.680) (65.079) (48.347) (23.680)
Ln(Square Feet)2 −10.806∗∗ −14.507 −11.920 −10.806∗∗

(4.700) (12.681) (9.394) (4.700)
Ln(Square Feet)3 0.955∗∗ 1.277 1.055 0.955∗∗

(0.407) (1.080) (0.799) (0.407)
Ln(Square Feet)4 −0.031∗∗ −0.041 −0.034 −0.031∗∗

(0.013) (0.034) (0.025) (0.013)
Ln(Property Age) −35.131

(69.463)
Ln(Property Age)2 18.330

(36.243)
Ln(Property Age)3 −4.196

(8.276)
Ln(Property Age)4 0.353

(0.698)

T * L * D * B Y Y Y Y
T * L * D * B * BF * U Y
Location FE Tract Tract Tract Tract Tract

R2 0.818 0.822 0.892 0.901 0.06 0.933
Within R2 0.005 0.027 0.112 0.032 0.06 0.769
Observations 2,278 2,278 1,285 2,278 2,291 2,278

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the ordinary least squares estimates corresponding to equation (2). The explanatory variable of
interest is Floodplain, which is a dummy equal to 1 if the transacted property is in a (active) floodplain. Real estate
transaction data and house characteristics are from Zillow. Floodplain data are from FEMA. I trim the real estate
dataset to exclude the bottom and top 1% sales amount. The sample is then restricted to properties located in
Census block groups within 0.25 miles from the coastline. This corresponds to 2,291 transaction, among which 1,285
transaction have data for the property’s age, and 2,278 have data about the number of bedrooms. In columns (1) to
(5) the dependent variable is the log of the transaction price. Columns (1) to (3) and (6) include time (year-month)
(T), location (Census Tract) (L), distance to the coast buffer (every 0.05 mile up to 0.5 mile, every 0.1 mile up
to 10 miles) (D) and number of bedrooms (B) fixed effects, as well as their interactions. Column (4) also has two
additional fixed effects interacted with the ones mentioned above: Block in the floodplain (BF) equal to 1 if at least
one property on the block is in the floodplain (even if the property itself is not) and property use type (single family
house, multiple family dwelling, condominium...) (U). No covariate or fixed effect is included in column (5). The
inconsistent coefficient for floodplain emphasizes the importance of our preferred specification with covariates and
interacted fixed effects. In column (6) the dependent variable is the log of the transaction price per square foot.
The specification is similar to column (2). Standard errors are presented below estimates and are clustered at the
location fixed effect level.

Table 9 presents the ordinary least squares’ main estimate for different distance-to-coast cutoffs.

All specifications are identical to column (2) of Table 8. Positive statistically significant floodplain
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coefficients in column (2) onward should be taken cautiously. As mentioned above, the fit of the

specification is expected to decrease when properties are located further away from the coast, as

precise distance to the beach is not a key component of a property’s hedonic price anymore. The

floodplain status coefficient is therefore likely to contain other time-invariant, local amenities or

unobservable characteristics.

Table 9: Full Regression Results - Varying distance-to-coast cutoff

Dependent variable:

Ln Price

(1) (2) (3) (4) (5) (6)

Floodplain 0.074 0.092∗ 0.056∗∗∗ 0.068∗∗∗ 0.068∗∗∗ 0.062∗∗∗

(0.081) (0.051) (0.016) (0.013) (0.014) (0.010)

Size Controls Y Y Y Y Y Y
Age Controls
T * L * D * B Y Y Y Y Y Y
T * L * D * B * BF * U
Location FE Tract Tract Tract Tract Tract Tract
Maximum distance to the coast 0.25 mile 0.5 mile 1 mile 2 miles 5 miles 10 miles

R2 0.822 0.872 0.835 0.828 0.831 0.83
Within R2 0.027 0.03 0.051 0.054 0.07 0.068
Observations 2,278 6,515 18,400 39,874 84,772 104,080

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the ordinary least squares estimate for the explanatory variable of interest, Floodplain,
corresponding to equation (2) with samples restricted to properties within 0.25, 0.5, 1, 2 and 5 miles from
the coast. Real estate transaction data and house characteristics are from Zillow. Floodplain data are
from FEMA. I trim the real estate dataset to exclude the bottom and top 1% sales amount. Column
(1) is similar to column (2) of Table 8. All columns have the same specification and include 4th order
polynomials for building size as covariates as well as simple and interacted fixed effects for time, location,
distance to the coast buffer (every 0.05 mile up to 0.5 mile, every 0.1 mile up to 10 miles) and number of
bedrooms. Standard errors are presented below estimates and clustered at the location fixed effect level.

In order to address this issue, I estimate the same model but keeping in my sample properties

located in blocks containing at least one property in the floodplain only. Under the assumption that

within a Census block, being located in the floodplain or no is as good as random, the floodplain

coefficient should be estimated more accurately. Results are presented in Table 10.
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Table 10: Main Regression Results - Only Blocks in the floodplain

Dependent variable:

Ln Price

(1) (2) (3) (4) (5) (6)

Floodplain −0.290 −0.062 −0.035 0.026 −0.011 −0.002
(0.657) (0.344) (0.115) (0.083) (0.057) (0.048)

Size Controls Y Y Y Y Y Y
Age Controls
T * L * D * B Y Y Y Y Y Y
T * L * D * B * BF * U
Location FE Tract Tract Tract Tract Tract Tract
Maximum distance to the coast 0.25 mile 0.5 mile 1 mile 2 miles 5 miles 10 miles

R2 0.88 0.911 0.895 0.891 0.899 0.902
Within R2 0.058 0.018 0.029 0.04 0.035 0.034
Observations 1,010 1,909 4,800 8,830 15,282 17,410

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the ordinary least squares estimate for the explanatory variable of interest, Flood-
plain, corresponding to equation (2) with samples restricted to properties within 0.25, 0.5, 1, 2, 5 and 10
miles from the coast. Real estate transaction data and house characteristics are from Zillow. Floodplain
data are from FEMA.I trim the real estate dataset to exclude the bottom and top 1% sales amount.
Unlike Table 9, properties located in Census blocks containing at least 1 property in the floodplain
only are included in the sample. This robustness check is aimed at addressing refining the comparison
between treated and control properties.
All specifications include 4th order polynomials for building size as covariates as well as simple and
interacted fixed effects for time, location, distance to the coast buffer (every 0.05 mile up to 0.5 mile,
every 0.1 mile up to 10 miles) and number of bedrooms. Standard errors are presented below estimates
and clustered at the location fixed effect level.

Unlike estimates presented in Table 9, estimates of the Floodplain coefficient for the sample

including only properties in risky blocks are negative, although not significant (−0.290(0.657)) for

the 0.25 mile-to-coast cutoff). This suggests that while the main specification may fail appropriately

control for time invariant local amenities more than 0.25 mile away from the coast, in risky blocks,

properties in the floodplain do not sell at a premium, and potentially sell at a discount.

4.2.2 The impact of risk-reclassification on house prices

Estimating a difference-in-differences model with fixed effects on the panel of repeated sales instead

should correct for potential caveats of the hedonic analysis brought to light by the last specification.

Results are presented in Table 11. My panel of repeated sales contains 34,522 transactions (17,261

properties) sold between 2006 and 2016.
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Table 11: Risk Reclassification Impact on House Prices
Main

Dependent variable:

Ln Price

(1) (2) (3) (4)

Post Update 0.181∗∗∗ 0.015∗∗ 0.145∗∗∗ −0.005
(0.007) (0.007) (0.053) (0.073)

Post Update * OutIn −0.016 −0.045∗∗

(0.019) (0.018)
Post Update * InOut 0.049 0.103∗∗

(0.037) (0.047)

Categories OutOut, OutIn OutOut, OutIn InIn, InOut InIn, InOut
Minimum Transaction Price 250,000 250,000

Ref cat OutOut OutOut InIn InIn
Year dummy Y Y Y Y
Month dummy Y Y Y Y
Property FE Y Y Y Y

R2 0.871 0.89 0.889 0.865
Within R2 0.055 0.06 0.073 0.253
Observations 45,002 10,918 944 278

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the results of the unit fixed effect model summarized in equation (3) estimated
on a panel of properties that were sold both before and after their community’s map update. Real
estate transaction data and house characteristics are from Zillow. Floodplain data are from FEMA. I
trim the transaction to exclude the bottom and top 1% sales amount. When a property is sold more
than once before or after the update, only the closest sale to the update is considered. The resulting
panel dataset covers 45,946 transactions (45,002+944), i.e. 22,973 properties. In column (1) and (2),
OutOut and OutIn are considered. The reference category is the OutOut properties sold before the
update. In column (3) and (4), InIn properties are compared to InOut properties. All specifications
include property, fixed effects as well as year and month dummies. Unlike odd columns, results
presented in even columns are estimated on a subset of the sample excluding properties sold for less
than $250,000. Standard errors are presented below estimates and are not clustered.

For the sake of clarity I split my analysis into two parts. I compare OutOut and OutIn prop-

erties in the first two columns to estimate the impact of an upward risk-reclassification on real

estate prices. OutOut is the reference category. In the last two columns I compare InIn and InOut

properties to estimate the impact of a downward risk-reclassification on real estate prices. InIn is

the reference category. All specifications include property, year and month fixed effects.

Column (1) reveals that OutOut properties appreciated on average by 20% (exp(0.181)) between

the first and second sale. The coefficient for the interaction between Post Update and InOut in

column (1), −0.016 is not statistically significant. However, this coefficient falls to −0.045(0.018)

and becomes statistically significant at the 95% confidence interval when the sample is restricted
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to properties selling for at least $ 250,000 (column (2)) only.

Results for the impact of downward risk-reclassification are presented in columns (3) and (4). I

find that properties remaining in the floodplain experience a price increase of 15.6% (exp(0.145))

between the first and second sale. This coefficient is not statistically significant for InOut properties

when estimated on the full sample, but it is 10.8 percentage points (exp(0.103∗∗) when estimated

on properties above $250,000.

Thus, I find that (1) upward risk-reclassification has a negative effect on real estate prices,

but this effect is precisely estimated for properties above $250,000 and that (2) downward risk-

reclassification has a positive impact on real estate prices. These estimates are consistent with the

real estate market capitalizing at least part of insurance premiums. Properties experiencing down-

ward risk-reclassification appreciate because homeowners do not have to account for future flood

insurance premiums (or much lower). That I am only able to estimate precisely the impact of up-

ward and downward risk-reclassification on properties above $250,000 should not be surprising. As

mentioned above, the National Flood Hazard Insurance Program maximum deductible is $250,000

for single-family and two- to four -dwelling residences. In addition to insurance premiums, home-

owners of houses valued above $ 250,000 concerned about flood risk also discount their potential

net loss in case of a flood.

4.2.3 The role of awareness

A general approach on awareness and risk reclassification

If flood risk discount on property prices was largely driven by awareness, then we should observe

larger discounts on the prices of properties in the floodplain when flood risk awareness is high. I

present the results of the difference-in-differences model with fixed effects augmented with measures

of awareness estimated on the panel of repeated sales in Table 12. Specifications are similar to

columns (1) and (2) of Table 11.
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Table 12: The Role of Awareness in Risk Reclassification Impact on House Prices
Main

Dependent variable:

Ln Price

(1) (2) (3) (4)

Post Update 0.182∗∗∗ 0.016∗∗ 0.181∗∗∗ 0.014∗∗

(0.007) (0.007) (0.007) (0.007)
High Awareness Month 0.003 −0.012∗∗

(0.005) (0.005)
Post Update * OutIn 0.034 −0.007 −0.014 −0.036

(0.023) (0.026) (0.022) (0.022)
Post Update * OutIn * High Awareness DMA −0.141∗∗∗ −0.072∗∗

(0.039) (0.035)
Post Update * OutIn * High Awareness Month −0.008 −0.019

(0.042) (0.036)

Sample OutOut, OutIn OutOut, OutIn OutOut, OutIn OutOut, OutIn
Minimum Transaction Price 250,000 250,000

Ref cat OutOut OutOut OutOut OutOut
Year dummy Y Y Y Y
Month dummy Y Y Y Y
Property FE Y Y Y Y

R2 0.872 0.89 0.871 0.89
Within R2 0.056 0.061 0.055 0.061
Observations 45,002 10,918 45,002 10,918

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the results of the unit fixed effect model presented in equation (3) augmented with measures of awareness
on the panel dataset of repeated sales restricted to OutOut and OutIn properties. Real estate transaction data and house
characteristics are from Zillow. Floodplain data are from FEMA. I trim the real estate dataset to exclude the bottom and
top 1% sales amount. In columns (1) and (2), High Awareness DMA is a dummy equal to 1 if average Google Index in the
Designated Market Area (DMA) where is located the property is above or equal to the median of Google Index averages.
In column (3) and (4), High Awareness Month is a dummy equal to 1 if the monthly-DMA Google Index is above the 75th
percentile of the sample’s monthly-DMA indexes. All specifications include property, fixed effects as well as year and month
dummies. Standard errors are not clustered and presented below estimates.

In columns (1) and (2) I distinguish between low and high awareness DMAs (as defined according

to their position compared to the median at the DMA level, averaged across all periods). Properties

in the OutOut category sold on average 20% (exp(0.182)) higher on the second transaction (post up-

date) than on the first one (pre update). OutIn properties in low awareness DMAs did not experience

significantly different price trends. The price increase of OutIn properties in high awareness DMAs

was 15.8 percentage points lower than for OutOut properties (exp(0.182) − exp(0.182 − 0.141)).

While this result does not inform us about the underlying sources of heterogeneity between

regions, it is consistent with Bernstein et al. (2017), who find that sea level rise affects prices of

non-owner occupied properties only in counties with a high enough Worried score on the Yale Cli-

mate Opinion Maps.
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In columns (3) and (4) I study the effect of high awareness months on the transaction price

of OutIn properties after the risk-reclassification. A high awareness month is defined as a month

with Google Index above the 75 percentile of the 1,584 monthly-DMA indexes27. OutIn properties

valued above $250,000 sold on average at a 2.2% discount (exp(0.014 − 0.036)) after getting in the

floodplain. This coefficient is not statistically different for high awareness months28.

Eliciting a candidate mechanism: focus on the flood map updating process

The measure of flood risk awareness built in this paper is based on Google searches including

flood risk related terms29 and might therefore capture changes in risk awareness not directly rel-

evant for the local real estate market. Figure 10 shows for example a peak in Southern Carolina

Google Searches for Flood around September 2008, the month of Hurricane Ike, a $30 billion damage

disaster but which did not touch any of the states covered in this analysis. To address this issue I

focus on the map updating process itself to show how a better targeting of critical moments gives

insight on people’s risk pricing process. The map updating timeline is summarized in figure 6.

I study how does the price of OutIn properties evolve along this timeline. Because of the small

number of properties in my repeated sales panel sold in each of these periods, I move back to the

hedonic specification presented in Equation (2)30 which I run on all the OutIn properties of my sam-

ple (15,299 transactions) in columns (1)-(3) and on OutIn properties sold for more than $250,000 in

columns (4)-(6). As explained above, $250,000 is the maximum flood insurance deductible for one-

to-four family dwellings. I include two distinct measures of awareness. High Awareness Month is a

dummy equal to 1 if the (main)Google Index is above the 75th percentile of the sample’s monthly-

DMA indexes. In addition, I define High Awareness Month (b) according to the same criteria, but

using the Google Index built using the word Flood only.

2712 DMAs across 11 years.
28 −0.036(0.022) is not statistically significant at traditional confidence intervals in 12 but it is significant

when the model is ran without the Post Update * OutIn * High Awareness Month interaction (−0.043∗∗

(0.018)).
29See Section 2.4 and Appendix A.5 for more details.
30Unlike results presented in Table 8, Census Tract T and Year Y fixed effects are not interacted together,

as this would capture the monthly DMA variations of the variable High Awareness Month.
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Table 13: Event Study: The role of awareness during the updating process

Dependent variable:

Ln Price

(1) (2) (3) (4) (5) (6)

Pre Update Process * High Awareness Month −0.001 −0.004
(0.022) (0.036)

Pre Update Process * High Awareness Month (b) −0.001 −0.015
(0.024) (0.027)

Preliminary BFE −0.039 −0.042 −0.022 −0.065 −0.051 −0.074
(0.094) (0.106) (0.094) (0.084) (0.085) (0.086)

Preliminary BFE * High Awareness Month −0.013 −0.113
(0.133) (0.157)

Preliminary BFE * High Awareness Month (b) −0.293 −0.412∗∗∗

(0.399) (0.089)
Appeal Period −0.049 −0.040 −0.013 −0.001 0.017 0.024

(0.117) (0.160) (0.157) (0.082) (0.090) (0.108)
Appeal Period * High Awareness Month −0.041 −0.095

(0.233) (0.126)
Appeal Period * High Awareness Month (b) −0.117 −0.122

(0.196) (0.162)
Map Pending −0.041 −0.077 −0.049 −0.042 −0.045 −0.092

(0.084) (0.096) (0.100) (0.091) (0.085) (0.090)
Map Pending * High Awareness Month 0.152 0.018

(0.152) (0.114)
Map Pending * High Awareness Month (b) 0.028 0.099

(0.113) (0.128)
Map Update Month −0.016 −0.022 −0.020 −0.012 −0.017 −0.023

(0.055) (0.053) (0.054) (0.055) (0.062) (0.061)
Map Update Month * High Awareness Month 0.020 0.007

(0.030) (0.028)
Map Update Month * High Awareness Month (b) 0.022 0.018

(0.026) (0.031)
Post Update 0.156 0.154 0.151 0.019 0.019 0.056

(0.104) (0.110) (0.193) (0.248) (0.248) (0.121)
Post Update * High Awareness Month 0.065

(0.211) (0.000)
Post Update * High Awareness Month (b) −0.001 −0.062

(0.244) (0.401)

Sample OutIn OutIn OutIn OutIn OutIn OutIn
Minimum Transaction Price 250,000 250,000 250,000
Size Controls Y Y Y Y Y Y
T*B*C FE Y Y Y Y Y Y
Y*B*C FE Y Y Y Y Y Y

R2 0.79 0.79 0.79 0.755 0.755 0.756
Within R2 0.026 0.027 0.027 0.061 0.061 0.062
Observations 15,299 15,299 15,299 5,984 5,984 5,984

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the results of the event study on the role of awareness during the flood map updating process (see
figure 6). Real estate transaction data and house characteristics are from Zillow. Floodplain data are from FEMA. I
trim the real estate dataset to exclude the bottom and top 1% sales amount. The sample is then restricted to properties
experiencing risk reclassification after their community’s map update (OutIn properties). High Awareness Month is a
dummy equal to 1 if the main monthly-DMA Google Index is above the 75th percentile of the sample’s monthly-DMA
indexes. High Awareness Month (b) is a dummy equal to 1 if the monthly-DMA Google Index based on the term “Flood”
only is above the 75th percentile of the sample’s monthly indexes for this index.
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The only statistically significant coefficient is for the interaction between Preliminary BFE and

High Awareness Month for properties valued more than $250,000 when awareness is defined as using

the alternative awareness index (only built of Google searches containing the word Flood). This

coefficient is not statistically significant when awareness is defined by my main awareness measure

(combining the aforementioned index and a broader one, as defined in Section 2.4). A possible ex-

planation for this discrepancy is that this hybrid index captures searches reflecting people awareness

of risk, but that they do not translate it into beliefs if they do not associate it with “Flood”.

This result can be interpreted in light of what happens in each of these periods. After the

preliminary base flood elevations (BFE) are released by FEMA, the agency must publish the notice

in at least 2 local newspapers. Around this time, public meetings and open houses are also hold, as

emphasized by Shawnee County Kansas documentation about their local 2010 flood map update:

“Sometime between January and March 2010, is when it is anticipated FEMA will publish the

preliminary Base Flood Elevations (BFEs) in the Federal Register [...] Community officials have

determined to hold no less than six (6) public meetings/open houses beginning January 2010.

Questions generally range in topic from flood insurance and building requirements to mitigation

opportunities and map changes.”31

This finding echoes estimates presented in Table 11, when I showed that the estimate for Post

Update * OutIn was negative and statistically significant (−0.045∗∗) when estimated on properties

valued above $250,000.

I discuss a candidate mechanism in Table 14. Column (1) confirms that in the Map Pending

period, the Preliminary BFE period and on the month of the effective map update, more articles

related to flood insurance are published by local newspapers (coefficients of 0.264∗∗∗, 0.243∗∗ and

0.376∗ respectively). These coefficients are not statistically significant in specifications without

county fixed effects (column (2)).

In columns (3)-(4), Google Index is regressed on the different map update periods interacted

with the monthly number of insurance related articles (weighted by their sentiment score) published

in local newspapers. This makes the link between the increase in insurance articles published in

these periods and the negative coefficient of −0.412 for Preliminary BFE * High Awareness Month

estimated in column (6) of Table 13.

In columns (5)-(6), the alternative measure of awareness, Google Index (b) is regressed on the

different map update periods interacted with the monthly number of insurance related articles

(weighted by their sentiment score) published in local newspapers.

31Source : http://snmapmod.snco.us/fmm/document/09-flood-map-production-process.pdf.
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Table 14: Event Study - Impact of the map updating process on local newspaper articles and Awareness

Dependent variable:

Insurance Articles (scaled) Google Index Google Index (2)

(1) (2) (3) (4) (5) (6)

Preliminary BFE 0.243∗∗ (0.108) 0.047 (0.172) −0.131 (0.094) −0.385∗∗∗ (0.114) −0.217∗ (0.117) −0.421∗∗∗ (0.129)
Prelim * Insurance Art. −0.014 (0.016) −0.002 (0.023) −0.019 (0.026) −0.010 (0.027)
Prelim * Insurance Art. * Score −0.004∗∗ (0.002) −0.004∗∗ (0.002) −0.002 (0.002) −0.002 (0.002)
Appeal 0.058 (0.108) −0.134 (0.149) −0.207∗ (0.110) −0.454∗∗∗ (0.119) −0.453∗∗∗ (0.133) −0.662∗∗∗ (0.130)
Appeal * Insurance Art. −0.015 (0.023) −0.006 (0.022) −0.019 (0.025) −0.012 (0.023)
Appeal * Insurance Art. * Score −0.003 (0.003) −0.001 (0.002) 0.001 (0.003) 0.002 (0.002)
Map Pending 0.264∗∗∗ (0.101) 0.064 (0.145) −0.415∗∗∗ (0.104) −0.694∗∗∗ (0.122) −0.478∗∗∗ (0.121) −0.703∗∗∗ (0.117)
Pending * Insurance Art. 0.019 (0.018) 0.039∗ (0.020) −0.004 (0.023) 0.008 (0.020)
Pending * Insurance Art. * Score 0.0002 (0.001) 0.001 (0.001) 0.001 (0.001) 0.001 (0.001)
Update 0.376∗ (0.200) 0.126 (0.236) −0.170 (0.185) −0.435∗∗ (0.186) −0.188 (0.182) −0.397∗∗ (0.191)
Update * Insurance Art. 0.032 (0.093) 0.043 (0.100) −0.007 (0.100) −0.004 (0.099)
Update * Insurance Art. * Score −0.027∗∗∗ (0.004) −0.024∗∗∗ (0.005) −0.028∗∗∗ (0.003) −0.026∗∗∗ (0.004)

Flood controls Y Y Y Y Y Y
Location FE County County County
Year FE Y Y Y Y Y Y
Month FE Y Y Y Y Y Y

R2 0.286 0.034 0.305 0.277 0.293 0.273
Within R2 0.033 0.025 0.19 0.192 0.186 0.189
Observations 22,704 22,704 22,704 22,704 22,704 22,704

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the results of the event study estimating the impact of each of the map updating period on the number of insurance articles in columns
(1) and (2) and on the main Google Index in columns (3) and (4), and on Google Index (b) in columns (5) and (6). The models are run on the local newspaper
panel of the 172 newspapers with available circulation estimates between 2006 and 2016. Observations are at the newspaper-month level.
The number of insurance articles is scaled from 0 to 100 in a similar way to the Google Index. Preliminary BFE is a dummy equal to 1 if the property was
sold between 12 and 10 months before the updated map became effective ; Appeal Period is a dummy equal to 1 if the property was sold between 9 and 7
months before the map became effective on the Map Update Month and Map Pending is a dummy equal to 1 if the property was sold between 6 and 1 months
before the Map Update Month.
Standard errors are clustered at the Newspaper level and presented next to estimates. In columns (3) and (4), observations are weighted by newspaper
circulation.
The lower the insurance articles Score, the more negative the articles. The variable Score go from -108 to 50.
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Controlling for County fixed effects, I estimate coefficients of −0.004∗∗ and −0.027∗∗∗ for the

interactions between the number of insurance articles weighted by their sentiment score, the Pre-

liminary BFE the Map Update Month periods respectively. For example, for a given number of

insurance articles published by a newspaper at each stage of the map update process, a 10 points

decrease in their average score will lead to an increase in Google Index of 0.04 and 0.27 points. The

number of insurance articles itself is only relevant in the map pending period when not controling

for county fixed effects (0.039∗).

These results suggest that insurance concerns are key in homeowners internalization of flood

risk in their buying decisions. More flood insurance-related articles are released all along the map

update process, and I identify that these publications, when associated with a negative sentiment

score, translate into increased awareness in the Preliminary BFE and Month Update periods.

However, future work will make sure to investigate why no significant effect of Prelim * Insurance

Art * Score can be estimated when the alternative measure of awareness, Google Index (b) is used,

while it is with this index only that the impact on real estate prices (Table 13) can be estimated

precisely.

4.3 Robustness Checks

I run a series of robustness checks to address possible remaining concerns for the three models

presented above.

First, I account for the fact that houses in the floodplain are more likely to have been flooded,

and flooded at a greater intensity; than properties outside the floodplain. To do so, I exclude

properties located in counties mentioned in a Flood or Hurricane Presidential Disaster Declaration
32 before the property’s sale. In Appendix B.2, Tables 20, 21 and 22 present the corresponding for

estimates for the hedonic analysis, the simple unit fixed effect model and the awareness-augmented

unit fixed effect modelrespectively.

The Floodplain coefficients of the hedonic analysis estimated on non-flooded counties (Table

B.2) are all non statistically significant, even for distance-to-coast cutoffs greater than 0.5 miles.

The absence of statistical significance compared to the main results presented in Table 9 may mean

that in non-flooded counties, the premium associated with local amenities potentially captured by

the Floodplain coefficient is less strong and simply balances the discount associated with flood risk.

This is likely to be true if non-flooded counties are not coastal counties.

The estimates for risk-reclassification in Table 21 are consistent with the main estimates (Table

11) and of a slightly smaller magnitude (−0.037∗ versus −0.045∗∗ for upward risk-reclassification of

properties above $250,000).

32As of today, my flood history database only contains floods between, 2006 and 2016 and are therefore
only excluded properties that were flooded before, starting in 2006. Future work will need to account for
floods before the 2006-2016 period.
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In Table 22, the coefficients for Post Update * OutIn * High Awareness DMA drops and only

remains significant at the 90% confidence interval when estimated on the full sample (0.109∗ versus

−0.141∗∗∗). It is not significant anymore for the sample of > $250,000 properties (−0.071(0.049)

versus 0.072∗∗).

These results suggest that local flood history impacts real estate participants’ expectation about

future floods and, more precisely, that in counties that have not experienced natural disasters in

recent years, flood risk as measured by the SFHA is less credible to homeowners.

Second, I investigate how my flood risk reclassification estimates change when restricting my sample

to coastal properties.

Third, I have chosen before to run the risk-reclassification difference-in-differences model on the

panel of repeated sales restricted to properties valued above $250,000. Figure 13 graphs the evolution

of the Post Update * OutIn and Post Update * InOut when moving up this threshold between $50,000

and $400,000, which corresponds to the 90th percentile of the transaction price of properties in my

repeated sales panel. The Post Update * InOut coefficient is always positive and overall significant,

suggesting that getting out of the floodplain is a positive signal on the property’s value for all

properties. The Post Update * OutIn coefficient is close to 0 until the $180,000 threshold and is

negative and statistically significant at the 90% confidence interval starting around $220,000. The

small size of the sample of properties above $320,000 might explain why the coefficient’s significant

level falls while remaining negative when moving the price lower bound up.

The absence of a clear coefficient change at $250,000 goes against the use of a random disconti-

nuity design model (RDD) and is consistent with the fact that transaction price might be different

(lower) to buyers’ valuation of the property, leading them to potentially insure it above its transac-

tion value.

Fourth, I check that my results about the impact of awareness on the degree of flood risk

capitalization on the housing market are robust to alternative definitions of High Awareness. Table

23 compares the results of the map update event study when high awareness is defined as being

above or equal the mean (rather than the third quartile) of the full sample’s Google Index (Google

Index equal to 4.6). The coefficient for Preliminary BFE * High Awareness Month (2b) is negative

and statistically significant for the second Google index definition, and negative but not statistically

significant for the first one.
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5 Discussion

5.1 Concluding Remarks

There is no consensus in the empirical literature on the impact of objective flood risk on real estate

prices. In this paper I have tried to answer two questions : When are people aware of flood risk?

When does the real estate market capitalize this risk? Taken together, they offer new insights for

this absence of agreement.

First, I have emphasized that flood risk was capitalized heterogeneously on the housing market

and that this heterogeneity had three potential complementary explanation. I have been able to

consistently estimate flood risk associated discounts for houses above $250,000 only. A first explana-

tion for this finding can be found in the behavioral economic literature: Handel and Schwartzstein

(2018) review situations where people fail to use available information to make decisions and insist

on the existence of “mental gaps”. Limited financial, scientific literacy or a high discount rate, which

are factors highly correlated with people’s socioeconomic status, could lead less educated people to

under estimate flood risks. A second explanation is to find on the flood insurance side, as $250,000

is also the maximum deductible under the National Flood Insurance Program. Observing flood risk

discounts for properties above this threshold would be consistent with homeowners pricing damage

not covered by insurance. Insurance concerns also seem to drive flood risk awareness up. Besides, I

have found that articles about flood insurance featuring a low sentiment score (negative) amplified

the impact of flood map updates on awareness.

Does this imply that awareness is a friction-less channel between information shocks and flood

risk beliefs? No, it does not: real estate prices seem to capitalize flood risk more when transactions

happen around a small subset of all related information shocks only. Flood experience has a positive

impact on the degree to which awareness translates into beliefs, suggesting that, in this case, not

only people know this risk exists, but they believe it could happen to them.

5.2 Possible Extensions

This paper has focused on estimating the impact of flood risk and on understanding whether updates

in flood risk beliefs systematically followed improvements in flood risk awareness. A number of points

would deserve to be investigated in the future.

Additional Robustness Checks

For the sake of time, only a limited number of robustness checks are presented here, but future work

should investigate at least three other potential concerns.

First, while all covariate coefficients of the hedonic analysis have the expected sign, the magni-

tude for Ln (Square Feet) is significantly larger than in comparable studies, especially for the 0.25

miles cutoff. I will make sure to investigate this issue and delve into two potential sources for these
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differences, namely Zillow database’s highly state-specific property size sources and consequences

of my specifications with interacted fixed effects33.

Second, I believe I could improve the hedonic model by adding controls to better capture topo-

logical and location specific amenity values such as a property’s elevation (Bernstein et al. (2017)

), proximity to parks, Starbucks (Troy and Romm (2004)), by moving to a more precise distance-

to-coast measure, and by adding blockgroup or block specific neighborhood characteristics34

Extending the event study to post flood map update periods

Besides, I would be interested in extending the event study presented in Section 4.2.3 to post flood

map update periods. More specifically, I would like to study whether the estimated effect of flood-

risk reclassification on property prices is long lasting or not. In a study on flood insurance take

up after a neighboring flood, Gallagher (2014) estimates that homeowners’ reaction over time is

consistent with a Bayesian learning model with forgetting.

Improving the scope of information shocks

Extending the range of information shocks by adding other information sources could be done in

two main ways. First, following the methodology developed by Snyder and Stromberg (2010) and

exploited by Gallagher (2014) to study flood insurance take up, for analyzing the impact of local

TV media and their content.

Furthermore, future work should think more about how to measure the intensity of public

discussions, meetings, and official declarations about flood risk. Investigating this dimension of

heterogeneity could bring additional light on how a community’s dynamism, structure and polit-

ical life matter for the internalization of environmental and economic issues like flood risk by the

population.

Implications for Structural Models

Last but not least, these findings have potential implications for structural housing models. Gibson

et al. (2017) developed a theoretical structural model to explain changes in house prices after

the Hurricane Sandy, an insurance reform and flood map updates. Their goal was to isolate the

role of belief update. One could imagine augmenting this model with awareness and media pressure

heterogeneity in order to explain better heterogeneity of flood risk pricing observed in the data. More

generally, this paper’s findings help to understand how households update their beliefs. Modeling

this updating process is a key dimension of structural models, and at the frontier of research.

33Bernstein et al. (2017) find lower magnitude coefficients but (1) the log of their sample’s average building
size is lower (3.23 vs 7.26) and (2) they are able to control for 4th order polynomial distance to the beach,
in addition to distance-to-coast buffers fixed effects thanks to very granular distance measures.

34The main specification has a Census Tract * Month fixed effect. Adding annual demographic controls at
the county level like median income, median age or share of hispanic population would be redundant.
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A Data

A.1 Geographical Coverage

Figure 7: Mapping of counties into DMAs

This map shows the counties covered by each of the 12 DMAs studied in this paper. Each DMA contains
between 5 and 29 counties. The corresponding states are North Carolina (NC), South Carolina (SC), Virginia
(VA) and Georgia (GA).

A.2 Housing Data

Are coded as residential properties, properties within any of the following categories on the Trans-

action table: Apartment Building (AP), Condominium (CD), Cooperative (CP), Mobile Home

(MB), Multi-Family Dwelling (MF), Manufactured Home (MH), Mixed Use (MX), New Construc-

tion (NW), Planned Unit Development (PD), Residential (RR), Single Family Residence (SR),

Unimproved Land/Lot (UL), Vacant Land/Lot (VL). If missing, filtering is based on the residential

codes on the Assessment table.
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A.3 Flood risk data

Figure 8: Flood Map Updates - Community level

This graph displays the number of Communities (identified by a Community Identification Number (CID)),
which have seen their Flood Insurance Rate Map (FIRM) updated in a given month. A community corre-
sponds to a small town or a city’s neighborhood. PDD data is extracted from FEMA’s website.

A.4 Flood History

A.5 Google Search Index

Comparison with Neutral search terms

A.6 Local News

Sample building

Article Categories

Monthly articles count
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Figure 9: Total number of Presidential Disaster Declarations

This graph shows the number of counties that filled a Presidential Disaster Declaration (PDD) for a Flood
or a Hurricane in the 12 DMAs covered by the analysis between January 2006 and December 2016. PDD
data is extracted from FEMA’s website

B Robustness Checks

B.1 What Drives Awareness ?
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Figure 10: Google Search Index Comparison - South Carolina

This graph compares the evolution of two Google searches between 2006 and 2018 in South Carolina according to Google’s relative
search index. Data is from Google Trends. Unlike the search for Wine, whose popularity follows seasonal trends (note the December
peaks), the search for Flood is not subject to the same seasonality. Instead, it is low and stable. Its peaks correspond to major flood
events (see for example the North American Storm Complex in October 2015 and Hurricane Matthew in July 2016).

Table 15: News articles chosen keywords

flood flood [and] risk
flood [and] map flood [and] mitigation
flood [and] surge sea [and] level [and] rise

floodplain Grimm Waters
flood [and] insurance flood [and] hurricane

National [and] Flood [and] Hazard [and] Layer Biggert Waters
Flood [and] Insurance [and] Rate [and] Map flood [and] storm

map [and] modernization flood [and] study
flood [and] hazard FIRM [and] flood
flood [and] plain floodway
flood [and] lines risk of future flooding

NFIP

This table lists the terms used on the NewsBank plateform to constitute my local
newspaper articles sample. All articles published by newspapers covering the 199
counties of interest were included in the sample if they contained at least of of
these expressions.
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Table 16: Word categories

Category Words

INSURANCE Premium, Insurance, Rate, Ordinance, Flood insurance change, Insured, Coverage

LAW Law, Congress, Regulation, Biggert Waters, Grimm Waters, Senate, Bill

FEMA FEMA, Federal

CHANGE Change, Update, New, Adapt, Reform, Modernization

FLOOD MAP Flood map, Disclose flood settlement, Flood risk, Map, Flood planning,
Flood control, Prevent, To cut flood damage, Mitigation plan

MEETING Public event, Meeting, Conference, Open house, Panel

FLOOD RECOVERY Recovery, Recovering, Recover, Damage, Repairs, Relief, Storm response,
Rebuild, Victim, Debris removal

FLOOD Emergency, Flooded, Rain, Katrina, Hurricane, Storm, Matthew,
Tornado, Tsunami

CLIMATE CHANGE Climate change, Global warming, Warmer, Wetter, Sea level rise,
Carbon, Rising sea level, Scientist

HOUSING Residents, Homeowners, House, Housing, Developers, Real estate

This table lists the words and expressions falling into each of the 10 categories used to classify news articles.
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Figure 11: Monthly Articles Count

This figures plots the monthly number of newspaper article releases between January 2006 and December 2016 for the 187 local
newspapers in my panel. Articles are recovered from Newsbank. The total number of articles is plotted in red. Counts for five of the
article categories constructed according to the rule described in Table 20 are also displayed on the graph. Peaks in article release
correspond to major floods.
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Table 17: The drivers of awareness
No County Fixed Effect

Dependent variable:

Google Index

(1) (2) (3) (4)

Flood 16.367∗∗∗ 14.758∗∗∗

(1.225) (1.394)
Ln (Flood damage) 0.094 0.095

(0.148) (0.148)
Map Update 0.107 0.041 0.105 0.038

(0.173) (0.177) (0.173) (0.177)
Articles (weighted) 0.032 0.031

(0.027) (0.027)
Flood * Articles (weighted) 0.267∗∗

(0.113)
Ln (Flood damage) * Articles (weighted) 1.098∗∗∗ 0.997∗∗∗

(0.080) (0.092)
Map Update * Articles (weighted) 0.016∗∗

(0.007)

County FE
Year FE Y Y Y Y
Month FE Y Y Y Y

R2 0.249 0.258 0.257 0.264
Within R2 0.169 0.179 0.178 0.186
Observations 26,268 26,268 26,268 26,268

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the ordinary least squares estimates corresponding to equation (1). The
dataset covers 199 counties between 2006 and 2016 (132 months). Specifications are similar to
Table 5 but no county fixed effect is included. Standard errors are presented below estimates
and are clustered at the county level. Results are consistent with the estimates presented in
Table 5.
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Table 18: The drivers of awareness - Newspaper panel
No County Fixed Effect

Dependent variable:

Google Index

(1) (2) (3) (4)

Flood 12.307∗∗∗ 12.679∗∗∗

(1.197) (1.213)
Map Update 0.368∗ 0.364∗ 0.385∗∗ 0.382∗∗

(0.191) (0.191) (0.168) (0.168)
Articles 0.070∗∗∗ 0.069∗∗∗

(0.016) (0.016)
Flood * Articles 0.299∗∗∗

(0.081)
Ln (Flood damage) 0.832∗∗∗ 0.856∗∗∗

(0.078) (0.079)
Map Update * Articles 0.018 0.019

(0.134) (0.134)
Ln (Flood damage) * Articles 0.018∗∗∗

(0.005)
Flood Recovery Articles 0.097∗∗∗ 0.094∗∗∗

(0.025) (0.025)
Insurance Articles 0.026 0.027∗

(0.016) (0.016)
Insurance Articles * Score −0.002 −0.002

(0.002) (0.002)
Flood * Flood Recovery Articles 0.235∗∗

(0.105)
Map Update * Insurance Articles −0.003 −0.003

(0.057) (0.057)
Ln (Flood damage) * Flood Recovery Articles 0.014∗∗

(0.007)
Map Update * Insurance Articles * Score −0.018∗∗∗ −0.018∗∗∗

(0.006) (0.006)

Location FE
Year FE Y Y Y Y
Month FE Y Y Y Y

R2 0.297 0.303 0.305 0.34
Within R2 0.216 0.222 0.224 0.231
Observations 24,684 24,684 24,684 24,684

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the results of equation (1) estimated on a monthly newsaper panel of 187 local
newspaper between 2006 and 2016. Specifications are similar to Table 7 but no county fixed effect
is included. Standard errors are presented below estimates and are clustered at the newspaper level.
Results are consistent with the estimates presented in Table 7 .
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Table 19: The drivers of awareness - Newspaper panel dataset
By Article category

Dependent variable:

Google Index

(1) (2) (3) (4)

Flood 12.335∗∗∗ (1.213) 12.009∗∗∗ (1.227) 12.232∗∗∗ (1.205) 12.120∗∗∗ (1.198)
Map Update 0.577∗∗∗ (0.164) 0.594∗∗∗ (0.165) 0.610∗∗∗ (0.169) 0.559∗∗∗ (0.160)
Flood Recovery Articles 0.116∗∗∗ (0.026) 0.154∗∗∗ (0.022) 0.218∗∗∗ (0.042) 0.134∗∗∗ (0.027)
Insurance Articles 0.025∗ (0.015)
Insurance Articles * Insurance Score −0.002 (0.002)
Flood map Articles −0.001 (0.009)
Flood map Articles * Flood Map Score −0.0003 (0.001)
FEMA Articles −0.063∗∗∗ (0.020)
FEMA Articles * FEMA Score −0.001 (0.001)
Law Articles −0.002 (0.006)
Law Articles * Law Score −0.002 (0.001)
Flood * Flood Recovery Articles 0.222∗∗ (0.104) 0.285∗∗∗ (0.106) 0.237∗∗ (0.105) 0.268∗∗∗ (0.095)
Map Update * Insurance Articles 0.007 (0.058)
Map Update * Insurance Articles * Insurance Score −0.021∗∗∗ (0.005)
Map Update * Flood map Articles 0.008 (0.052)
Map Update * Flood map Articles * Flood map Score −0.008 (0.006)
Map Update * FEMA Articles −0.033 (0.075)
Map Update * FEMA Articles * FEMA Score −0.006 (0.009)
Map Update * Law Articles 0.018 (0.060)
Map Update * Law Articles * Law Score −0.0002 (0.003)

Location FE Y Y Y Y
Year FE Y Y Y Y
Month FE Y Y Y Y

R2 0.335 0.332 0.333 0.333
Within R2 0.225 0.222 0.224 0.224
Observations 24,684 24,684 24,684 24,684

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the results of equation (1) estimated on a monthly newsaper panel of 187 local newspaper between 2006 and 2016.
Specifications are similar to Table 6 but no county fixed effect is included. Standard errors are presented below estimates and are clustered at
the newspaper level. Results are consistent with the estimates presented in Table 6. In column (1) and (2), the coefficient for the interaction
between Ln (Flood damage and Articles is significant at the 90% confidence interval.
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B.2 Flood Risk and The Housing Market

Robustness to flood history

Table 20: The Impact of Floodplain Status on House Prices
Excluding Past Floods and Hurricanes

Dependent variable:

Ln Price

(1) (2) (3) (4) (5) (6)

Floodplain 0.125 0.084 0.035 0.043 0.047 0.037
(0.126) (0.076) (0.066) (0.058) (0.042) (0.034)

Size Controls Y Y Y Y Y Y
Age Controls
T * L * D * B Y Y Y Y Y Y
T * L * D * B * BF * U
Location FE Tract Tract Tract Tract Tract Tract
Maximum distance to the coast 0.25 mile 0.5 mile 1 mile 2 miles 5 miles 10 miles

R2 0.836 0.893 0.859 0.85 0.844 0.841
Within R2 0.062 0.029 0.081 0.091 0.087 0.087
Observations 1,180 3,481 11,217 24,624 54,522 68,628

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the ordinary least squares estimate for the explanatory variable of interest, Flood-
plain, corresponding to equation (2) with samples restricted to properties within 0.25, 0.5, 1, 2, 5
and 10 miles from the coast. Real estate transaction data and house characteristics are from Zillow.
Floodplain data are from FEMA. I trim the real estate dataset to exclude the bottom and top 1%
sales amount. Unlike Table 9, transactions of properties located in counties mentioned in a Flood
or Hurricane Presidential Disaster Declaration between 2006 and the month of the transaction are
excluded.
All specifications include 4th order polynomials for building size as covariates as well as simple and
interacted fixed effects for time, location, distance to the coast buffer (every 0.05 mile up to 0.5 mile,
every 0.1 mile up to 10 miles) and number of bedrooms. Standard errors are presented below estimates
and clustered at the location fixed effect level and at the source of the size data (Total Building Area,
Living Building Area, Heated Building Area...).
Results are consistent to the ones presented in table 9 for the full sample.
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Table 21: Risk Reclassification Impact on House Prices
Excluding Past Floods and Hurricanes

Dependent variable:

Ln Price

(1) (2) (3) (4)

Post Update 0.205∗∗∗ 0.023∗∗∗ 0.269∗∗∗ 0.013
(0.007) (0.008) (0.058) (0.089)

Post Update * OutIn −0.001 −0.037∗

(0.022) (0.022)
Post Update * InOut 0.013 0.113∗∗

(0.038) (0.056)

Categories OutOut, OutIn OutOut, OutIn InIn, InOut InIn, InOut
Minimum Transaction Price 250,000 250,000

Ref cat OutOut OutOut InIn InIn
Year dummy Y Y Y Y
Month dummy Y Y Y Y
Property FE Y Y Y Y

R2 0.872 0.893 0.899 0.859
Within R2 0.065 0.062 0.127 0.262
Observations 39,842 9,582 802 230

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the results of the unit fixed effect model summarized in equation (3) estimated
on a panel of properties that were sold both before and after their community’s map update. Real
estate transaction data and house characteristics are from Zillow. Floodplain data are from FEMA. I
trim the real estate dataset to exclude the bottom and top 1% sales amount. When the property was
sold more than once before or after the update, only the closest sale to the update is considered.
Properties sold in counties mentioned in a Flood or Hurricane Presidential Disaster Declaration
before the second sale are excluded from the panel. In column (1) and (2), OutOut and OutIn are
considered. The reference category is the OutOut properties sold before the update. In column (3)
and (4), InIn properties are compared to InOut properties. All specifications include property fixed
effects as well as year and month dummies. Unlike odd columns, results presented in even columns
are estimated on a subset of the sample excluding properties sold for less than $250,000. Standard
errors are presented below estimates and are not clustered.
While the magnitude of the Post Update * OutIn and Post Update * InOut coefficients is larger for
columns (2) and (4), no interaction is statistically significant at conventional confidence intervals.
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Table 22: The Role of Awareness in Risk Reclassification Impact on House Prices
Excluding Past Floods and Hurricanes

Dependent variable:

Ln Price

(1) (2) (3) (4)

Post Update 0.205∗∗∗ 0.023∗∗∗ 0.205∗∗∗ 0.023∗∗∗

(0.007) (0.008) (0.007) (0.008)
High Awareness Month 0.008 −0.009

(0.006) (0.006)
Post Update * OutIn 0.018 −0.017 −0.001 −0.034

(0.024) (0.026) (0.024) (0.026)
Post Update * OutIn * High Awareness DMA −0.109∗ −0.071

(0.057) (0.049)
Post Update * OutIn * High Awareness Month 0.0002 −0.006

(0.054) (0.050)

Sample OutOut, OutIn OutOut, OutIn InIn, InOut InIn, InOut
Minimum Transaction Price 250,000 250,000

Ref cat OutOut OutOut InIn InIn
Year dummy Y Y Y Y
Month dummy Y Y Y Y
Property FE Y Y Y Y

R2 0.872 0.893 0.872 0.893
Within R2 0.065 0.062 0.065 0.062
Observations 39,842 9,582 39,842 9,582

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the results of the unit fixed effect model presented in equation (3) augmented with measures of
awareness on the panel dataset of repeated sales restricted to OutOut and OutIn properties. Real estate transaction
data and house characteristics are from Zillow. Floodplain data are from FEMA. I trim the real estate dataset to
exclude the bottom and top 1% sales amount. Properties sold in counties mentioned in a PDD between 2006 and the
month of the first sale are excluded from the sample. In columns (1) and (2), High Awareness DMA is a dummy equal
to 1 if average Google Index in the Designated Market Area (DMA) where is located the property is above the median
of Google Index averages. In column (3) and (4), High Awareness Month is a dummy equal to 1 if the monthly-DMA
Google Index is above the 75th percentile of the sample’s monthly-DMA indexes. All specifications include property
fixed effects as well as year and month dummies. Unlike odd columns, results presented in even columns are estimated
on a subset of the sample excluding properties sold for less than $250,000. Standard errors are presented below estimates
and are not clustered.
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Robustness to coastal sampling

Figure 12: Risk Reclassification Impact - Different Distance-to-coast thresholds

The graph on the top of the figure displays the evolution of the Post Update * OutIn coefficient for the
risk-reclassification unit fixed effect model when moving up the distance-to-coast threshold used to define the
sample. The specification is similar to the one presented in column (1) of Table 11.
The graph on the bottom of the figure displays the evolution of the Post Update OutIn coefficient for the
risk-reclassification unit fixed effect model when moving up the distance-to-coast threshold used to define the
sample. The sample is restricted to properties with a transaction price above $250,000. The specification
is similar to the one presented in column (2) of Table 11. 90% confidence intervals are represented by the
dotted blue lines.
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Robustness to Transaction Price Lower Bound

Figure 13: Risk Reclassification Impact - Different Price Lower Bounds

The graph on the top of the figure displays the evolution of the Post Update * InOut and coefficient for
the risk-reclassification unit fixed effect model when moving up the lower bound of the transaction price of
properties included in the sample. Specifications are similar to those presented in columns (3) and (4) of
Table 11. The reference category are InIn properties sold before the map update.
The graph on the bottom of the figure displays the evolution of the Post Update * OutIn coefficient for
the risk-reclassification unit fixed effect model when moving up the lower bound of the transaction price
of properties included in the sample. Specifications are similar to those presented in columns (1) and (2)
of Table 11. The reference category are OutOut properties sold before the map update. 90% confidence
intervals are represented by the dotted blue lines.
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Robustness to Different Awareness Definitions

Table 23: Event Study: The role of awareness during the updating process
Different Awareness Definitions

Dependent variable:

Ln Price

(1) (2)

Pre Update Process * High Awareness (1b) −0.001 (0.032)
Pre Update Process * High Awareness (2b) −0.012 (0.028)
Preliminary BFE −0.045 (0.087) −0.072 (0.086)
Preliminary BFE * High Awareness (1b) −0.107 (0.156)
Preliminary BFE * High Awareness (2b) −0.414∗∗∗ (0.089)
Appeal Period 0.029 (0.161) 0.026 (0.108)
Appeal Period * High Awareness (1b) −0.045 (0.210)
Appeal Period * High Awareness (2b) −0.122 (0.162)
Map Pending −0.041 (0.085) −0.090 (0.090)
Map Pending * High Awareness (1b) 0.012 (0.101)
Map Pending * High Awareness (2b) 0.099 (0.128)
Map Update Month −0.021 (0.064) −0.022 (0.062)
Map Update Month * High Awareness (1b) 0.011 (0.028)
Map Update Month * High Awareness (2b) 0.017 (0.031)
Post Update 0.099 (0.299) 0.056 (0.121)
Post Update * High Awareness (1b) −0.334 (0.305)
Post Update * High Awareness (2b) −0.062 (0.401)

Sample OutIn OutIn
Minimum Transaction Price 250,000 250,000

Size Controls Y Y
T*B*C FE Y Y
Y*B*C FE Y Y

R2 0.756 0.756
Within R2 0.062 0.062
Observations 5,984 5,984

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table presents the results of the event study on the role of awareness during the
flood map updating process (see figure 6) for 3 different definitions of High Awareness.
The sample is restricted to properties experiencing risk reclassification after their
community’s map update (OutIn properties) and valued above $250,000. All columns
have the same specification than columns (3) and (4) of Table 13. In column (1), High
Awareness (1b) is a dummy equal to 1 if Google Index (1) is greater or equal to the
mean of the sample’s monthly-DMA indexes. In column (2), High Awareness (2b) os
a dummy equal to 1 if Google Index (2) is greater or equal to the mean of the sample’s
monthly-DMA indexes. Google Index (1) and Google Index (2) are defined in Table
13. Estimates are consistent across the two awareness definitions and significant for
Preliminary BFE * High Awareness for the second awareness definition.
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