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Abstract

In modeling competition among information designers, communication is often precluded be-

tween the receiver and the designers, except when sending signals. We develop a model of compe-

tition in persuasion mechanisms, based on common agency in mechanism design, in which senders

can communicate with a common receiver prior to sending their signals. In this setting, we would

expect the information designers to take advantage of the possibility to communicate to acquire

information on the persuasion mechanisms offered by the other senders. We show that restricting

attention to direct mechanisms is without loss of generality and thus that communication about

the “market" information is not needed. We also develop conditions under which an equilibrium

of the game in persuasion mechanisms exists. Finally we propose an application to a certification

game in which two companies compete to obtain a label.
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1 Introduction

In many economic contexts, several senders share information with a common receiver. People

acquire information from several newspapers. Multiple firms design advertising campaigns addressed

to the same pool of consumers. Many lobbyists try to convince one decision maker. This paper focuses

on such a multi-senders common-receiver framework, with three main ingredients. First the senders

can commit. So we place our-selves in the domain of information design rather than cheap talk. Our

senders are information designers. Secondly there is a single common receiver, whose actions affect

all information designers. In particular, the model we develop is not fit to replicate information game

in which several receivers interact. The common receiver may or may not have private information.

So our game is sometimes an asymmetric information game. Thirdly information designers cannot

disclose credible information about the other senders. It means that two competing firms advertising

their own product cannot reveal credible information about the quality of the other firm product for

example. We call this framework the multi-senders common-receiver game. Our objective is to derive

the tools for its analysis.

A typical example of a multi-senders common-receiver game in information design is several uni-

versities trying to persuade potential employers to hire their students. Each university can control

what information to disclose on their own students, but cannot influence the perception the potential

employer has about the others universities students. For example they can choose what to put on

the transcripts of their students. This would typically be a public persuasion mechanism. Now sup-

pose that there are different companies looking for workers with specific skills. Each universities can

then emphasize specific qualities of its student population in its communication toward a particular

recruiting firm. Commitment would be guaranteed by reputation concerns. These discriminating

communication policies are private persuasion mechanisms.

There are numerous other examples that fit into our framework. In certain markets, labeled

products have a clear comparative advantage. So companies supplying similar products compete

to obtain a label. This is the application we develop. Political candidates disclose information to

persuade voters with private bias. In a similar vein, lobbyists want to influence a politician with a

private stand on a project. Firms advertising campaign are also good examples. Consumers have

private preferences and firms want them to purchase their own products. In this setting, one can even

add a regulator. Consider a government that would like to persuade the public to reduce the amount
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of drinking by commissioning an educational campaign about the health risks of alcohol, while some

private companies are trying to maximize their profits by advertising alcoholic products. What is

the optimal way for the government to conduct the educational campaign? Should the government

address consumers differently depending on the advertising campaigns that target them? Should

the government provide every consumer with the same information? This would be an interesting

extension of the paper by Kolotilin et al. [18]. Two last applications could be the competition in

information disclosure that the government and the central bank constantly play when talking to

firms whose expectations are different; and entrepreneurs willing to convince an investor with private

knowledge on his wealth to fund their project.

We adopt the framework of information design with elicitation developed by Bergemann and Morris

in [7] to study competition between n senders who wants to persuade a common receiver to take a

particular action when they can communicate with the common receiver. Our analysis bridges the

common agency literature and the information design literature.

First we develop a framework, based on Myerson’s formalism in [22], for multi-senders common-

receiver games in information. Each sender can design a persuasion mechanism that reveals inde-

pendent pieces of relevant information to the receiver’s decision. These persuasion mechanisms are

proposed prior to observing the state of the world. So we define the contracts the senders can offer

to the common receiver and the competition in mechanisms game the senders play.

Once the game in mechanisms is well defined, we simplify the problem. From a game in arbitrary

mechanisms, we move to a game in incentive compatible direct mechanisms. This is a trivial step in

single information designer problem accomplished by the revelation principle. However when multiple

information designers compete, the revelation principle is not sufficient anymore; and complications

arise as shown in an example. When information designers communicate with a common receiver in

a competitive environment, the receiver has information about what is happening in the market that

senders do not have when they design direct contracts. If senders ask the common receiver about

this “market information", i.e., what persuasion mechanisms the other senders offer, the information

designers may be able to adapt their strategies to induce new equilibrium outcomes. From the com-

mon agency literature, we suspect that they could neutralize some of the effect of competition for

example. We show that this does not happen in multi-senders common-receiver information design

by constructing for every equilibrium in arbitrary persuasion mechanisms a robust, payoff-equivalent

equilibrium in incentive compatible direct persuasion mechanisms. These are theorems 5.1 and 5.2.
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Next we develop conditions under which an equilibrium of the multi-senders common-receiver game

exists based on [28].

Finally we propose an application to a certification game in which two wood producing companies

seek an eco-certification from a regulatory agency with a potentially private preference parameter.

This multi-senders common-receiver problem is first studied in a non strategic case. Then we find the

equilibrium in a competitive case and show that it is unique. In this example, competition weakly

increases information disclosure.

The paper is organized as follows. Section 2 discusses the relationship with the existing literature.

Section 3 sets up our basic environment. The equilibrium concept of multi-senders common-receiver

game is developed in Section 4. Section 5 presents the main theoretical results of the paper. Finally

Section 6 shows an application and Section 7 discusses what still need to be done. The proofs are

relegated to the appendix (section 8).

2 Relations to the existing literature

Our work falls in the literature on Bayesian persuasion that followed Kamenica and Gentzkow’s

article [16]. They model information disclosure when the sender can commit. In particular they prove

the equivalence of “statistical experiments" and Bayes-plausible distributions of posteriors, a result

that we will use extensively in our analysis of the information structures. Their article has stimulated

an active literature on information disclosure games in which the senders can commit to disclosure

mechanisms. Public persuasion, in which the information revealed must be identical for all receiver

types, has also been covered in Rayo and Segal [27].

The framework of Bayesian persuasion includes a single receiver and a single sender. A few articles

are also interested in information design with multiple senders. Ostrovsky and Schwarz [23] consider

a model in which schools disclose information about the ability of their students, with the objective

of maximizing the students’ overall placement. They also study how placements are affected by

the overall distribution of abilities. Gentzkow and Kamenica in [14] and [13] look at competition

in persuasion when senders can disclose any information on the state of the world. They identify

a set of conditions under which competition always increase information disclosure. In particular,

the information structure must be Blackwell-connected. Our paper departs from this assumption by
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assuming that each sender control information disclosure in one dimension of the state the world only.

Li and Norman in [19] develops an example that shows that the equilibrium can be less informative

when the condition of Gentzkow and Kamenica are not satisfied.

Some recent articles take a similar stand as ours in proposing a model of competition in information

disclosure in which each sender controls the information structure on one dimension of the state of

the world. Koessler et al. [17] prove the existence of an equilibrium in the information game played

between the sender using a result of Simon and Zame (1990). Albrecht in [2] studies competition in

information disclosure and the implication for political campaigns. His paper is closely linked to [4].

In the latter, Au and Kawai provide an equilibrium existence result and characterize the equilibria

in an example with two senders and in a special class of symmetric games. Their model resembles

a lot our application. Their existence results is also close to our theorem 5.4 although for a finite

state space and a finite action space. Our paper differs from these articles in that we assume that

the receiver may have private information. So in our framework, information designers compete in

persuasion mechanisms and not in information structure directly. We adopt a point of view closer to

common agency in mechanism design than non-cooperative game with symmetric information.

This link between information design and mechanism design has been noted by Bergemann and

Morris or Kolotilin et al. too. Informational structures in multi-receiver environments are studied in

Bergemann and Morris [6] and Bergemann and Morris [7]. The latter also develops the concept of

information design with elicitation when the receivers have private information. Bayesian persuasion;

with multiple receivers who interacts strategically in a mechanism design framework, is also considered

in [30] for example. Bayesian persuasion with asymmetric information has also been studied in a few

other papers. Perez-Richet [24] and Alonso and Câmara [3] look at Bayesian persuasion with a

privately informed sender. Closer to our work is maybe Kolotilin et al. [18]. They study a model of

Bayesian persuasion in which a receiver is privately informed. They determine the optimal private

persuasion mechanism. They also establish the equivalence between public persuasion and private

persuasion in their settings. Our paper pushes forward the connection between information design

with elicitation and mechanism design.

In particular, it develops the relationship between common agency in mechanism design and multi-

sender common-receiver games in information design with elicitation. So it draws upon the common

agency literature; which has provided an important insight into how principals support collusive
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outcomes and how the “failure" of the revelation principle when multiple designers compete can be

overcome. Epstein and Peters’s [12] constructs the universal type space that would allow the use of

the revelation principal in multi-principals mechanism design. They use the work of Mertens and

Zamir on the infinite beliefs regress in Bayesian game. However this type space turns out to be very

complex. So Peters, in [25] and [26], and Martimort and Stole, in [20], develop tools to solve for the

equilibria of the common agency problem in mechanism design. Our paper builds upon this tools to

simplify the search for equilibria in the multi-senders common-receiver game.

3 A framework for competition between information designers

3.1 Preliminaries

There are n information designers, also referred in what follows as senders (males), Di, i = 1, . . . , n.

There is only one common receiver: R. The common receiver R (she) has a continuous Von-Neumann

Morgenstern utility function, uR(a, ω, t), which depends on her action a ∈ A, her type t ∈ T , and the

state of the world ω ∈ Ω. The action space A, the type space T , and the state space Ω are assumed

to be compact metric spaces.

The information designers also have Von-Neumann Morgenstern continuous utility function, vi(a, ω, t), i =

1, . . . , n, where a is the action taken by the common receiver, ω is the state of the world, and t is the

type of the common receiver.

In what follows, whenever a topology is needed and is not explicitly defined, assume that it is the

weak∗ topology. Furthermore when a space of Borel probabilities on a compact metric needs to be

metrized, we use the Lévy-Prohorov distance1. See Chapter 11 of [11] for example.

All senders and the common receiver share a commonly known prior belief about the state of the

world, µ0(ω) ∈ int (∆(Ω)), where “int" means the “interior of".2 Furthermore the receiver R may have

private information. This is fully summarized by her type t ∈ T . The senders also share a common

prior belief about the distribution of t on T : t ∼ F (t).

The senders want to maximize their expected payoffs. No transfer is allowed, but the senders can

design “statistical experiments" or signal technologies to influence the common receiver’s behavior.

1We could equivalently use the dual-bounded Lipschitz distance.
2Whenever ∆(X) appears, where X is a compact metric space, it stands for the space of all Borel probabilities over

X.

6



Hence the latter observes the outcome of the “statistical experiments" conducted by the designers and

updates her beliefs using Bayes rule. Given her new beliefs on the state of the world, the receiver

chooses what action to take among her available actions a ∈ A. So she alters her behavior depending

on her new beliefs on the state of the world; and her new behavior may be beneficial to some senders.

The senders design “experiments" or signal technology that are the most beneficial to them. An

“experiment" (πi, Si) designed by Di consists of a compact metric signal space Si and a mapping

πi :[0, 1]→ Ω× Si

x→ (πai (x), πbi (x))

Following [16], we define πi to be a measurable function whose second component, πbi (x) = si, is

correlated with the first, πai (x) = ω. The first component is the state of the world and the second

component is the signal realization. x is uniformly distributed. The senders, Di, i = 1, . . . , n, and the

common receiver R observe the realizations of all signals πbi (x) = si, i = 1, . . . , n.

Conditional on a realization of signals s = (s1, . . . , sn), where si ∈ Si for all i ∈ {1, . . . , n}, the

receiver updates her beliefs on ω using Bayes rule:

µs(ω) =
π(s | ω)µ0(ω)∫
Ω
π(s | ω)µ0(ω)

where π(s | ω) is the joint distribution on s conditional on the state of the world being ω. µs is the

posterior belief on ω conditional on signal s being observed.

The receiver is indeed able to compute a posterior probability on ω when ∀i Si is a compact metric

space (therefore complete and separable). Hence when it is the case, there exists a regular conditional

probability as noted in Kamenica and Gentzkow [16]’s online appendix.

Hence for any measurable space R, any prior distribution P ∈ ∆(Ω × R), and any integrable

function y : Ω×R → R, there exists a R-measurable function E[y | r, P ] such that

∫
D

E[y | r, P ] dP =

∫
D

ydP

for all D ⊂ R (see [10], p. 393). let 1O the characteristic function of any measurable subset O ⊂ Ω.

Then E[1O | r, P ] defines a conditional probability measure in ∆(Ω), interpreted as the posterior

probability for O conditional on r and the prior P ∈ ∆(Ω×R).
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Using the posterior µs, the receiver R of type t decides what action a ∈ A to take to maximize

Eµs [uR(a, ω, t)] 3. However, µ depends on all signals being played. So the senders Di, i = 1, . . . , n,

compete to influence the common receiver’s action in the most favorable way to them. They play

the strategy that maximizes their expected payoffs given the initial prior, the strategies of the other

senders, and the action optimally chosen by R for any induced beliefs. We are interested in the

Bayesian Nash equilibria of the multi-senders single-receiver game defined above.

3.2 Competition in mechanisms

The problem of sender Di is to determine the strategy that maximizes his expected utility. We

authorize communication between the senders and the receiver. Our framework corresponds to infor-

mation design with elicitation (Bergemann and Morris, [7]) or, as put by Kolotilin et al. [18], private

persuasion.

Each sender Di can design a test (a communication mechanism) that ask the receiver to report

her private information and picks a signal technology conditional on her report and the realized state

of the world, in order to influence the decision made by the receiver. As noted by Bergemann and

Morris [7], the case of private persuasion is closely related to mechanism design; and we adopt this

perspective. The senders compete in mechanisms.

We will use Myerson [22]’s formalism to model competition between the senders. Begin with an

assumption.

Assumption 1. The common receiver is bound by the mechanisms offered by the information design-

ers4.

The mechanisms offered to the receiver determine her possible actions. Theses mechanisms are

defined below and will be referred in what follows as persuasion mechanisms. They are composed of a

communication space, a set of simple actions, and a contract, i.e., a mapping from the communication

space into the set of simple actions.

Set of simple actions A persuasion mechanism maps a message space to a set of simple actions

that can be taken by principals. Contrary to mechanism designs, here, the set of simple actions does

3Eµ corresponds to the expectation operator for a random variable distributed according to µ, i.e., Eµ· ≡
∫
supp µ · dµ.

4In particular, participation decision, if considered, is incorporated in the receiver’s set of actions.
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not include transfer. Instead it is the set of all “statistical experiments" that may be designed by a

sender, already defined above. So the set of simple actions available to information designer Di is

Ei = {(πi, Si)}, where (πi, Si) is a signal technology or “statistical experiment". Si is a compact metric

signal space5 and πi : [0, 1]→ Ω× Si is a measurable function.

Each simple action generates a signal when it maps a uniform random variable x to π(x) =

(πai (x), πbi (x)), where πai (x) = ω describes the state of the world and πbi (x) = si is the signal sent by

Di.

To further characterize Ei, we make the following assumption.

Assumption 2. The state of the world is a n-dimensional vector ω = (ω1, . . . , ωn) ∈ Ω. For all

i 6= j, ωi and ωj are independent random variables. They are independent of the receiver’s type t too.

∀i, ωi ∼ µi and ω ∼ µ =
∏n
i=1 µi. Information designer Di can only display credible information

about ωi.

The above assumption implies that all senders are experts in one dimension of the state of the

world only. For example, if the information designers are firms, it means that they can only display

information about their own product. It departs from Gentzkow and Kamenica model of competition

in persuasion [14] since it implies that the information set we consider is not Blackwell-connected6.

Then the set of simple actions available to sender Di is Ei = {(πi, Si)} such that πi is a measurable

mapping from [0, 1] into Ωi × Si. Furthermore, from Kamenica and Gentzkow [16]’s online appendix,

there exists a one-to-one mapping between the set of all “statistical experiments" and the set of Bayes-

plausible distributions of posteriors. A distribution of posteriors, denoted by τi, is an element of the

set of Borel probabilities on the compact metric space ∆(Ωi): τi ∈ ∆(∆(Ωi)), and a distribution

τi ∈ ∆(∆(Ωi)) is Bayes-plausible if

∫
∆(Ωi)

µi dτi(µi) = µi0

where µi0 is the marginal distribution on ωi derived from the prior distribution µ0 on ω.

So for any Bayes-plausible τi, there exists a signal technology (πi, Si) that induces it, and any

signal technology (πi, Si) induces a posterior that is Bayes-plausible, given that x is uniformly dis-

tributed. The set of simple actions that senders can then be replaced by the set of all Bayes-plausible
5The signal space is unique here without loss of generality. If some signals are only needed in some cases, then their

probability is set to zero the rest of the time.
6In this case, the equilibria of the game are not characterized by the maximal display of information, and must be

determined in a different way.
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distributions τi on ∆(µi). Rewrite

Ei =

{
τi ∈ ∆(∆(Ωi)) such that

∫
∆(Ωi)

µi dτi(µi) = µi0

}

Note also that allowing for randomization over simple actions does not change the set of simple

actions. Hence

Lemma 3.1. For any randomization over simple actions, there exists a non-random simple action

that induces the same distribution on posterior beliefs.

Proof. Let δi ∈ ∆(Ei). Consider τi ∈ Ei such that supp τi = ∪
τ ′∈supp δi

supp τ ′ and ∀µ ∈ supp τi

τi(µ) =

∫
Ei
τ ′(µ) dδi(τ

′)

Then τi ∈ Ei induces the same ex-ante distribution of posteriors on ∆(Ωi).

The set of simple actions is the set of actions that senders can take without communicating with

the common receiver. It will be the image set of the contracts.

Communication space Each information designer Di chooses an arbitrary measurable communi-

cation space Mi. The communication space is the set of messages the receiver can send to Di. In

particular, the communication space chosen by sender Di is not restricted to T . It may be large

enough to communicate the mechanisms chosen by the other senders7.

DenoteM =
∏n
i=1Mi the communication space offered to the common receiver.

Contract Finally, a persuasion mechanism also includes a contract, i.e., a measurable mapping from

the communication spaceMi into the set of simple actions Ei.8 We denote this mapping by

γi :Mi → Ei

The designers can only contract on the messages that are directly addressed to them and they have

commitment power. If Di offers a mapping γi that associates the simple action a to the message m,

he cannot play another simple action a′ 6= a when the receiver sends message m to him.
7Such communication space exists, as the infinite regress generated by mechanisms depending on mechanisms

depending on mechanisms. . . was proved to converge to an “universal communication space" by Epstein and Peters [12].
8Although considering only measurable mechanims may look like a restriction, it is not by lemma 3.1.
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Persuasion mechanisms We are now equipped to give a rigorous definition of a persuasion mech-

anism.

Definition 1. A persuasion mechanism for information designer Di is a tuple (Mi, γi) whereMi is

a communication space and γi is a contract.

We will index any persuasion mechanism by its contract, i.e., γi = (Mi, γi) with a slight abuse of

notation. So a persuasion mechanism associates to a receiver report a distribution on posterior beliefs

on ωi given the unobserved state of the world.

We say that a persuasion mechanism is private if |Mi| ≥ 2. A private persuasion mechanism

can discriminate in function of the report of the common receiver. On the contrary, a persuasion

mechanism is said to be public if |Mi| ≤ 1. The two setting can be compared as in [18]. When

a mechanism is public, the sender chooses a signal technology independently of the report of the

common receiver. In particular, in a public persuasion mechanism framework, any type of receiver is

informed identically. Observe that all public persuasion mechanisms can be replicated by a private

persuasion mechanism such that

γi(mi) = ei ∈ Ei, ∀m ∈Mi

Finally let Γi be the set of all feasible mechanisms available to information designer Di. Γi is

arbitrary since Mi is arbitrary. Define also Γ =
∏n
i=1 Γi, the set of feasible array of mechanisms

γ = (γ1, . . . , γn) ∈ Γ in the competition in mechanisms game played by the information senders.

Competition in persuasion mechanism We are interested in the competition in persuasion

mechanisms between the senders and in the display of information that results from this competition.

We want to determine the strategic behaviors of the information designers. Note that we allow the

senders to play randomization on mechanisms; so the strategies of sender Di lies in ∆(Γi). Finally we

assume that

Assumption 3. Senders can design credible tests costlessly. These tests are payoff irrelevant to the

common receiver conditional on the signal realization. They are also payoff irrelevant to all informa-

tion designers.

Therefore the only goal of the senders when picking a mechanism to play is to influence the action

of the unique receiver.
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3.3 Receiver’s behavior

The common receiver R faces the following decision problem. Given the persuasion mechanisms

chosen by the designers, she chooses what message to send to each of them, i.e., she chooses an

array of message m = (m1, . . . ,mn) ∈ M. Then, given messages, the information designers displays

some information on ω associated with the contracts (γ1(m1), . . . , γn(mn)). It induces posterior

beliefs µs on ω drawn from the joint distribution of posterior beliefs associated with the contracts

(γ1(m1), . . . , γn(mn)). Then, given her new beliefs µs, the receiver plays her optimal action.

So receiver R’s behavior depends on her utility function and on the mechanisms offered by the

senders. Following Peters [25], we define a communication strategy m̃ to be a measurable mapping9

m̃ : T × Γ→ ∆(M)

It describes the probability distribution on the whole set of messages that the receiver will send to

the information designers once she has observed all mechanisms.

Similarly we define a decision strategy as a measurable mapping

ã : T ×∆(Ω)→ ∆(A)

It describes the probability distribution on actions that the receiver chooses. Remark that this decision

strategy only depends on the receiver’s type and the signal realizations. In particular, it does not

depend on the offered mechanisms (that are payoff irrelevant).

The receiver has no commitment power. Since the common receiver’s payoff does not depend on

the mechanism played directly, she cannot punish the senders for playing a mechanism rather than

another conditional on the signal realization (i.e., induced beliefs). She is maximizing her expected

payoff given the signal realization and deviating to punish a sender constitutes a non-credible threat.

Then two different arrays of mechanisms γ and γ′ that produce the same signal realization, there-

fore the same posterior beliefs, induce the same distribution on actions. Furthermore, all mechanisms

that have the same image space, but may have different communication spaces, produce the same

interim expected distribution of actions.

Together a communication strategy and a decision strategy forms a continuation strategy: c =

9We adopt the convention that ·̃ refers to a distribution.
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(m̃, ã).

3.4 Timing of the game

Subsections 3.1, 3.2, and 3.3 describes the framework of our multi-senders common-receiver persua-

sion game. This subsection summarizes what has been developed above and insists on the timing of

the game for clarity. The persuasion game proceeds as follows

• At time t = 0, nature draws x ∼ U [0, 1]. No player observe the draw. This determines the state

of the world.

• At time t = 1, all information designers Di, i = 1, . . . , n, simultaneously propose a persuasion

mechanism. They may randomize over several mechanisms.

• At time t = 2, the common receiver R optimally chooses her communication strategy m̃.

• At time t = 3, signals are generated and the receiver updates her beliefs on ω using Bayes law.

• At time t = 4, the common receiver R optimally chooses her decision strategy ã given her new

beliefs µs.

4 Equilibrium

An equilibrium for the multi-senders common-receiver game is an array {δ1, . . . , δn, c}, where δi, i =

1, . . . , n, is a randomization on Γi and c is a continuation strategy, such that no player has a profitable

deviation in expected utility. We are interested in the Bayesian Nash equilibria of the game.

To characterize more precisely the equilibria, we first define what a continuation equilibrium is.

4.1 Continuation equilibrium

The receiver’s problem is a two-stages problem. First the receiver chooses optimally what com-

munication strategy to adopt, i.e., what messages to send to all designers, given the mechanisms

she is offered. Since we assumed that the senders are able to commit, it induces an array of signals

(s1 = γ1(m1)b(x), . . . , sn = γn(mn)b(x)), where γi(mi) is the signal technology associated with mech-

anism γi. γi(mi) is a measurable function from [0, 1] into Ω × Si and γbi (x) is the signal realization.

This signals realizations are publicly observed.

From subsection 3.2, we know that this array of signals generates posterior beliefs on ω: the

receiver updates her belief on ω. Then she optimally choose what action a to undertake given her
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new beliefs µs.

The continuation strategy played in equilibrium by the receiver, c = (m̃, ã) is determined by solving

the receiver’s problem using backward induction.

4.1.1 Equilibrium decision strategy

In the second stage of her problem, the common receiver has beliefs µs. From her posterior beliefs

µs, she determines her optimal decision strategy in ∆(A) to maximize

Eµs [uR(a, ω, t)] =

∫
Ω

∫
A

uR(a, ω, t) dã(t, µs) dµs(ω)

This strategy is independent of ω as the state of the world is not observable. This implies that

the receiver should put all the mass of ã(t, µ) ∈ ∆(A) at the maximizer of her expected utility

Eµs [uR(a, ω, t)] since, by Fubini,

∫
Ω

∫
A

uR(a, ω, t) da(t, µs) dµs(ω) =

∫
A

∫
Ω

uR(a, ω, t) dµs(ω) da(t, µs)

Therefore any mixed decision strategy that is part of a continuation equilibrium assigns zero proba-

bility to every action a ∈ A \ a∗(µs, t) where a∗(µs, t) = arg max
a∈A

∫
Ω
uR(a, ω, t) dµs(ω). We formalize

the above heuristic argument below.

Proposition 4.1. Let c = (m̃, ã) be a continuation equilibrium. For any beliefs µs, any type t ∈ T ,

and any Borel set A ⊂ A,

ã(t, µs)(A) = ã(t, µs) (A ∩ a∗(µs, t))

where ã(t, µs)(·) is the probability measure associated with the continuation equilibrium c. In particular,

if A ∩ a∗(µs, t) = ∅,

ã(t, µs)(A) = 0

Proof. The second part is an obvious consequence of the first part. So we only have to show the first

part. We do so by contradiction. Suppose that ã is a decision strategy that is part of a continuation

equilibrium, and there exists A ⊂ A such that ã(µs, t)(A ∩ a∗(µs, t)) 6= ã(µs, t)(A). Trivially A 6⊂
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a∗(µs, t).

Then ã(mus, t)(A∩a∗(µs, t)) < ã(mus, t)(A) sinceA∩a∗(µs, t) ⊂ A. ButA = {A \ (A ∩ a∗(µs, t))}∪

{A ∩ a∗(µs, t)}.

Then ã(µs, t)(A \ (A ∩ a∗(µs, t))) > 0, and we distinguish two cases.

First, suppose that A∩a∗(µs, t) = ∅. Then ã(µs, t)(A) > 0. Define ε > 0 such that ã(µs, t)(A)−ε >

0 and consider the following strategy

ã′(µs, t)(A′) =


ã(µs, t)(A′)− εã(µs, t)(A′ ∩ A) if A ∩A′ 6= ∅ and ā /∈ A′

ã(µs, t)(A′) + ε(ã(µs, t)(A′)− ã(µs, t)(A′ ∩ A)) if ā ∈ A′ and A ∩A′ 6= ∅

ã(µs, t)(A′) otherwise

where ā ∈ a∗(µs, t). ã′(µs, t)(·) is indeed a probability measure over A, so it is a decision feasible

strategy. Furthermore

∫
A

∫
Ω

uR(a, ω, t) dµs(ω) dã′(µs, t)(a)−
∫
A

∫
Ω

uR(a, ω, t) dµs(ω) dã(µs, t)(a)

≥ ε
∫

Ω

uR(ā, ω, t) dµs(ω)− εsup
a∈A

∫
Ω

uR(a, ω, t) dµs(ω)

> 0

since A∩a∗(µs, t) = ∅. Therefore we reach a contradiction: there is a profitable deviation so ã cannot

be part of a continuation strategy.

Secondly, suppose that A ∩ a∗(µs, t) 6= ∅. Then A \ a∗(µs, t) 6= ∅, {A \ a∗(µs, t)} ∩ a∗(µs, t) = ∅

and ã(µs, t)(A \ a∗(µs, t)) > 0. Thus the same reasoning as above yields a contradiction.

The above proposition is really that the support of any mixed decision strategy is included in

the set of maximizers of the expected utility of the receiver, which should be obvious. Any decision

strategy played in a continuation equilibrium belongs to ∆(a∗(µs, t)) for some µs induced by the

offered mechanism and the communication strategy played in this continuation equilibrium.

Let ã∗(µs, t) denote the set of optimal decision strategies for the common receiver of type t ∈ T

given her beliefs are µs ∈ ∆(Ω):

ã∗(µs, t) = arg max
ã∈∆(A)

∫
A

∫
Ω

uR(a, ω, t) dµs(ω)dã(a)
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From the above proposition, we know that ã∗(µs, t) ⊂ ∆(a∗(µs, t)) for all t ∈ T . Furthermore since∫
Ω
uR(a, ω, t) dµs(ω) is continuous in a, by the linearity of the integral, and in µs, by Lebesgue’s

dominated convergence theorem, and since A is compact, Berge’s maximum theorem yields that

a∗(µ, t) is a an upper hemicontinuous, non-empty valued, compact valued, correspondence from ∆(Ω)

into A. Therefore, as a direct consequence of Helly’s selection theorem, the set ã∗(µ, t) is compact

too, since there exists a homeomorphism (the cumulative distribution functions) between the space

of Borel probabilities on a compact set and the set of non-decreasing right-continuous functions on

this compact set into [0, 1]. Furthermore since a∗(µ, t) is non-empty, so is ã∗(µ, t). Thus ã∗(µ, t) is a

non-empty compact subset of ∆(A)10.

Indifference problem However, the set ã∗(µ, t) is not necessarily a singleton; and in our frame-

work, there are n different senders. So we cannot rule out the potential problem of the existence

of multiple optimal decision strategies for the receiver by picking the one preferred by the senders

since different senders may have different preferences over the action played by the receiver. There-

fore the concept of senders-preferred subgame perfect equilibrium of Kamenica and Gentzkow [16]

is not directly applicable. Instead, we will be breaking the potential tie between receiver’s multiple

maximizing decision strategies by defining a new simple bargaining subgame.

When the receiver is indifferent between several decision strategies given her beliefs µs, she picks

the one that maximizes the surplus function V2:

V2(ã, t) =

n∑
i=1

EµsEãvi(a, ω, t)

This function can be thought to represent a bargaining game where the bargaining power of all

information designer Di is identical11.

Define then ãc(µs, t) ∈ ã∗(µs, t), the optimal continuation decision strategy, as the distribution in

ã∗(µ, t) on receiver’s possible action A12 that is solution to the bargaining subgame. ãc(µs, t) always

exists since V2(ã, t) is continuous in ã by Lebesgue’s dominated convergence theorem and we showed

10A maybe more direct proof would use first Helly’s selection theorem to establish the compactness of ∆(A), and
then Berge’s maximum theorem to derive the compactness and non-emptyness of ã∗(µ, t), where the continuity in ã
comes from Lebesgue’s dominated convergence theorem. Note also that the compactness of ∆(A) could be established
as a consequence of Riesz representation theorem and Alaoglu’s theorem. See for example proposition 5.3 in [31], and
note that the convergence in the Lévy–Prokhorov metric is the same as weak convergence when the underlying space is
separable.

11If the set of maximizer is still not a singleton, assume that the receiver picks any remaining continuation equilibrium.
12ãc(µ, t) is extended to A by assigning probability zero to all a /∈ a∗(µs, t).
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above that ã∗(µs, t) is non-empty and compact. So ãc(µs, t) exists as a corollary of Heine’s theorem.

The possibility of using a randomization on actions comes from the bargaining subgame. Hence

there is a priori no reason for the receiver to randomize on actions, but a mixed strategy can be the

outcome of the bargaining subgame.

At this stage of the game, and given the signal realization s induces the beliefs µs on ω, the interim

expected payoffs of the common receiver R of type t ∈ T is

ûR(µs, t) =

∫
Ω

∫
A

uR(a, ω, t) dãc(µs, t)(a) dµs(ω)

4.1.2 Equilibrium communication strategy

In the first stage of her problem, the common receiver R is offered an array of mechanisms γ =

(γ1, . . . , γn) ∈ Γ and therefore a communication space M =
∏n
i=1Mi. She determines her optimal

communication strategy, i.e., what messages to send to the information designers, to maximize her

expected continuation utility in the second stage. So for any array of mechanisms γ = (γ1, . . . , γn) ∈ Γ,

the receiver chooses her communication strategy m̃ ∈ ∆(M) to maximize

max
m̃∈∆(M)

{
Em̃Eγ(m)EµEãc(µ,t)uR(a, ω, t)

=

∫
M

∫
∆(Ω1)

. . .

∫
∆(Ωn)

ûR(µ, t) dγn(mn)(µn) . . . dγ1(m1)(µ1)dm̃(m1, . . . ,mn)
}

She thus chooses a communication strategy from the set

m̃∗(γ, t) = arg max
m̃∈∆(M)

∫
M

∫
∆(Ω1)

. . .

∫
∆(Ωn)

ûR(µ, t) dγn(mn)(µn) . . . dγ1(m1)(µ1)dm̃(m1, . . . ,mn)

Indifference problem Again, as in the second stage, the set m̃∗(γ, t) is not necessarily a singleton

and in our framework, there are n different senders. So we cannot rule out the potential problem of the

existence of multiple optimal communication strategies for the receiver by picking the one preferred by

the senders since different senders may have different preferences over the messages communicated by

the receiver. Therefore the concept of sender-preferred subgame perfect equilibrium of Kamenica and

Gentzkow [16] is again no longer applicable. Instead, we will be breaking the tie between receiver’s

multiple decision strategies by defining a new simple bargaining subgame similar to the tie breaking

subgame for decision strategies.
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First when the receiver is indifferent between several communication strategies given the array of

mechanisms offered, she always tell the truth, if it constitutes an optimal communication strategy.

This will later guarantee that we will be able to restrict attention to truthful persuasion mechanisms.

If truthful reporting is not optimal and the receiver is indifferent between several communication

strategies, given the array of mechanisms offered, she picks the one that maximizes the surplus function

V1:

V1(m̃) =

n∑
i=1

Em̃v̄i(γ(m), t)

where

v̄i(γ(m), t) =

∫
∆(Ω1)

. . .

∫
∆(Ω1)

∫
Ω

∫
A

v(a, ω, t) dãc(µ, t)(a) dµ(ω) dγn(mn)(µn) . . . dγ1(m1)(µ1)

and ãc(µ, t) is the continuation equilibrium decision strategy played in the second stage given that

beliefs on ω is µ. This function can be thought to represent a bargaining game where the bargaining

power of every information designer Di is identical13.

Define (when it exists) m̃c(γ, t) ∈ m̃∗(γ, t), the optimal continuation communication strategy. It

is the distribution on receiver’s possible messages M in m̃∗(γ, t) that is solution to the bargaining

subgame.14

m̃c(γ, t) is not guaranteed to exist since the communication spaces offered by the information

designers can be arbitrary (and in particular do not need to be compact). Thus, in what follows, we

will assume that such a communication strategy exists.15

Again there is a priori no reason for the receiver to use a randomized communication strategy, she

could pick any pure strategy that maximizes her expected utility. However, a mixed communication

strategy can be the outcome of the bargaining game selecting the continuation equilibrium played.

That’s why we consider this possibility. However when truthful reporting is optimal, the receiver

always plays it. So she plays a pure communication strategy.

13As in the second stage, if the set of maximizer is still not a singleton, assume that the receiver picks any remaining
communication strategy

14m̃c(γ, t) is extended toM by assigning probability zero to all m /∈ m∗(γ, t).
15Note that by an argument similar to the one for the existence of a decision strategy, a continuation communication

strategy does exists wheneverM is compact.
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Then, for any array of mechanisms offered by the senders, the communication strategy chosen by

the agent induces a distribution over posterior beliefs given by

τγ(µ) =

∫
M
γ1(m1)(µ1) . . . γn(mn)(µn)dm̃c(m)

where m̃c solves the above maximization problem. Given this distribution over posterior beliefs, the

expected payoff of the receiver is

ucR(γ, t) =

∫
M

∫
∆(Ω1)

. . .

∫
∆(Ωn)

ûR(µ, t) dγn(mn)(µn) . . . dγ1(m1)(µ1)dm̃c(m1, . . . ,mn)

4.1.3 Equilibrium continuation strategy

Given a persuasion mechanism, the common receiver chooses her continuation strategy. The pair

c(γ, t) = (m̃c(γ, t), ac(µ, t)) constitutes a continuation equilibrium if and only if ∀γ ∈ Γ and ∀t ∈ T

m̃c(γ, t) ∈ m̃∗(γ, t), (1)

∀a.e. µ ∈ supp τγ(µ)

ãc(µ, t) ∈ ã∗(µ, t), (2)

where τγ is the distribution of posteriors induced by m̃c(γ, t), and m̃c(γ, t) and ãc(µ, t) are solutions

of the bargaining subgames.

Condition (1) tells us that the communication strategy the receiver uses maximizes her expected

utility given her decision strategy. Condition (2) tells us that the receiver maximizes her expected

utility conditional on the signals’ realizations she observes.

4.2 The information designers’ game in mechanisms

The continuation strategy of the common receiver (when it exists) defines a normal form game for

the senders in which the action space is Γ. Hence, given an array of mechanisms γ ∈ Γ is offered, the

receiver plays a continuation equilibrium c(γ, t) = (m̃c(γ, t), ãc(µ, t)). This induces a distribution on

beliefs τγ(µ, t) and therefore a distribution on actions ãγ(t) = τγ(µ)ãc(µ, t) conditional on the type
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t ∈ T of the receiver. Then the expected payoff of any information designer Di is given by

v̄i(γ) =

∫
T

∫
∆(Ω)

∫
Ω

∫
A

v(a, ω, t) dãc(µ, t)(a) dµ(ω) dτγ(µ, t) dF (t)

Our equilibrium concept for the senders game is the Bayesian Nash equilibrium concept. An equi-

librium in the senders game relative to a continuation strategy and a set of feasible mechanisms

Γ =
∏n
i=1 Γi is then defined as an array of randomizations {δ1, . . . , δn} such that no sender Di,

i ∈ 1, . . . , n, has a unilateral profitable deviation in expected payoff. Formally,

Definition 2. {δ1, . . . , δn} ∈
∏n
i=1 ∆(Γi) is an equilibrium of the senders game relative to Γ if

∀i ∈ {1, . . . , n}, ∀δ′i ∈ ∆(Γi), E(δi,δ−i)v̄i(γi, γ−i) ≥ E(δ′i,δ−i)
v̄i(γ

′
i, γ−i)

Any equilibrium is defined relatively to a set of feasible mechanisms. Two set of mechanisms are

a priori of particular interest to us: the set of public persuasion mechanisms and the set of universal

persuasion mechanisms.

• An array of randomizations {δ1, . . . , δn} is an equilibrium in public persuasion mechanism if there

is no deviation in public persuasion mechanisms; that is an equilibrium when no significant com-

munication between the senders and the receiver is allowed. Recall that a persuasion mechanism

is said to be public when |Mi| ≤ 1. Then a public persuasion mechanism equilibrium is an equi-

librium in take it or leave it offer in simple actions. Formally an array {δ1, . . . , δn} ∈
∏n
i=1 ∆(Ei)

is an equilibrium in public persuasion mechanism if and only if

∀i ∈ {1, . . . , n}, ∀δ′i ∈ ∆(Ei), E(δi,δ−i)v̄i(ei, e−i) ≥ E(δ′i,δ−i)
v̄i(e

′
i, e−i)

From lemma 3.1, there is no reason to use mixed strategies in this case: any equilibrium in

mixed strategies on simple actions can be replicated by an equilibrium in pure strategies.

• Let Γu be the universal set of mechanisms, which is defined by the universal type space con-

structed by Epstein and Peters in [12]. An array of randomizations {δ1, . . . , δn} ∈ Γu is an

equilibrium relative to all possible feasible mechanisms if there is no deviation in persuasion

mechanism. Hence the set of equilibria relative to Γu is universal and robust: it includes all

equilibria information designers can achieve when they can design arbitrary persuasion mecha-
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nisms.

An equilibrium of the multi-senders common-receiver game relative to a set of feasible mechanism

Γ is thus an array (δ1, . . . , δn, c) ∈
∏n
i=1 ∆(Γi) × ∆(M) × ∆(A), where (δ1, . . . , δn) is an Bayesian

Nash equilibrium of the senders normal form game defined by c and c is the continuation equilibrium

associated with the arrays of mechanisms offered.

4.3 Multiple information designers and the revelation principle

The above characterization of the game and its equilibria voluntarily remains very general. In

particular, the set of mechanisms that can be played by the information designers is not restricted to

the set of incentive compatible direct mechanisms, as we are used to. This is because the revelation

principle may “fails" when several senders compete, or, to be more precise, because the type t ∈ T of

the common receiver is no longer sufficient to summarize all the private information she has.

As well known in the common agency literature, when several principals contract with a single

common agent, the revelation principle must be used with caution. Hence truthful incentive com-

patible direct mechanisms are much harder to construct since the state of the world is not perfectly

described by the type of the agent anymore. In particular, the agent has “market information". She

observes the mechanisms offered by all principals. Since, in theory, principals are not constrained on

the mechanisms they propose, it is realistic to imagine that they may condition their mechanisms on

the agent’s type but also on the other mechanisms she is offered, leading to a possible infinite regress.

Such infinite regress is in its nature similar to the possible infinite regress over beliefs in a Bayesian

game.

However contrary to the regress over belief that can be handle easily with the common prior

assumption, there is no trick to easily fix the problem in multiple-principals agent contracting. In

particular, the revelation principle looses much of its utility as the universal type space16 under which

it remains valid is too big to be dealt with easily. This is why most articles in the common agency

literature conclude to the “failure" of the revelation principle.

The same thing happens here when information designers can communicate with the common

receiver. The example below illustrates the limits of the revelation principle in the multi-senders

common-receiver information design with elicitation. Hence the space of direct private persuasion

16This universal type space was constructed by Epstein and Peters [12].
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mechanisms for sender Di (which communication space isMi = T for all i = 1, . . . , n) is a priori not

general enough to replicate all possible equilibria relative to more general feasible mechanisms.

Multiple senders competition and the limits of the revelation principle: an example

During a fair, a trial is proposed to a consumer (she). She can test two different but comparable

products manufactured by two different firms. Then she has to publicly announce her favorite product,

which is referred as voting for one product in what follows. Each product is offered to the consumer

in limited supply: she is able to test a sample. Each product is indexed by i = 1, 2 and is of type

ωi ∼ U [0, 1]. This type could represent the quality of the match between the product and the consumer

or the inner quality of the good. The distribution U [0, 1] is the initial common prior of the game. I

also assume that ω1 and ω2 are independent.

The consumer can choose how much to consume from each sample and which good to vote for.

She does so to maximize her expected payoff. Her utility is given by

u(a1, a2, a3, a4, ω1, ω2) =

2∑
i=1

[
(ai + ai+2)

(
1{ωi≥ε} − κ1{ωi<ε}

)]
+ f(γ)

and therefore her expected utility is given by

Eu(a1, a2, a3, a4, ω1, ω2) = (a1 + a3)(µ1 − κ(1− µ1)) + (a2 + a4)(µ2 + κ(1− µ2)) + f(γ)

where µi = P(ωi ≥ ε). a1 and a2 are the quantities of good 1 and 2, respectively, she consumes. They

are chosen in [0, 1], one meaning that she consumes the whole sample, and zero that she does not

consume at all. a3 and a4 are discrete choices: a3, a4 ∈ {0, 1}. They represent the voting choice of

the consumer. If ai+2 = 1, the consumer votes for product i. The consumer can vote for at most

one product, then a3 + a4 ≤ 1. Furthermore the utility function is constructed so that the consumer

do not enjoy poor quality products, so she will not consume a product of bad quality. Similarly she

prefers to abstain rather than recommending a poor quality product. Finally, the receiver is assumed

to have preferences on certain mechanisms being played.17 This implies that, independently of the

signal sent, the expected utility of the consumer can vary across offered mechanisms. For example,

the consumer may enjoy the thrill of the unknown and get a utility premium when at least one firm

17This assumption is clearly non-canonical and is made to construct a counter example to the revelation principle in
competing persuasion game with elicitation.
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Table 1: Sample game and indirect mechanisms

FR NR
FR (µ0 − 1

4µ
2
0, µ0 − 1

4µ
2
0, 4µ0 − µ2

0) (µ0,
1
2 + 1

2 (1− µ0), 7µ0 − 2µ2
0 − 2 +W )

NR ( 1
2 + 1

2 (1− µ0), µ0, 7µ0 − 2µ2
0 − 2 +W ) ( 3

4 ,
3
4 , 6µ0 − 3 +W )

reveals no information at all.

Companies can only design tests to influence consumer’s actions through her beliefs. In particular,

there cannot be any transfer between the companies and the consumer.18 Here we can think about

these tests as what the presentation of the samples reveals about the products. I limit the companies’

simple actions to {FR,NR}, where FR stands for full revelation and NR for no revelation. This

constraint on the set of simple actions is for simplicity only. Then both firms simultaneously choose

what experiment to pick among {FR,NR} to maximize their expected payoff. The payoffs are

vi(a1, a2, a3, a4, ω1, ω2) =
1

2
ai +

1

2
ai+2

Following our convention that ties in equilibria for the receiver are broken by Nash bargaining,

and assuming that both firms have the same positive bargaining power, the optimal actions taken by

the consumer are

ai = 1{µi≥ κ
1+κ}, i = 1, 2,

aj = 1{µj≥µ−j∧ κ
1+κ} −

1

2
1{µj=µ−j≥ κ

1+κ}

The second action needs to be understood as the consumer voting for the best product and mixing

with probability 1
2 in case of tie.

For κ = 1 and f(γ) = W if NR is played by at least one company, the above game is summarized

in table 1 that shows all the payoffs.19 When W = 2 + µ2
0 − 3µ0 and ε = 7

24 , table 2 describes the

payoffs of the game.

Here a direct mechanism is simply a probability distributions over simple actions as there is no

private information. Then there is a single equilibrium in the above game in pure strategies and direct
18Although f(γ) in the utility function of the consumer plays a role similar to a transfer.
19µ0 = µi0, i = 1, 2, is the prior probability of ωi being greater than ε, i.e., µ0 = 1− ε.
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Table 2: Payoffs of the sample game

FR NR

FR (∼ 0.5829, ∼ 0.5829, ∼ 2.2316) ( 17
24 ,

31
48

∗
, ∼ 2.2316)

NR ( 31
48

∗
, 17

24 , ∼ 2.2316) ( 3
4

∗
, 3

4

∗
, ∼ 1.6267)

mechanism: (NR,NR). It yields the preferred outcome for the designers and the least preferred for

the consumer. Furthermore there is no equilibrium in mixed strategies as NR is a dominant strategy

for both sender.

However, if more complex mechanisms are allowed, new equilibrium outcomes can be supported.

For example, if both information designers offer a menu {FR,NR} and the consumer mixes between

(FR,NR) and (NR,FR) with probability 1
2 ,

20 it is a Bayesian Nash equilibrium. Hence it yields

payoff 65
96 to both firms. If either sender tries to deviate and forces action NR (no companies would

ever force action FR as it is a dominated action), the consumer responds by choosing FR from the

other firm’s menu. Then the deviator gets a payoff of 31
48 <

65
96 .

This example suggests that new equilibria may appear when information designers can use more

complex mechanisms. This results from the fact that the consumer (the common receiver) can play

the role of a correlation device and can enforce new outcomes by punishing the deviator.

Here the new equilibria exist under a very particular condition: the consumer’s payoff depends

directly on the mechanism offered, which is a non-canonical assumption. This is similar to a transfer

from the senders to the receiver to a certain extent.

However there is a priori no guarantee that something similar does not occur under more classic

assumption, and in particular in the framework we define in section 3. Hence the existence of a new

equilibrium when menus are allowed comes from the new roles the common receiver play. She becomes

both a correlating device and a disciplinary device, that is she can induce equilibria that are profitable

only when jointly played and she can also punish the deviating senders. So we need to find a way to

overcome this difficulty. The solution comes from the common agency literature in mechanism design

20That she mixes with probability 1
2
is an assumption. She could mix with any probability p ∈ (0, 1).
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5 Simplifying the problem

From the common agency literature and in particular Peters [25] and Martimort and Stole [20],

we know that in common agency mechanism design, the difficulties resulting from the “failure" of

the revelation principle for classic incentive compatible direct mechanisms can be partly overcome by

looking at menus. This is sometimes referred as the “delegation principle" (see [20]). We show that,

in information design with elicitation, the difficulties introduced by the competition in mechanisms

among senders can be handled in a similar manner as the framework of information design with

elicitation we developed is very close to mechanism design.

5.1 Menus and direct mechanisms

First we define menus and direct persuasion mechanisms. A menu is a private persuasion mechanism,

which message space, for information designerDi,Mi is a subset of the simple actions space: Mi ⊂ Ei.

The contract associated with a menu mechanism is a mapping γi : Ei → Ei.

Let ΓMi be the set of menus sender Di can offer. A menu γi ∈ ΓMi can be summarized by a

measurable mapping

γi : Ei → Ei

πi →


πi if πi ∈ P

π̄i otherwise

where P is a closed subset of Ei and π̄i is an arbitrary element of P .

Direct persuasion mechanisms are defined as in [18]. They are the canonical private persuasion

mechanisms, where the message space is the receiver’s type space T . Let ΓDMi be the set of direct

persuasion mechanism available to sender Di. A direct persuasion mechanism γi ∈ ΓDMi is character-

ized by a measurable mapping

γi :T → Ei

t→ γi(t)
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A direct persuasion mechanism is said to be incentive compatible if it induces truth-telling as an

optimal communication strategy, i.e., if and only if for all possible type t ∈ T , the common receiver

R reports her type t truthfully. Since the receiver has no commitment power, it must imply that the

expected payoff associated with a truthful report is weakly greater than the expected payoff associated

with any other report. Let ΓICDM =
∏n
i=n ΓICDMi be the set of incentive compatible direct persuasion

mechanisms.

5.2 Two simplifying theorems

As noted previously, the universal type space is too complicated to be useful. If we want to find the

equilibria of the competition in mechanisms among senders, we need to refine the set of mechanisms

we look at. The two following theorems based on the common agency literature in mechanism design

allow us to look only at incentive compatible direct mechanisms, as in the single designers case.

They re-establish a revelation principle for multi-senders common-receiver persuasion games under

the assumptions we made.21

The first theorem establishes, for any equilibrium relative to the set of universal persuasion mech-

anisms, the existence of an equilibrium in direct mechanisms that replicates all payoffs. It is based on

theorem 1 in [20], theorem 2 in [25], and theorem 4 in [26].

Theorem 5.1. Let {γ∗1 , . . . , γ∗n, c∗} ∈ Γu×∆(Mu)×∆(A) be an equilibrium relative to the universal

persuasion mechanism space. Then there exists a (pure strategy) equilibrium in incentive compatible

direct persuasion mechanism {γ′1, . . . , γ′n, c′} ∈ ΓDM ×∆(T )×∆(A) that preserves all payoffs.22

Proof. In the Appendix 8.1.1.

We provide the intuition for the proof of theorem 5.1 now. From the common agency literature,

we know that any equilibrium relative to a set of mechanisms can be by an equilibrium relative to the

set of menus. So we only have to show that there exists an equilibrium in incentive compatible direct

mechanisms that preserves all payoffs for all equlibria relative to the set of menus.

To proof this claim, we construct an equilibrium in incentive compatible direct persuasion mech-

anisms that preserves all payoffs of an arbitrary equilibrium relative to the set of menus. Hence we

21They rely heavily on assumption 3, i.e., on the fact that persuasion mechanisms are payoff irrelevant. A sender is
only affected by the strategy of another one through the action taken by the common receiver and the common receiver’s
actions do not depend on the mechanisms played directly but only on the beliefs they induce.

22Here {γ∗1 , . . . , γ∗n} is assumed to include randomizations: the universal persuasion mechanisms space is large enough
to include random mechanisms.
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can think of a menu as a collection simple actions. When such a collection is proposed to the common

receiver, she only picks the simple action that maximizes her expected utility given her type. So

senders may as well propose only the a contract that associates to each type t the simple action a

receiver R of type t would choose from menu offered in equilibrium, i.e, an incentive compatible direct

mechanism. This preserves the distribution on receiver’s actions played in equilibrium.

However when information designers offer direct mechanisms, new deviations may be profitable,

as the common receiver cannot discipline the senders anymore. Fortunately she was already not

before. This results from two features of our framework. First we assumed that the persuasion

mechanisms were payoff irrelevant. Secondly the common receiver’s expected utility is only a function

of the mechanisms through her decision strategy since simple actions must be Bayes-plausible. So her

choice from the menu of any designer Di was “independent" of the mechanisms proposed by the other

designers, D−i. This allows us to replicate any equilibrium in menus.

The second theorem establishes that equilibria in incentive compatible direct persuasion mechanisms

are robust when the principal can deviate to more complex mechanisms. It is based on lemma 3.1,

theorem 6 in [25], and theorem 2 in [26].

We first define what it means to be weakly robust for an equilibrium in a mechanism game following

Peters in [25].

Definition 3. An equilibrium (γ, c) ∈
∏n
i=1(Γi)×∆(M)×∆(A) relative to a set of feasible mechanism

Γ is said to be weakly robust if for any embedding α that maps Γ into Γ′, α : Γ → Γ′ such that Γ′ is

compact metric, there exists an extension c′ of c such that (α(γ), c′) is an equilibrium on α(Γ) = Γ′.23

We now state our robustness theorem.

Theorem 5.2. Let {δ∗1 , . . . , δ∗n, c} be an equilibrium relative to the set of incentive compatible direct

persuasion mechanism. Then there exists a weakly robust pure strategy equilibrium {γ∗1 , . . . , γ∗n, c∗}

relative to the set of incentive compatible direct persuasion mechanisms that is payoff equivalent to

{δ∗1 , . . . , δ∗n, c}.

Proof. In the Appendix 8.1.1.

We try to present the intuition behind theorem 5.2. From the common agency literature again, we

know that equilibria in menus are weakly robust. So theorem 5.2 tells us that we can extend this weak
23This is the definition given in [25]
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robustness property to the equilibria in incentive compatible direct persuasion mechanisms. No sender

can achieve a greater payoff in equilibrium by offering a menu rather than an incentive compatible

direct mechanism. The intuition resemble the one behind theorem 5.1. Again the common receiver

chooses only a simple actions from any menu. So in the end, any deviation in menu induce the

distribution on actions as a deviation in direct mechanisms, thus the same expected payoff. However

there is no profitable deviation in direct mechanism in the original equilibrium. Then there is also no

profitable deviation in menus.

No communication The two theorems above are interesting in simplifying the problem we face, but

also per se. Hence they imply that communication between the common receiver and the information

designers is not necessarily needed. In particular, there is no reason for the senders to communicate

with the receiver if the latter does not have any private information of his own. Even when the

common receiver R has some private information, any communication about the “state of the market"

and what the other designer proposes is useless. Senders can achieve any possible equilibrium as soon

as they know the type of the receiver. This discussion is summarized in the next corollary.

Corollary 5.3. Communication about the “state of the market" is not needed.

5.3 Competition in direct mechanisms among senders

Recall that we are interested in the competition in persuasion mechanisms between the senders and

in the display of information that results from this competition. We want to determine the strategic

behaviors of the information designers. However, so far, the problem was too complex to tackle it.

We needed to determine the equilibria of a game in arbitrary mechanisms. In particular, we needed

to find the set of Bayesian Nash equilibria of the normal form game between the senders in which

the action space is Γu, defined by the continuation strategy (when it exists) of the common receiver.

Fortunately the above subsection 5.2 allows us to simplify the study of competition among senders in

information design with elicitation.

The aim of theorems 5.1 and 5.2 is to simplify the study of the competition in mechanisms game

between the senders. They enable us to reduce, without loss of generality, the set of actions senders

can take: from the set of universal persuasion mechanisms to the set of incentive compatible direct

mechanisms. Furthermore theorem 5.2 guarantees that we are not creating new equilibria that would
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disappear when deviations to more complex mechanisms are allowed.

Therefore the problem of finding the equilibria of the multi-senders common-receiver game relative

to the set of universal persuasion mechanisms reduces to the problem of finding the equilibria of the

multi-senders common-receiver game relative to the set of incentive compatible direct persuasion

mechanisms. This is a much simpler problem, which we are able to tackle in some cases. Section 6

presents an application in which we determine the equilibrium strategies of all players.

Before proceeding to this application, we present two existence criteria.24 The first provides con-

ditions for the existence of a Bayesian Nash equilibrium of the multi-senders common-receiver game

when the common receiver has no private information of her own, i.e., |T | = 1. The second theorem

extends this results to the case of a privately informed receiver.

First recall that an equilibrium of the game is a an array (γ1, . . . , γn, c) ∈
∏n
i=1 ∆(Γi)×∆(M)×

∆(A) such that c = (m̃, ã) is a continuation equilibrium given (γ1, . . . , γn) and (γ1, . . . , γn) is a

Bayesian Nash equilibrium of the normal form game among sender defined by c. Hence the equilibrium

continuation strategy of the common receiver (when it exists), c, induces a distribution on beliefs

τγ(µ, t) and therefore a distribution on actions ãγ(t) = τγ(µ)ãc(µ, t) conditional on the type t ∈ T

of the receiver and the array of mechanisms being played. These distributions on posterior beliefs

and actions characterize the payoffs of the senders in the game in mechanisms they play. Information

designer Di’s expected payoff is indeed

v̄i(γ) =

∫
T

∫
∆(Ω)

∫
Ω

∫
A

vi(a, ω, t) dã
c(µ, t)(a) dµ(ω) dτγ(µ, t) dF (t)

Since the simple actions of any sender are Bayes-plausible distribution on posteriors on ωi and the

ωi’s are independent, the expected payoff of sender Di rewrites

v̄i(γ) =

∫
T

∫
Ω

∫
A

vi(a, ω, t) dã
γ(t)(a) dµ0(ω) dF (t)

Our equilibrium concept for the senders game is the Bayesian Nash equilibrium concept. So an

equilibrium of the multi-senders common-receiver game relative to the set of incentive compatible di-

rect persuasion mechanisms is defined by a Bayesian Nash equilibrium of the game in direct persuasion

24As pointed out by Frédéric Koessler, the payoff security of the game is not an assumption on the priors. So our
two theorems do not establish existence per se. I am working on conditions that would guarantee the payoff security of
the game.
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mechanisms among senders and the associated continuation equilibrium for the common receiver.

We now state the first theorem. It is based on Reny’s seminal paper on the existence of Nash

equilibria in discontinuous games [28]. Note that an incentive compatible direct persuasion mechanism

when the receiver has no private information of her own, i.e., |T | = 1, is a distribution on simple

actions.

Theorem 5.4 provides conditions for the existence of an equilibrium of the multi-senders common-

receiver game.

Theorem 5.4. Under our assumptions, an equilibrium of the multi-senders common-receiver game

relative to the set of direct persuasion mechanisms exists when the receiver has no private information

of her own and the payoffs in the senders game are secure.

Proof. In the Appendix 8.1.2.

The proof relies on corollary 5.2 in [28]. We show that the normal form game defined by the

continuation equilibrium of the common receiver is Hausdorff compact. Then we show that the game

is reciprocally upper semicontinuous and conclude by Reny’s corollary 5.2 (theorem 8.4).

From the proof of theorem 5.4, we can even be a little more precise. Hence, theorem 5.4 guarantees

the existence of an equilibrium of the multi-senders common receiver game in which all senders play

pure strategies.

Note that theorem 5.4 also guarantees the existence of an equilibrium in public persuasion mech-

anisms.

Corollary 5.5. Under our assumptions, an equilibrium of the multi-senders common-receiver game

relative to the set of public persuasion mechanisms exists.

The second existence theorem accounts for the possibility that the receiver has private information

of her own, i.e., that the type space has cardinality more than one. It provides conditions under which

we believe that an equilibrium in the senders game, relative to the set of incentive compatible direct

mechanisms, exist. Theorem 5.6 is based on Reny’s corollary 5.2 and was also inspired by theorem 1

in [15].

Theorem 5.6. Under our assumptions, an equilibrium of the multi-senders common-receiver game

relative to the set of incentive compatible direct persuasion mechanisms exists when the payoffs in the

senders game are secure.
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Proof. In the Appendix 8.1.2.

The proof is similar to the proof of theorem 5.4 and also relies on corollary 5.2 in [28]. The main

difference is in the way to prove that the sets of available actions to the senders in the normal form

game defined by the continuation equilibrium of the common receiver are Hausdorff compact. Hence

senders’ actions are now proper mechanisms, and cannot be assimilated to the set of simple actions.

This complicates the proof, since we now have to show compactness for the set of incentive compatible

direct persuasion mechanisms. We deal with this issue by enlarging the feasible mechanisms set to the

set of direct persuasion mechanisms ΓDM . We show the compactness of this set under our assumptions

using the reproducing kernel Hilbert space embedding for probability measures described in [29] and

Fraňková-Helly selection theorem. Then we show that ΓICDM is closed in ΓDM . The rest of the proof

remains close to the above proof. We show that the game is reciprocally upper semicontinuous and

conclude by Reny’s corollary 5.2 (theorem 8.4).

Again this two theorems do not ensure the existence of an equilibrium a priori. They rather

reassure us that an equilibrium of a particular game can be found when the payoff of the senders in

the induced subgame between senders are secure. They are criteria of existence rather theorems of

existence. Note also that the first existence theorem is actually a corollary of the second existence

theorem.

From the above existence theorems and theorem 5.2, we extract one last corollary.

Corollary 5.7. When the payoffs of the senders subgame induced by the continuation equilibrium

played by the common receiver are secure, there exists a weakly robust equilibrium (relative to the set

of universal mechanisms?).

6 An application to a certification game

We propose a first application to our theory of multi-senders common-receiver in information design

with elicitation. Multiple firms compete to be certified by an external regulatory agency. They are

able to display information on their own products only through the design of “statistical experiments".

However they cannot send any credible information on their rivals to the regulatory agency. We refer

to this framework as a certification game.
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6.1 Framework of the game

We study a certification game between two firms in the wood products industry that are trying

to obtain an eco-certification from an external third party. Hence being certified has a positive

impact on the price a firm can charge and on the demand it faces. This affirmation is motivated by

two empirical studies on the wood products market in the US. As noted in [32], the environmental

certification programs “are increasingly being recognized as significant market-based tools for linking

manufacturing and consumer purchases". In particular, Vlosky et al. in [32] identifies a cluster of US

consumers that would rather purchase certified wood products. Their findings are confirmed in [1].

The authors of the latter article find that some consumers are willing to pay up to a 10% premium for

certified products. They also remark the potential existence of “niche markets [which] may potentially

be exploited in the U.S." by certified firms in the wood industry. We construct our example to replicate

the competition in information game that firms play in order to be certified, given a stylized market

for wood products.

There are two wood companies, indexed by j = 1, 2. Both produce the same kind of wood.

Their products are perfect substitutes. We are not interested in the market competition so we will

assume that the prices of both firms’ products are fixed exogenously to p. Marginal costs are zero.

Firms can be environmentally-friendly or polluting. So the uncertain state of the world ω is a two-

dimensional vector whose element are the status of the two firms: ω = (ω1, ω2) ∈ {E,P}2. E stands

for environmentally-friendly and P for polluting. So there are four possible states of the world. Finally

the regulator agency may have private information.

The certification game occurs prior to commercialization. In this game, the regulatory agency

(she) can give an eco-certification to each firm according to a known decision rule (that maximizes her

expected utility). The firms (that are the information designers) can display information on the status

of their supply chain to the regulator by designing a “statistical experiment" that credibly reveal some

information on the state of the world. However they do not know in advance whether they would be

perceived as environmentally-friendly or polluting. This assumption may rely on the absence of full

control of the board on the supply chain for example. The regulatory agency is only willing to certify

environmentally-friendly firms. Finally all the players share a common prior on the status of the firms

µ0 = (µ1
0, µ

2
0) = (µ0, µ0). ω1 and ω2 are independent random variable and µ0 = P(ωj = E).

The timing of the game is as follows.
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• At time t = 0, nature draws ω. No player observe the draw.

• At time t = 1, two envoys from the regulator agency are sent to the firms. Both firms, j = 1, 2,

simultaneously design “statistical experiment" to credibly display information on their status to

the envoy.

• At time t = 2, signals are generated from the “statistical experiments". They are reported

truthfully by the envoys to the regulator agency. The latter updates her beliefs on ω using

Bayes law.

• At time t = 3, the regulator agency chooses whether to certify firm j = 1, 2 given her new beliefs

on ω. She takes action aj ∈ A = {0, 1}, j = 1, 2, where aj = 1 means that the regulator agency

provide a eco-certification to firm j.

• At time t = 4, both products are commercialized. Consumers only observe whether a product

is certified by the regulator agency.

We want to focus on the competition in persuasion mechanisms. So we mostly abstract from the

consumers behavior. We assume that the total demand for wood products at price p is D(p). It is

normalized to 1. When a product hits the market, consumers buy it if and only if it is certified. Then

the demand for wood products of firm j is zero if firm j is not certified, 1
2 if both firms are certified,

and 1 if firm j is certified but firm −j is not.

6.2 The non competitive case

We first study a case in which the agency’s decision rule defines a non-competitive non-strategic

game in mechanisms between the two wood companies. It serves as a reference point.

Let the regulator’s payoff be

u(a1, a2, ω1, ω2) =

2∑
j=1

aj
(
1{ωj=E} − κ1{ωj=P}

)

where aj ∈ {0, 1} and aj = 1 corresponds to the decision to certify the products of firm j. κ is the

regulator’s type. It represents her preference on certifying a polluting firm rather than not to certify

a environmentally-friendly firm. Here, we assume that κ is commonly known. The regulatory agency

has no private information. ωj is the status of firm j. It is unobserved, so the regulator agency
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maximizes

û(a1, a2, µ1, µ2) = E(µ1,µ2)u(a1, a2, ω1, ω2)

=

2∑
j=1

aj (µj − κ(1− µj))

=

2∑
j=1

aj ((1 + κ)µj − κ)

where µj = P(ωj = E), j = 1, 2. Therefore the regulator agency preferred actions are

a∗j (µj) = 1{µj≥ κ
1+κ}

In particular, a∗j is independent of µ−j . Recall that, under our assumptions, ω1 and ω2 are independent

and firm j’s signal is only informative about ωj . This implies that firm j can only influence µj . So

the game is not strategic, as firm j cannot influence a∗−j .

The wood companies’ payoffs are given by

vj(a, ω) = pDj(a, ω), j = 1, 2

where Dj(a, ω) is the demand firm j faces given her status and the agency’s actions. From the above

discussion,

Dj(a, ω) =


1 if aj = 1 6= a−j

1
2 if aj = 1 = a−j

0 if aj = 0

j = 1, 2

Finally companies’ expected payoff given beliefs µj and µ−j are

âj(µ) =


p if µj ≥ κ

1+κ > µ−j

p
2 if µj , µ−j ≥ κ

1+κ

0 if µj < κ
1+κ

j = 1, 2
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Firms compete in mechanisms. From theorem 5.1 and 5.2, we know that we can focus on incentive

compatible direct mechanisms, and since the receiver has no private information in this example,

competition in mechanisms boils down to competition in simple actions. Furthermore, from theorem

5.4, an equilibrium exists.25 So we compute it.

The strategic interactions in this example are very limited, as the optimal actions of both senders

are independent of the action that the other can take, and the objective of both firms is simply to

induce beliefs µj ≥ κ
1+κ as often as possible. This is then very similar to the judge prosecutor example

in [16].

Proposition 6.1. When µ0 ≥ κ
1+κ , it is an equilibrium for both firms to play no revelation. When

µ0 <
κ

1+κ , the unique Bayesian Nash equilibrium of the game in simple actions between the two wood

producers is (τ∗1 = (µ0(1+κ)
κ , κ

1+κ , 0), τ∗2 = (µ0(1+κ)
κ , κ

1+κ , 0)), where τ∗j ∈ ∆(Ωj) is the strategy played

by firm j in equilibrium. It is described by the triplet (λj , µ
′
j , µ
′′
j ) where λj is the probability that the

chosen “experiments" induces µ′j and 1 − λj is the probability that the chosen “experiments" induces

µ′′j .

Proof. In the Appendix 8.2.

The “statistical experiments" chosen by the two firms produce only two different signals and so

are fully described by the above triplet. This is as in Kamenica and Gentzkow [16].

In the non competitive case, although there are multiple senders, they do not interact strategically.

So all the results of information design with a single sender remains true. In particular, it is still

sufficient for the firms to produce two signals only.

6.3 The competitive case

The analysis of the competitive case is very close to the competition in information disclosure

studied by Au and Kawai in a recent paper [4].26 The math could even be an application of their

more general framework since the techniques we employ are similar; although their proofs rely more

on the concavification result of Kamenica and Gentzkow in [], while my proofs are more constructive

and close to the application I consider. However, we employ the same techniques borrowed from the

study of all pay auctions with complete information pioneered in [5]. See also the computation of the

equilibrium of the wage posting game in [9].
25The payoffs of the senders game are obviously secure here.
26I thank Frédéric Koessler for pointing it to my attention.
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We still include the competitive example in which the receiver has no private information. We do

so for two reasons. The first is that we develop this analysis independently. The second is that it

should be understood as the basis of a coming extension. Hence I am currently working on a related

multi-sender common-receiver model of information design with elicitation in which κ is privately

known to the receiver.

This subsection modifies the utility function of the regulator agency, and therefore her decision rule,

to induce a strategic game in mechanisms between the two wood producers. It constructs a utility

function for the receiver so that she is not willing to certify the products of both firms. The reason

for the regulator agency to certify only one firm could be reputation for example. Delivering the

eco-certification to too many firm may hurt the credibility of the certifier. The regulator’s utility is

u(a1, a2, ω1, ω2) =

2∑
j=1

aj
(
1{ωj=E} − κ1{ωj=P} − a−j

)

where her available actions are still aj ∈ {0, 1}. aj = 1 corresponds to the decision to certify the

products of firm j. κ is the regulator’s type. It represents her preference on certifying a polluting

firm rather than not to certify a environmentally-friendly firm. Here, we assume that κ is commonly

known. ωj is the status of firm j. It is unobserved, so the regulator agency maximizes

û(a1, a2, µ1, µ2) = E(µ1,µ2)u(a1, a2, ω1, ω2)

=

2∑
j=1

aj ((1 + κ)µj − κ− a−j)

where µj = P(ωj = E), j = 1, 2. Therefore the decision strategy27 of the regulator agency is

a∗j (µj) =


1 if µj > µ−j and µj ≥ κ

1+κ

1
2 if µ1 = µ2 ≥ κ

1+κ

0 otherwise

where the second case should be understood as mixing with probability 1
2 between actions a1 = 1 and

a2 = 2. The regulator has no private information, so there is no communication, since, by theorem

27The strategy takes into account the bargaining subgame.
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5.1 and 5.2, we can focus on competition in direct persuasion mechanisms. So direct persuasion

mechanisms boil down to simple actions.

Recall also that the prior beliefs of the regulator agency is µ0 = P(ω1 = E) = P(ω2 = P ).28

In order to find the equilibria of the certification game, we need to study the game between the two

companies induced by the continuation equilibrium played by the regulator. In this game, the set of

actions available to firm j is the set of Bayes-plausible distribution on ωj it can induce: Ei ⊂ ∆(∆(Ωi)).

Recall that the payoffs functions of the firms j = 1, 2, are

vj(a, ω) = pDj(a, ω), j = 1, 2

where Dj(a, ω) is the demand firm j faces given her status and the agency’s actions. From the above

discussion,

Dj(a, ω) =


1 if aj = 1 6= a−j

1
2 if aj = 1 = a−j

0 if aj = 0

Therefore the expected payoff of the two companies that characterize the game induced by the

regulator agency’s decision rule are

v̄j(τj , τ−j) = E(τ1(µ1),τ2(µ2)v̂j(µ1, µ2)

where

v̂j(µ1, µ2) = p1{µj≥µ−j∧ κ
1+κ} − p

1

2
1{µ1=µ2≥ κ

1+κ}

Then

v̄j(τj , τ−j) = p

(
1− sup

µ< κ
1+κ

τj(µ)

)[
sup

µ< κ
1+κ

τ−j(µ) +

(
1− sup

µ< κ
1+κ

τ−j(µ)

)

×
∫

∆(Ωj)

∫
∆(Ω−j)

(
1{µj≥µ−j∧ κ

1+κ} −
1

2
1{µ1=µ2≥ κ

1+κ}

)
dτ−j(µ−j)dτj(µj)

]
28Authorizing the prior beliefs for ω1 and ω2 to be different does not change the analysis below.
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where τj ∈ Ej is the cumulative distribution function of beliefs induced by firm j on ωj . We identify

the strategy played by firm j and the distribution on beliefs it induces. Recall that it must be a

Bayes-plausible distribution on posteriors beliefs.

We look for the equilibria of the firms subgame. Note that the two companies’ payoffs are secure,

since they are continuous in τj by Lebesgue dominated convergence theorem. Then theorem 5.4

guarantees the existence of an equilibrium of the companies subgame. Furthermore from lemma 3.1,

we can look for pure strategies equilibria without loss of generality. However to compute the equilibria

of the above game remains a tricky exercise. We use a method close to the one proposed in [9] and

[8] to compute the equilibrium solution of the wage posting game. Recall that µj is the probability

that the wood producer is environmentally-friendly. So it is single-dimensioned and belongs to [0, 1].

Thus we look for Bayes-plausible distributions, τ1, τ2, on [0, 1] that constitute an equilibrium of the

game between firms.

We show that no distribution in equilibrium puts a positive mass in (0, κ
1+κ ). So the total probability

mass below κ
1+κ is at zero in equilibrium.

Lemma 6.2. In equilibrium, τj(0) = sup
µ< κ

1+κ

τj(µ), j = 1, 2.

Proof. Suppose that τj(0) 6= sup
µ< κ

1+κ

τj(µ) in equilibrium. Then τj(0) < sup
µ< κ

1+κ

τj(µ) and there exists

[a, b] ⊂ (0, κ
1+κ ) such that τj(b)− τj(a) > 0. When firm j plays this strategy, it gets

v̄j(τj , τ−j) = p

(
1− sup

µ< κ
1+κ

τj(µ)

)[
sup

µ< κ
1+κ

τ−j(µ) +

(
1− sup

µ< κ
1+κ

τ−j(µ)

)

×
∫

∆(Ωj)

∫
∆(Ω−j)

(
1{µj≥µ−j∧ κ

1+κ} −
1

2
1{µ1=µ2≥ κ

1+κ}

)
dτ−j(µ−j)dτj(µj)

]

Consider now the strategy τ ′j that moves some weight ε > 0 away from [a, b] to κ
1+κ and some weight

ε′ > 0 away from [a, b] to zero, so that the new strategy is still Bayes-plausible. Such ε and ε′ always

exist since τj(b)− τj(a) > 0. We claim that this is a profitable deviation. Hence the payoff of firm j

38



is now

v̄j(τ
′
j , τ−j) ≥ p

(
1 + ε− sup

µ< κ
1+κ

τj(µ)

)[
sup

µ< κ
1+κ

τ−j(µ) +

(
1− sup

µ< κ
1+κ

τ−j(µ)

)

×
∫

∆(Ωj)

∫
∆(Ω−j)

(
1{µj≥µ−j∧ κ

1+κ} −
1

2
1{µ1=µ2≥ κ

1+κ}

)
dτ−j(µ−j)dτj(µj)

]

> v̄j(τj , τ−j)

So (τj , τ−j) cannot be an equilibrium.

We show that no equilibrium distribution has a mass point in [ κ
1+κ , 1). So the distributions τj ,

j = 1, 2, are continuous on [0, 1).

Lemma 6.3. τj is continuous on [0, 1), j = 1, 2.

Proof. From lemma 6.2, we know that there is no mass point in (0, κ
1+κ ) so τj is continuous on [0, κ

1+κ ),

j = 1, 2. We show that there is no mass point on [ κ
1+κ , 1) too. Let (τj , τ−j) be an equilibrium such

that τj is not continuous on (0, 1) in equilibrium. There exists a mass point µ̄ ∈ [ κ
1+κ , 1) such that

τj(µ̄) > sup
µ<µ̄

τj(µ) an we can construct a profitable deviation.

Distinguish three cases.

• Suppose that there exists r > 0 such that (µ̄ − r, µ̄] ⊂ [ κ
1+κ , 1] and τ−j(µ̄) − τ−j(µ̄ − r) > 0,

where r is small. Then we show there exists ε, ε′ such that moving some faction ε > 0 of the mass to

µ̄′ = inf
µ>µ̄

µ and some fraction ε′ of the mass to µ̄ − r (to preserve Bayes plausibility) is a profitable
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deviation. Call this new strategy τ ′−j . Then

v̄j(τ
′
j , τ−j)− v̄j(τj , τ−j) = p

(
1− sup

µ< κ
1+κ

τj(µ)

)(
1− sup

µ< κ
1+κ

τ−j(µ)

)

×

[∫
∆(Ωj)

(∫
∆(Ω−j)

(
1{µj≥µ−j∧ κ

1+κ} −
1

2
1{µ1=µ2≥ κ

1+κ}

)
dτ ′−j(µ−j)

−
∫

∆(Ω−j)

(
1{µj≥µ−j∧ κ

1+κ} −
1

2
1{µ1=µ2≥ κ

1+κ}

)
dτ−j(µ−j)

)
dτj(µj)

]

= p

(
1− sup

µ< κ
1+κ

τj(µ)

)(
1− sup

µ< κ
1+κ

τ−j(µ)

)

×
∫

∆(Ωj)

(
τ ′−j(µj)−

1

2
(τ ′−j(µj)− sup

µ<µj

τ ′
j
(µ))

− τ−j(µj) +
1

2
(τ−j(µj)− sup

µ<µj

τ−j(µ))

)
1{µj≥ κ

1+κ}dτj(µj)

= p

(
1− sup

µ< κ
1+κ

τj(µ)

)(
1− sup

µ< κ
1+κ

τ−j(µ)

)

×
∫ µ̄+r

µ̄−r

(
τ ′−j(µj)−

1

2
(τ ′−j(µj)− sup

µ<µj

τ ′
j
(µ))− τ−j(µj) +

1

2
(τ−j(µj)− sup

µ<µj

τ−j(µ))

)
dτj(µj)

Then

v̄j(τ
′
j , τ−j)− v̄j(τj , τ−j) > 0

⇔
∫ µ̄+r

µ̄−r

(
τ ′−j(µj)−

1

2
(τ ′−j(µj)− sup

µ<µj

τ ′
j
(µ))− τ−j(µj) +

1

2
(τ−j(µj)− sup

µ<µj

τ−j(µ))

)
dτj(µj) > 0

Note that the above inequality is implied by

−ε′
(

sup
µ<µ̄

τj(µ)− τj(µ̄− r)
)

+ ε

(
τj(µ̄)− sup

µ<µ̄
τj(µ)

)
> 0

From Bayes-plausibility, we have

m ≡
∫ µ̄

µ̄−r
µdτ−j(µ) = ε′(µ̄− r) + εµ̄
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Then

−ε′
(

sup
µ<µ̄

τj(µ)− τj(µ̄− r)
)

+ ε

(
τj(µ̄)− sup

µ<µ̄
τj(µ)

)
> 0

⇔ ε >
pm

λ(µ̄− r) + pµ̄

where λ = τj(µ̄)− sup
µ<µ̄

τj(µ) and p = sup
µ<µ̄

τj(µ)− τj(µ̄− r). For r small enough, we can always find ε

and ε′ in (0, 1) such that the inequality holds. Then firm −j has a profitable deviation, and we reach

a contradiction. So there cannot be an equilibrium in which there is a mass point in ( κ
1+κ , 1) and the

equilibrium strategy of the other firm puts a positive mass on an interval preceding this mass point.

• Suppose that there exists r > 0 such that (µ̄−r, µ̄] ⊂ [ κ
1+κ , 1] and τ−j(µ̄)− τ−j(µ̄−r) = 0. Then

there is an obvious profitable deviation for player j: move the mass point µ̄ to some µ ∈ (µ̄ − r, µ̄)

and increase its mass to preserve Bayes-plausibility. This is a profitable deviation. So there cannot

be an equilibrium in which there is a mass point in ( κ
1+κ , 1) and the equilibrium strategy of the other

firm puts no mass on an interval preceding this mass point.

• Suppose that τj has a mass point at κ
1+κ and τ−j is strictly increasing on [ κ

1+κ ,
κ

1+κ +r) for some

r. Then there exists ε > 0 such that it is a profitable deviation for player j to split some of the weight

of the mass point between 0 and κ
1+κ + ε. So there cannot be a mass point at κ

1+κ in equilibrium.

Therefore there is no mass point in [ κ
1+κ , 1) and τj , τ−j are continuous on (0, 1) in equilibrium.

We show that supp dτj = supp dτ−j , where dτj in a non-rigorous notation indicates the points in

[0, 1] on which supp τj puts a positive mass and the points in the support of the probability density

function associated with the strategy of j when the cumulative distribution function is continuous.

Lemma 6.4. In equilibrium supp dτ1 = supp dτ2.

Proof. From lemma 6.2, we already know that both strategies puts all mass below κ
1+κ at zero.

So we only have to show that it holds on [ κ
1+κ , 1]. We prove it by contradiction: suppose that

supp dτj 6= supp dτ−j on [ κ
1+κ , 1]. Distinguish three cases.

• Suppose that µ̂j = sup supp dτj 6= µ̂−j = sup supp dτ−j . Without loss of generality, assume that

µ̂j > µ̂−j . Then firm j has a profitable deviation. Hence it is profitable to move all the mass there

currently is on the interval (µ̂−j , µ̂j ] to µ′ = inf
µ>µ̂−j

µ and increase the probability to play µ′ to restore

Bayes-plausibility. Therefore, in equilibrium, we must have µ̂−j = µ̂j .

• Suppose that µ̌j = inf supp dτj 6= µ̌−j = inf supp dτ−j . Without loss of generality, assume that
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µ̌j > µ̌−j . Then firm −j puts no mass on [ κ
1+κ , µ̌j) and µ̌−j = κ

1+κ for otherwise there is a profitable

deviation. Hence moving all mass in [checkµ−j , µ̌j) to κ
1+κ and increasing the probability to play κ

1+κ

to restore Bayes-plausibility would be a profitable deviation. This implies that there is a mass point

at κ
1+κ . Now consider the strategy of firm j and note that moving some mass ε from [µ̌j , µ̌j + r], for r

small, to µ′ = inf
µ> κ

1+κ

µ is a profitable deviation. Hence τ−j(µ̌j+r) = τ−j(
κ

1+κ )+τ−j(µ̌j+r)−τ−j(µ̌j).

Choosing ε and r such that τ−j(µ̌j +r)− τ−j(µ̌j) = ε(µ̌j− κ
1+κ ) yields a profitable deviation. So there

cannot be an equilibrium in which µ̌j = inf supp dτj 6= µ̌−j = inf supp dτ−j .

• Suppose now that there exists an interval [a, b] ⊂ [µ̌j , µ̂j ] = [µ̌−j , µ̂−j ] ⊂ [ κ
1+κ , 1] such that

τj(a)−τj(b) > 0 and τ−j(a)−τ−j(b) = 0 in equilibrium. Then moving all the mass on [a, b] to µ′ = inf
µ>a

µ

and increasing the probability to play µ′ to restore Bayes-plausibility is a profitable deviation for firm

j. So there cannot be an equilibrium in which one firm may play some posterior µ and not the other.

Thus, in equilibrium, the union of the set of mass points, played under strategy τj and τ−j ,

and the support of the probability density function associated with the strategies τj and τ−j , when

differentiable, are identical for both firms, i.e., supp dτj = supp dτ−j in equilibrium.

We show that supp dτj∩ [ κ
1+κ , 1) is connected. This implies that there exists an interval [ κ

1+κ , µmax]

such that τj is strictly increasing on [ κ
1+κ , µmax].

Lemma 6.5. In equilibrium, supp dτj ∩ [ κ
1+κ , 1), j = 1, 2, is connected.

Proof. The proof constructs a profitable deviation following exactly the reasoning of the second • in

the above proof.

Suppose that there exists an interval [a, b] ⊂ [ κ
1+κ , µ̂] such that τj(b)− τj(b) = τ−j(b)− τ−j(b) = 0.

Then it is a profitable deviation for firm j, for example, to move some of the mass it puts on [b, b+ r]

to µ′ = µ
µ>a

. So τj and τ−j are strictly increasing on [ κ
1+κ , µ̂].

From lemmas 6.2 to 6.5, we obtain a quite precise characterization of the strategies in equilibrium.

Hence any strategy played by firm j, j = 1, 2, in equilibrium must satisfy

τj(µ) =



p0,j if µ ∈ [0, κ
1+κ )

p0,j +Gj(µ) if µ ∈ [ κ
1+κ , µ̂]

p0,j +Gj(µ̂) if µ ∈ [µ̂, 1)

1 if µ = 1
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where G(µ) is a strictly increasing continuous function such that Gj( κ
1+κ ) = 0 and Gj(µ̂) ≤ 1 − p0.

Furthermore τj must also be Bayes-plausible. Finally, for τ1, τ2 to be an equilibrium, τ1 must be

a best-response to τ2 and vice-versa. Hence any strategy τj must keep the other player indifferent

between all µ−j ∈ supp dτ−j ∩ [ κ
1+κ , 1). From this observation, we can compute the equilibrium

strategies for both firms: τ1 and τ2.

Hence if the “indifference" condition on [ κ
1+κ , 1] was not respected, there would be no reason for the

firms to induce all these posterior beliefs. In particular, they could deviate to a signal technology with

two signals that puts a maximal mass to the preferred posterior. The companies only induce posteriors

that maximize their expected payoff in equilibrium and therefore must be indifferent between all the

induced posterior above κ
1+κ . Bayes-plausibility is always guaranteed by the signal induced beliefs

µj = 0.

Then ∀µ ∈ supp τ−j ∩ [ κ
1+κ , 1)

p
µ0

µ

(
p0,j + (1− p0,j)

∫ µ̂

κ
1+κ

(1{µ≥µj∧ κ
1+κ} −

1

2
1{µ=µj≥ κ

1+κ}) dτj(µj)

)

= p
µ0

µ

[
p0,j + (1− p0,j)

Gj(µ)

Gj(µ̂)

]
= p

µ0(1 + κ)

κ
p0,j

= p
µ0

µ̂
[p0,j + (1− p0,j)]

from the indifference remark above and the Bayes-plausibility constraint. The first equality comes

from conditioning on µ > κ
1+κ , the second equality comes from evaluating the above expression at κ

1+κ ,

and the last equality comes from evaluating the above expression at µ̂. Then, ∀µ ∈ supp τ−j∩[ κ
1+κ , 1),

Gj(µ) = Gj(µ̂)

[
µ 1+κ

κ p0,j − p0,j

1− p0,j

]
= Gj(µ̂)

µ− κ
1+κ

κ
p0,j(1+κ) −

κ
1+κ

and

µ̂ =
κ

p0,j(1 + κ)

In equilibrium, posterior beliefs are therefore uniformly distributed on
[

κ
1+κ ,

κ
(p0,j+p κ

1+κ
,j)(1+κ)

]
.
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So two strategies τj and τ−j constitute an equilibrium if and only if they satisfy the following

conditions. They must be Bayes-plausible:

µ0 = Gj(µ̂)
κ

1+κ + µ̂

2
+ (1−Gj(µ̂)− p0,j), j = 1, 2,

They must satisfy an “indifference" condition at µ̂:

µ̂ =
κ

(1 + κ)p0,j
, j = 1, 2,

Finally they must satisfy a last “indifference" condition at 1:

pµ0

(
1− p1,j

2

)
= pµ0

1 + κ

κ
p0,j or p1,j = 0, j = 1, 2,

where p1,j = 1− p0,j − p κ
1+κ ,j

−Gj(µ). So to determine the equilibria of the game between firms, we

need to find the parameters that solves these equations. This is done in the proof of the proposition

below.

Proposition 6.6. The information design game admits a unique equilibrium. This equilibrium is

symmetric. Furthermore, in equilibrium, the wood producers always display some information. If

µ0 <
2

1+κ , partial revelation is optimal. If µ0 ≥ 2
1+κ , full revelation is optimal.

Proof. In the Appendix 8.2.

In the competitive equilibrium between firms, more information is disclosed than in a non-competitive

equilibrium. Hence the the competitive equilibrium strategies of the senders are weakly more infor-

mative than their non-competitive equilibrium strategies.

Furthermore it is worth noting another last point. Going back from beliefs to signals, in the

competitive framework, although there is only two different state and the world and two different

actions, the equilibrium strategies are supported by a continuum of signals. This departs from the

result in the single designer case. Hence it is no longer sufficient to display no more signals in

equilibrium than the maximum between the cardinality of the state space and the cardinality of the

action set. However, as in the single information designer case, no good type sends a bad signal. The

difference occurs when sending good signals. Information designers tend to increase how revealing

this signals are to increase their chances to be selected.
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From an individual sender’s perspective, each induced posterior is associated with a probability

of being certified. Increasing the posterior value of being environmentally-friendly gives a higher

probability of being certified. However, the higher this probability is, less likely to arise it because of

the Bayes-plausibility constraint. Thus each sender’s optimal disclosure has to balance this trade-off.

7 Extensions

As mention above, some work still needs to be done. First I am currently trying to determine

conditions on the priors of the game that would ensure that the payoffs of the induced subgame between

the information designers are secure. Secondly I am working on an extension of the application in

which the preference parameter κ is privately known to the receiver. We believe that the equivalence

between private persuasion and public persuasion established by Kolotilin et al. in [18] also holds in

this case. Finally, it would be interesting to relax the independence assumption between the dimension

of the state of the world. From [14], we know that the characterization of the set of equilibria is simple

when the dimension are perfectly correlated, but we do not know what would happen under imperfect

correlation.
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8 Appendix

8.1 Appendix for section 5

8.1.1 Proofs of the two simplifying theorems

We start by reproducing the results in the literature we will be using.

Theorem 8.1 (Delegation Principle for Common Agency Games in [20]). For each σ∗ perfect Bayesian

equilibrium in the game in mechanisms which message space is M, there exists a perfect Bayesian

equilibrium σ̃∗ in the game of menus of at most |M| elements that induces the same distribution on

actions.

Theorem 8.2 (Theorem 6 in [25]). In the common agency problem with a single agent, let (c∗, δ) be

an equilibrium relative to the set of menus ΓM . Then (c∗, δ) is weakly robust.

Below are the proofs of the two simplifying theorems.

Proof of theorem 5.1. From theorem 1 in [20] (theorem 8.1), we know that any equilibrium relative

to a feasible set of mechanisms with communication space M can be replicated by an equilibrium

relative to the set of menus which image space has cardinality of at most the cardinality ofMi for all

designers i = 1, . . . , n, i.e., there exists an equilibrium relative to the set of menus of cardinality less

than that ofMi that generates the same simple actions for all players and preserves all payoffs. This

is the delegation principle. Applied to the universal communication space defined in [12], it means

that all equilibria relative to the universal set of mechanisms Γu can be replicated by an equilibrium

in the set of menus ΓM that preserves all payoffs. So we only have to show that, for any equilibrium

relative to the set of menus, there exists an equilibrium in incentive compatible direct mechanisms

that preserves all payoffs.

Let (δ∗1 , . . . , δ
∗
n, c
∗) ∈

∏n
i=1 ∆(ΓMi ) ×∆(E) ×∆(A) be an equilibrium relative to the set of menus

ΓM . c∗(γ, t) = (m̃c(γ, t), ãc(µ, t) is the continuation equilibrium played by the common receiver of

type t ∈ T when she is offered γ. Then her expected payoff is

uc
∗

R (γ, t) =

∫
M

∫
∆(Ω1)

. . .

∫
∆(Ωn)

∫
Ω

∫
A

uR(a, ω, t) dãc(µ, t)(a) dµ(ω) dγn(mn)(µn) . . . dγ1(m1)(µ1)dm̃c(m)
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where γi is the menu drawn from the randomization δ∗i . Then γi maps a message mi ∈ Ei into the set

of simple action: γi(mi) = τi(µ).

Let τ c
∗
(t) be the distribution on

∏n
i=1 ∆(∆(Ω)) associated with the continuation equilibrium c∗

conditional on receiver’s type t ∈ T . These distributions completely characterizes the receiver decision

strategy since the latter is a deterministic function of beliefs on ω. Then τ c
∗
(t) = δ∗(γ)m̃c(γ, t), where

δ∗ ∈ ∆(Γ) is the joint distribution on simple actions played in the equilibrium of the menu game.

Since c∗ is a continuation equilibrium, the receiver does not have any profitable deviation and

∀γ ∈ supp δ∗, ∀i = 1, . . . , n, ∀τi ∈ supp m̃c
i (γ, t),∀τ ′i ∈M

γi
i

29

uc
∗

R (γ, t) ≡ u(τ∗i ,τ
∗
−i)

R (γ, t) =∫
M−i

∫
∆(Ω1)

. . .

∫
∆(Ωn)

∫
Ω

∫
A

uR(a, ω, t) dãc(µ, t)(a) dµ(ω) dγn(τ∗n)(µn) . . . dτ∗i (µi) . . . dγ1(τ∗1 )(µ1)dm̃c
−i(τ

∗
−i)

≥ uc
′

R(γ, t) ≡ u(τ ′i ,τ
∗
−i)

R (γ, t) =∫
M−i

∫
∆(Ω1)

. . .

∫
∆(Ωn)

∫
Ω

∫
A

uR(a, ω, t) dãc(µ, t)(a) dµ(ω) dγn(τ∗n)(µn) . . . dτ ′i(µi) . . . dγ1(τ∗1 )(µ1)dm̃c
−i(τ

∗
−i)

where u(τi,τ−i)
R (γ, t) is a new notation to insist on the reports made in equilibrium and τ∗i is the

simple action taken by sender Di in the continuation equilibrium c∗. Note that the communication

equilibrium is well defined since the message space is a closed subset E , which is a compact metric

space. Hence for all closed subset Ui ⊂ Ei ⊂ ∆(∆(Ωi)), there exists τi such that

u
(τi,τ−i)
R (γ, t) ≥ u(τ ′i ,τ−i)

R (γ, t)

for all τ−i ∈ E−i, all τ ′i ∈ U , and all t ∈ T .

From here, we can construct an equilibrium in incentive compatible direct persuasion mechanisms

that preserves all payoffs. For all t ∈ T , let τ∗i (t) be the simple action that generates the same beliefs

on ωi as the randomization on simple actions induced by sender Di’s randomization on menus and

the receiver’s communication strategy in equilibrium. Such an action τ∗i (t) exists by lemma 3.1. Note

also that τ∗i (t) verifies the above no deviation inequality.

Let ã∗(t) be the distribution on actions induced by c∗ for a receiver of type t, ã∗(t) = τ c
∗
(t)(µ)ac(µ, t).

We define now the incentive compatible direct persuasion mechanisms that will constitute the new

29Mγi
i is the message space associated with menu γi. In standard notation, x−i corresponds to

(x1, . . . , xi−1, xi+1, . . . , xn).
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equilibrium in direct persuasion mechanisms. For all i = 1, . . . , n, define the contract dDMi as

dDMi : T → Ei

t→ τ∗i (t)

where τ∗i (t) is defined above. We only have left to show that this direct mechanisms are incentive

compatible, that the truth-telling continuation strategy associated with (dDM1 , . . . , dDMn ) is optimal,

and that (dDM1 , . . . , dDMn ) is an equilibrium of the senders game relative to the set of direct persuasion

mechanisms.

Suppose that the common receiver responds to the array of offers (dDM1 , . . . , dDMn ) by reporting

her true type and by taking the action strategy ãc(µ, t). Then sender Di’s ex-ante expected payoff is

v̄i(d
DM
1 , . . . , dDMn ) =

∫
T

∫
∆(Ω1)

. . .

∫
∆(Ωn)

∫
Ω

∫
A

vi(a, ω, t) dã
c(µ, t) dµ(ω) dτ∗n(t)(µn) . . . dτ∗1 (t)(µ1) dF (t)

=

∫
T

∫
Ω

∫
A

vi(a, ω, t) dã
∗(t) dµ0(ω) dF (t)

where the equality comes from Bayes-plausibility, the independence of the ωi’s, and the definition of

ã∗(t). Of course, sender Di’s payoff is unchanged since the receiver’s decision strategy remains the

same and the mechanisms are payoff irrelevant.

For the receiver’s payoff, observe that, in the menu equilibrium,

uc
∗

R (t) =

∫
ΓM

∫
M

∫
∆(Ω1)

. . .

∫
∆(Ωn)

∫
Ω

∫
A

uR(a, ω, t) dãc(µ, t)(a) dµ(ω) dγn(mn)(µn) . . . dγ1(m1)(µ1)dm̃c(m) dδ∗(γ)

=

∫
ΓM−n

∫
M−n

∫
∆(Ω1)

. . .

∫
∆(Ωn−1)

∫
ΓMn

∫
M\

∫
∆(Ωn)

∫
Ω

∫
A

uR(a, ω, t) dãc(µ, t)(a) dµ(ω)

dγn(mn)(µn) dm̃c
n(mn) dδ∗n(γn) dγn−1(mn−1)(µn−1) . . . dγ1(m1)(µ1)dm̃c

−n(m−n)dδ∗−n(γ−n)

=

∫
ΓM−n

∫
M−n

∫
∆(Ω1)

. . .

∫
∆(Ωn−1)

∫
∆(Ωn)

∫
Ω

∫
A

uR(a, ω, t) dãc(µ, t)(a) dµ(ω) dτ∗n(t)(µn)

dγn−1(mn−1)(µn−1) . . . dγ1(m1)(µ1)dm̃c
−n(m−n)

where the first equality is Fubini’s theorem and the second comes from the definition of τ∗n. Repeating
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this operation n times yields

uc
∗

R (t) =

∫
∆(Ω1)

. . .

∫
∆(Ωn−1)

∫
∆(Ωn)

∫
Ω

∫
A

uR(a, ω, t) dãc(µ, t)(a) dµ(ω) dτ∗n(t)(µn) . . . dτ∗1 (t)(µ1)

Furthermore, recall that τ∗i (t) verifies the no deviation inequality, and that any message played in the

support of the original mixed communication equilibrium must yield the same expected payoff. Thus

the common receiver payoff’s is also preserved.

We still have to show that the array (dDM1 , . . . , dDMn ,mT , ac(µ, t)), where mT is the truth-telling

communication strategy, is an equilibrium in the multi-senders common-receiver game relative to the

set of direct persuasion mechanisms.

We first show that for all t, ac(µ, t) is a best response. This is immediate as ac(µ, t) is part of

the original continuation equilibrium for the menu game. Any deviation available in the new game in

direct mechanisms was already available before. So no deviation to another decision strategy can be

profitable to the common receiver.

Secondly, we show that reporting the truth about her type is an optimal communication strategy

for the receiver. Again τ∗i (t) verifies the no deviation inequality and is payoff equivalent to the simple

action for sender Di taken in the menu equilibrium. However menus being independent of types and

m̃c being played in the continuation equilibrium, it implies that telling the truth is optimal.

Hence ∀t ∈ T and ∀i = 1, . . . , n, τ∗i (t) is payoff equivalent to the maximizing communication

strategy δτi(t) associated with δ∗i for the receiver of type t. Furthermore ∀t′ ∈ T , τ∗i (t′) was constructed

such that it is payoff equivalent to a communication strategy available to R in the menu game. Then

to report t′ 6= t is not a profitable deviation. If it were, there would be a contract τ∗i (t′) and therefore a

communication strategy δτi(t′) available to receiver of type t in the menu game such that it would yield

an higher payoff than δτi(t) in the menu game. But then δτi(t) cannot be part of the communication

strategy of the receiver in equilibrium. This is a contradiction. Since a payoff equivalent deviation

was feasible in the original equilibrium and such deviation was not profitable, it cannot be profitable

in the new continuation equilibrium.

So we showed that reporting her true type and selecting decision strategy ãc(µ, t) is a continuation

equilibrium for the receiver when (dDM1 , . . . , dDMn ) are offered. It remains to show that no information

designer Di has an incentive to unilaterally deviate in ΓDMi given this continuation equilibrium. We

show that it holds by showing that any deviation in direct persuasion mechanisms is payoff equivalent

to a deviation in menus in the original game. Such deviation was not profitable before and the
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equilibrium payoffs are preserved, so the new deviation is unprofitable too.

Suppose that sender Di deviates to a strategy30 τ ′i ∈ ΓDMi and that all other senders D−i still

play dDM−i . The agent continuation strategy is composed of the truth-telling communication strategy

mT and of the decision strategy ãc(µ, t). The payoff of the deviator is

v̄i(d
DM
1 , . . . , δ′i, . . . , d

DM
n ) =

∫
T

∫
∆(Ω1)

. . .

∫
∆(Ωn)

∫
Ω

∫
A

vi(a, ω, t) dã
c(µ, t) dµ(ω) dτ∗n(t)(µn) . . . , dτ ′i(t)(µi)

. . . dτ∗1 (t)(µ1) dF (t)

=

∫
ΓM

∫
M

∫
∆(Ω1)

. . .

∫
∆(Ωn)

∫
Ω

∫
A

uR(a, ω, t) dãc(µ, t)(a) dµ(ω) dγn(mn)(µn)

. . . dτ ′i(t)(µi) . . . dγ1(m1)(µ1)dm̃c(m) dδ∗(γ)

which shows that the payoff sender Di gets by deviating is the same as the payoff he would have got

when deviating to τ ′i in the menu game. The latter deviation was indeed feasible since the set of direct

persuasion mechanisms is included in the set of menus. Furthermore, it was not a profitable deviation

before, so it must still be unprofitable. Thus no designer has an incentive to deviate. This concludes

the proof.

Proof of theorem 5.2. The existence of a pure strategy payoff equivalent equilibrium is a consequence

of lemma 3.1. Furthermore, from Peters’ theorem 6 in [25], we know that any equilibrium relative to

the set of menus ΓM is weakly robust. So we only have to show that any pure strategy equilibrium in

incentive compatible direct persuasion mechanism is also an equilibrium relative to the set of menus.

Let (γ∗1 , . . . , γ
∗
n, c
∗) be an equilibrium of the multi-senders common-receiver game relative to the

set of incentive compatible direct persuasion mechanisms. Since each γ∗i is incentive compatible, the

common receiver reports truthfully, which is a pure strategy. It follows that for all t ∈ T , the receiver

R chooses a single contract from γi for all i = 1, . . . , n. Denote τ∗i (t) the simple action chosen by the

common receiver of type t ∈ T from information designer Di.

Note that Di’s expected payoff is given by

v̄i(d
DM
1 , . . . , dDMn ) =

∫
T

∫
∆(Ω1)

. . .

∫
∆(Ωn)

∫
Ω

∫
A

vi(a, ω, t) dã
c(µ, t) dµ(ω) dτ∗n(t)(µn) . . . dτ∗1 (t)(µ1) dF (t)

=

∫
T

∫
Ω

∫
A

vi(a, ω, t) dã
∗(t) dµ0(ω) dF (t)

30Considering only deviations in pure strategies is without loss of generality from lemma 3.1.
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where ã∗(t) is the distribution on actions induced in equilibrium: ã∗(t) = τ∗1 (t)(µ1) . . . τ∗n(t)(µn)ac(µ, t).

The problem is to extend the continuation equilibrium c∗ = (mT , ãc(µ, t)), wheremT is the truthful

reporting communication strategy, such that it preserves the initial equilibrium in the menu space.

Define cM , the extended continuation equilibrium on the set of menus ΓM . Note that the common

receiver should respond to any mechanism γ ∈ ΓDM ⊂ ΓM in exactly the same way as he does in the

original equilibrium. Then, for all γ ∈ ΓDM , define

∀t ∈ T, cM (γ, t) = c∗(γ, t)

Since ΓDM ⊂ ΓM , the equilibrium offers (γ∗1 , . . . , γ
∗
n) are also in ΓM , and the equilibrium payoffs are

preserved. Furthermore cM is a best response in this case as no new deviation is available to the

receiver.

Consider now a particular information designer Di. We want to show that there exists a continu-

ation equilibrium such that this sender has no profitable deviation in ΓM . We do so by construction,

i.e., we define a continuation equilibrium that yields a lower payoff than the equilibrium’s payoff for

any deviation of information designer Di.

Suppose that Di deviates and offer a mechanism γ′i ∈ ΓM \ ΓDM , while every other sender D−i

still offer their equilibrium mechanism in ΓDM . We construct the continuation equilibrium cM such

that the deviation to γ′i has the same consequence as a deviation in ΓDM . For each type t ∈ T , choose

an array of incentive compatible direct persuasion mechanisms

{τ∗1 (t), . . . , τ∗n(t)} ⊂ {γ∗1 , . . . , γ′i, . . . , γ∗n}

where τ∗j (t) ∈ Im(γ∗j ), j 6= i and τ ′i(t) ∈ Im(γ′i) such that

τ ′i(t) ∈ arg max
τi∈γ′i

∫
∆(Ω1)

. . .

∫
∆(Ωn−1)

∫
∆(Ωn)

∫
Ω

∫
A

uR(a, ω, t) dãc(µ, t)(a) dµ(ω) dτ∗n(t)(µn) . . . dτi(t)(µi) . . . dτ
∗
1 (t)(µ1)

Define the direct mechanism d′i = {τ ′i(t)}t∈T for the deviating sender. The choice set offered to

the receiver when mechanisms are (γ∗1 , . . . , γ
′
i, . . . γ

∗
n) contains the choice set available to the receiver

when the senders play mechanisms (γ∗1 , . . . , d
′
i, . . . γ

∗
n), since Im(d′i) ⊂ Im(γ′i). Then, for each type

t ∈ T and each γ′i, cM (γ∗1 , . . . , γ
′
i, . . . γ

∗
n) = (mT

−i, τ
′
i(t), ã

c(µ, t)) is a continuation equilibrium (by

construction). The distributions on actions induced by cM are identical when (γ∗1 , . . . , γ
′
i, . . . γ

∗
n) and
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(γ∗1 , . . . , d
′
i, . . . γ

∗
n) are offered. Then the payoff of all senders are also unchanged. In particular the

payoff of information designer Di is the same when deviating to offer γ′i and d′i. But d′i was a

feasible deviation of the original game in direct persuasion mechanisms. So the payoff for designer

Di associated with d′i is less than the payoff associated with γ∗i and therefore γ′i is not a profitable

deviation.

We have shown that there exists a continuation equilibrium such that no deviation in ΓM is

profitable. This concludes the proof.

8.1.2 Proofs of the two existence criteria

We start with a few definitions and propositions from [28] that will be useful.

Definition 4. Player i can secure a payoff of α ∈ R at τ ∈ E if there exists τ̄i ∈ Ei, such that

vi(τ̄i, τ
′
−i) ≥ α for all τ ′−i in some open neighbor of τ−i.

A game is payoff secure when all players can secure a payoff at all points of the action space.

Definition 5. A game G = (Ei, vi)ni=1 is reciprocally upper semicontinuous if whenever (τ, v) is in

the closure of the graph of its vector payoff function and vi(τ) ≤ vi for every player i, then vi(τ) = vi

for every player i.

Definition 6. Let G = (Ei, vi)ni=1 be a game. A mixed extension Gm of G is defined by Gm =(
∆(Ei),

∫
E vi dτ

)n
i=1

for all τ ∈
∏n
i=1 ∆(Ei).

We will also use Proposition 5.1 in [28].

Proposition 8.3 (Proposition 5.1 in [28]). If
∑n
i=1 vi(τ) is upper semicontinuous in τ on E, then∑n

i=1

∫
E vi(τ) dδ(τ) is upper semi continuous in δ on

∏n
i=1 ∆(Ei). Consequently, the mixed extension

of the game is reciprocally upper semicontinuous.

Finally, corollary 5.2 in [28] will be the main ingredient of our proof, so we reproduce it here.

Theorem 8.4 (Corollary 5.2 in [28]). Suppose that G = (Ei, vi)ni=1 is a compact Hausdorff game.

Then G possesses a mixed strategy Nash equilibrium if its mixed extension, Gm, is better-reply secure.

Moreover Gm is better-reply secure if it is both reciprocally upper semicontinuous and payoff secure.

Before presenting the proofs, we also state a lemma, which is going to be useful in the proof of the

two existence criteria.

55



Lemma 8.5. The continuation equilibrium is well defined in the game relative to the incentive com-

patible direct persuasion mechanisms.

Proof. From the continuation equilibrium subsection 4.1, we only have to verify that there exists

an optimal communication strategy for the common receiver R. This is the case when the message

spaceM =
∏n
i=1Mi is compact. When designers compete in incentive compatible direct persuasion

mechanisms, they offer mechanisms, which message space, Mi, is a closed subset of T for all i =

1, . . . , n. Since we assumed that T is a compact metric space, eachMi is compact, and so isM.

Proof of theorem 5.4. The receiver has no private information of her own, |T | = 1. Then an incentive

compatible direct persuasion mechanism for Di, which is a T -measurable mapping from T to Ei,

corresponds to a single simple action τi ∈ Ei. Any strategy δi played by senderDi is then a distribution

on simple actions, δi ∈ ∆(Ei).

Furthermore from lemma 8.5, a continuation equilibrium exists in the game relative to the in-

centive compatible direct persuasion mechanisms. When the receiver has no private information of

her own, this continuation equilibrium is fully summarized by ac(µ), the decision strategy of the

receiver. Therefore to show the existence of an equilibrium of the multi-senders common-receiver

game, we only have to show that the normal form game between senders, defined by the continua-

tion equilibrium of the common receiver, where senders feasible actions are Ei, has a Nash equilibrium.

Let c∗ = (mT , ãc(µ)) be the continuation equilibrium played by the receiver. To show the existence

of an equilibrium in the game Gc
∗
induced by c∗ when the payoffs of the senders are secure, we use

Reny’s corollary 5.2 in [28] (theorem 8.4). Hence it tells us that a mixed strategy Nash equilibrium

of Gc
∗
exists if Gc

∗
is a compact Hausdorff game and if its mixed extension Gc

∗

m is payoff secure and

reciprocally upper semicontinuous.

We show that Gc
∗
is a compact Hausdorff game, that is, each Ei is compact Hausdorff.

Recall that ∀i = 1, . . . , n, Ei ⊂ ∆(∆(Ωi)) is the set of Bayes-plausible distribution on posterior

beliefs. Since Ωi is compact metric, so is ∆(Ωi), the set of Borel probabilities on Ωi. Hence ∆(Ωi)

is compact in the weak∗ topology as a consequence of Riesz representation theorem and Alaoglu’s

theorem. See for example proposition 5.3 in [31], and note that the convergence in the Lévy–Prokhorov

metric is the same as weak convergence when the underlying space is separable. Reproducing the same

reasoning, ∆(∆(Ωi)) is a compact metric space. Furthermore all metric spaces are Hausdorff. Then
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∆(∆(Ωi)) is compact Hausdorff. So to show that Ei is compact Hausdorff, we only have to show that

it is closed. This is obvious. Let (τni )n∈N ⊂ Ei be a convergent sequence and call its limit τi. Then

∀n ∈ N,
∫

∆(Ωi)
µdτni (µ) = µi0. But is

∫
∆(Ωi)

µdτni (µ) is continuous in τni . Hence ∆(Ωi) is compact, the

identity function is continuous, so the random variable µ is dominated, and the continuity comes from

Lebesgue dominated convergence theorem. Therefore we can take the limit in the above expression

and
∫

∆(Ωi)
µdτi(µ) = µi0.

Thus every Ei is compact Hausdorff, and Gc
∗
is a compact Hausdorff game.

We show that the game is reciprocally upper semicontinuous. The payoffs of the senders in Gc
∗

are given, for any τ ∈ E =
∏n
i=1 Ei, by

v̄i(τ) =

∫
∆(Ω)

∫
Ω

∫
A

vi(a, ω) dãc(µ)(a) dµ(ω) dτ(µ)

where τ is the distribution on ∆(Ω) generated by the actions of the senders. Define v̂i(µ) as

v̂i(µ) =

∫
Ω

∫
A

vi(a, ω) dãc(µ)(a) dµ(ω)

We first want to show that
∑n
i=1 v̂i(µ) is upper semicontinuous. Note that

n∑
i=1

v̂i(µ) =

n∑
i=1

max
ã∈ã∗(µ)

∫
Ω

∫
A

vi(a, ω) dã(a) dµ(ω)

since ãc is the continuation strategy played in equilibrium. Furthermore, given ã ∈ ∆(A), the

random variable
∫
A
vi(a, ω) dã(a) is dominated by the constant random variable max

ω∈Ω
max
a∈A

vi(a, ω)

(where the maximum exists by Heine’s theorem). Then, by Lebesgue dominated convergence theorem,∫
Ω

∫
A
vi(a, ω, t) dã(a) dµ(ω) is continuous in µ for any given ã ∈ ∆(A). Therefore

∑n
i=1

∫
Ω

∫
A
vi(a, ω) dã(a) dµ(ω)

is continuous in µ for any given ã ∈ ∆(A).

Thus, from Berge maximum theorem,
∑n
i=1 v̂i(µ) is upper semicontinuous if ã∗(µ) is an upper

hemicontinuous, compact valued, non empty correspondence from ∆(Ωi) into ∆(A). ã∗(µ) solves the

maximization program of the receiver in the second stage of the continuation problem:

ã∗(µ) = arg max
ã∈∆(A)

∫
Ω

∫
A

uR(a, ω) dã dµ(ω)
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From subsection 4.1, we know that ã∗(µ) is an upper hemicontinuous, compact valued, non empty

correspondence from ∆(Ωi) into ∆(A). Then
∑n
i=1 v̂i(µ) is upper semicontinuous in µ.

Secondly we show that
∑n
i=1 v̄i(τ) =

∑n
i=1

∫
∆(Ω)

v̂i(µ)dτ(µ) is upper semicontinuous in τ on E .

This follows from proposition 5.1. and its proof in Reny [28] (proposition 8.3).

Finally, applying again proposition 5.1. in Reny [28] to
∑n
i=1

∫
∆(Ω)

v̂i(µ)dτ(µ), we have that

n∑
i=1

∫
∆(Ω)

v̄i(τ)dδ(τ)

is upper semicontinuous in δ on
∏n
i=1 ∆(Ei) and that the extension of the sender game in mixed

strategy, Gc
∗

m , is reciprocally upper semicontinuous.

FinallyGc
∗

m is payoff secure from lemma 3.1 since we assumed thatGc
∗
is. Thus, by Reny’s corollary

5.2, a mixed strategy Nash equilibrium of Gc
∗
exists. By lemma 3.1 again, a payoff equivalent pure

strategy equilibrium of the normal form game among sender defined by c∗ exists. This concludes the

proof.

Proof of theorem 5.6. We want to show that there exists an equilibrium of the multi-senders common-

receiver game relative to the set of incentive compatible direct mechanisms.

From lemma 8.5, a continuation equilibrium exists in the game relative to the direct persuasion

mechanisms. Let c∗ = (m̃c, ac(µ, t)) be the continuation equilibrium. Therefore to show the existence

of an equilibrium of the multi-senders common-receiver game, we only have to show that the normal

form game between senders, defined by the continuation equilibrium of the common receiver c∗, has

a Nash equilibrium. Call this game G. The set of actions for each sender i in G is the set of truthful

direct persuasion mechanisms, ΓICDMi .

Recall that a direct persuasion mechanism for Di, γi ∈ ΓDMi , is characterized by a measurable

mapping

γi :T → Ei

t→ γi(t)

An incentive compatible direct persuasion mechanism is a direct persuasion mechanism that in-

duces truth-telling as an optimal communication strategy. A direct persuasion mechanism is incentive
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compatible if and only if for all possible type t ∈ T , the common receiver R has an incentive to report

her type t truthfully.

To show the existence of an equilibrium in the game G induced by c∗ when the payoffs of the

senders are secure, we use Reny’s corollary 5.2 in [28] (theorem 8.4). Hence it tells us that a mixed

strategy Nash equilibrium of G exists if G is a compact Hausdorff game and if its mixed extension

Gm is payoff secure and reciprocally upper semicontinuous.

We first show that the set of direct persuasion mechanisms is compact, and therefore that the set of

incentive compatible direct persuasion mechanism is also. Then we show that the game is reciprocally

upper semicontinuous. Finally we apply Reny’s corollary 5.2.

We show that G is a compact Hausdorff game, that is, each ΓICDMi is compact Hausdorff. We

begin by showing that ΓDMi is compact Hausdorff.

∀i = 1, . . . , n, Ei ⊂ ∆(∆(Ωi)), is compact metric. This comes from the proof of theorem 5.4.

It is metrized with the metric defined in [29]. Then, from [29], there exists a reproducing kernel

Hilbert space embedding for ∆(∆(Ωi)). Then ∆(∆(Ωi)) is a Hilbert space.31 From Fraňková-Helly

selection theorem, it follows that ΓDMi is compact and metrizable. Hence all elements γi of Γi are

indeed regulated functions since both image space Ei and the preimage space T are compact metric

space. Finally we can equip ΓDMi with a metric to make it a compact metric space. Therefore ΓDMi

is Hausdorff as a metrizable space.

Thus every ΓDMi is compact Hausdorff. We show that it implies that ΓICDMi is compact Hausdorff.

This is the case if ΓICDMi is a closed subset of ΓDMi . So we have to show that ΓICDMi ⊂ ΓDMi is

indeed closed. Fix τ−i ∈ ΓICDM−i .

The set of incentive compatible direct persuasion mechanisms available to information designer Di

is characterized by

ΓICDMi = {τi : T → Ei such that UτiR (t, t) ≥ UτiR (t, t′)∀t, t′ ∈ T}

where UτiR (t, t′) =
∫

∆(Ω−i)

∫
∆(Ωi)

∫
Ω

∫
A
uR(a, ω, t) dãc(µ, t)(a) dµ(ω) dτi(t

′)(µi)dτ−i(t).

31What is important here is the existence of a Hilbert structure compatible with the weak∗ topology for the space
of Borel probabilities, so we can apply Fraňková-Helly selection theorem. I think that it is guaranteed by the Hilbert
embedding described in [29], but I am not completely sure. Note however that, if Ω is finite, every Ei can be assimilated
to a closed subset of an Euclidean space, so there is no problem.
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Let (τni )n∈N ⊂ ΓICDMi be a sequence of incentive compatible direct persuasion mechanisms. Sup-

pose that (τni )n∈N converges to τi. We want to show that the convergence occurs in ΓICDMi , i.e., that

τi ∈ ΓICDMi . ∀n ∈ N, Uτ
n
i

R (t, t) ≥ U
τni
R (t, t′)∀t, t′ ∈ T . Furthermore Uτ

n
i

R (t, t′) is continuous in τni

from Lebesgue dominated convergence theorem and the linearity of the integral. Then we can take

the limit in the inequality and we obtain UτiR (t, t) ≥ UτiR (t, t′), that is τi is incentive compatible.

Then ΓICDMi is closed in ΓDMi . Therefore it is compact Hausdorff. This result is similar to Myer-

son’s theorem 1 in [21], although the proof differs. Then G is a compact Hausdorff game.

We show that the game is reciprocally upper semicontinuous. The proof follows the same step as

the proof of reciprocal upper semicontinuity of the game Gc
∗

m in the proof of theorem 5.4.

The payoffs of the senders in Gc
∗
are given, for any τ ∈ E =

∏n
i=1 Ei, by

v̄i(τ) =

∫
T

∫
∆(Ω)

∫
Ω

∫
A

vi(a, ω, t) dã
c(µ, t)(a) dµ(ω) dτ(t)(µ) dF (t)

where τ is the distribution on ∆(Ω) generated by the actions of the senders.

Reproducing the proof of theorem 5.4, we have that, for all t ∈ T ,

n∑
i=1

∫
∆(Ω)

∫
Ω

∫
A

vi(a, ω, t) dã
c(µ, t)(a) dµ(ω) dτ(t)(µ)

is upper semicontinuous in τ(t) on E(t) ⊂ E , where E(t) is the set of incentive compatible direct

persuasion mechanisms chosen by the common receiver R of type t. This implies that the sum of the

expected payoffs is upper semicontinuous and, by proposition 5.1. in [28] (proposition 8.3), that Gm

is reciprocally upper semicontinuous.

Finally Gm is payoff secure from lemma 3.1 since we assumed that G is. Thus, by Reny’s corollary

5.2, a mixed strategy Nash equilibrium of G exists. By lemma 3.1 again, an equivalent pure strategy

equilibrium of the normal form game among sender defined by c∗ exists. This concludes the proof.

8.2 Appendix for section 6

Proof of proposition 6.1. When µ0 ≥ κ
1+κ , the agency already takes firm’s preferred action, so no

revelation is optimal.

Suppose now that µ0 <
κ

1+κ . Finding the equilibrium is an easy application of Bayesian persuasion.
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Note that v̂j(a, µj , µ−j) takes value 0 when aj = 0 and value > 0 when aj = 1, and aj is the only

action player j has some control over. So it is optimal for the firm (the sender) to maximize the

probability that the agency (the receiver) takes action aj = 1.

From Kamenica and Gentzkow [16], we know that the optimal strategy of both firms (when they

are alone) is to use a binary signal, and that one signal must induce beliefs µ′′j = 0. So we only need

to find the remaining two parameters: λj and µ′j . From Bayes-plausibility,

λjµ
′
j + (1− λj)µ′′j = µ0

Then λj = µ0

µ′j
. So the problem of firm j is to pick λj that maximizes her expected utility

Eτj ,τ−j [v̂j(µj , µ−j)] = p

[
λj(1− λ−j) +

1

2
λjλ−j

]
1{µ0(1+κ)

κ ≥λj}

This is maximized by λj = µ0(1+κ)
κ and then µ′j = 1+κ

κ . Then firm j’s expected payoff is

Eτj ,τ−j [v̂j(µj , µ−j)] = p
µ0(1 + κ)

κ

[
1− 1

2

µ0(1 + κ)

κ

]

We still need to show that this is an equilibrium and that it is unique. By unique, we mean that

there is no other distribution on beliefs that constitutes a Bayesian Nash equilibrium of the game.

That it is an equilibrium is obvious, as the strategy found above for firm j is a dominant strategy.

Hence increasing µ′j or µ′′j reduces λj by Bayes-plausibility and reduces firm j’s payoff too. Decreasing

µ′j yield payoffs zero.

No other distribution on beliefs can be induced in equilibrium. Suppose that there exists another

equilibrium (τ ′2, τ
′
2) 6= (τ∗1 , τ

∗
2 ). Then ∃j ∈ {1, 2} such that τ ′j 6= τ∗j . But deviating to τ∗j is then

profitable since it is a dominant strategy, and (τ ′2, τ
′
2) cannot be an equilibrium.

Proof of proposition 6.6. Note that, by lemma 6.4 and the first indifference condition, p0,j = p0,−j ≡

p0. Therefore Gj(µ̂) = G−j(µ̂) ≡ G(µ̂) and ∀µ ∈ [ κ
1+κ ), Gj(µ) = G−j(µ) ≡ G(µ). Finally, from

lemma 6.4 and the second indifference conditions, it follows that p1,j = p1,−j ≡ p1. All equilibria of

the game are symmetric.

We now solve for the equilibrium strategies. Distinguish three cases. First suppose that p0+G(µ̂) =
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1, i.e., p1 = 0. Then the equilibrium strategies solve


µ0 = (1− p0)

κ
1+κ+µ̂

2

µ̂ = κ
(1+κ)p0

p0 +G(µ̂) = 1

This is a system of three equations in three unknowns. It has a unique solution (since p0 ∈ (0, 1)).

Hence

p0 =
κ+ 1

κ

(√
µ2

0 +
κ2

(1 + κ)2
− µ0

)

G(µ̂) = 1− κ+ 1

κ

(√
µ2

0 +
κ2

(1 + κ)2
− µ0

)

µ̂ =

(
κ+ 1

κ

)2
(√

µ2
0 +

κ2

(1 + κ)2
− µ0

)−1

Note that the above expressions define an equilibrium of the game if and only if they are feasible, i.e.,

µ̂ ∈ ( κ
1+κ , 1]. This is the case when µ0 ∈ [0, 1

2 (1− κ2

(1+κ)2 )].

Secondly assume that p1 > 0. Then the equilibrium strategies solve


µ0 = (1− p0)

κ
1+κ+µ̂

2

µ̂ = κ
(1+κ)p0

1− p1
2 = κ+1

κ p0p0 +G(µ̂) + p1 = 1

This is a system of four equations in four unknowns. It has a unique solution (since p0 ∈ (0, 1)).

Hence

p0 =
−κ− (1− µ0)(κ+ 1)

κ+ 2
+
κ+ 1

κ+ 2

√(
κ

1 + κ

)2

+ 3

(
κ+ 2

1 + κ

)2

+ (1− µ0)2 + 2(1− µ0)
κ

1 + κ

p1 = 2

(
1− κ

1 + κ

)
G(µ̂) = 1− p0 − p1

µ̂ =
κ

(1 + κ)p0
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Note that the above expressions define an equilibrium of the game if and only if they are feasible, i.e.,

µ̂ ∈ ( κ
1+κ , 1). This is the case when µ0 ∈ ( 1

2 (1− κ2

(1+κ)2 ), 2
κ+2 ).

Finally suppose that p0 + p1 = 1, i.e., firms play full revelation. Note that p1 and p0 are directly

characterized by the Bayes-plausibility constraint.


p1 = µ0

p0 = 1− µ0

This is an equilibrium if no deviation is profitable. Obviously the best deviation a firm can play is

moving all the mass at 1 to κ
1+κ and increasing the probability to preserve Bayes-plausibility. Hence

it is an equilibrium if and only if

p
(

1− µ0 +
µ0

2

)
≥ pµ0

κ

1 + κ
(1− µ0)

⇔ µ0 ≥
2

1 + κ

Then full revelation is an equilibrium of the game if and only if µ0 ∈ [ 2
1+κ , 1].

The three cases detailed above fully characterize the equilibrium of the information game between

the two wood producers.
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