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Abstract

I study a sparse rational inattention 3 period model with a par-
tial attention future income shock, I propose to introduce a partial
attention interest rate to the same period of the income shock. When
partial attention is considered the sparse agent divides itself in two,
one is fully rational with the initial endowment, it shows patience and
is able to smooth consumption, the other half of the agent has partial
attention, due to her short sight both her estimates of interest rate and
future income mare incorrect. To navigate the world the agent derives
an euler equation, however this is based on perception, thus her euler
fails to predict the behavior of this agent but she stills exhaust the bud-
get with the actual consumption, given instead by the dynamic policy
rule.
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Introduction

More often than not we think of the economic agent as capable of manag-
ing, at least up to some point, his resources in an efficient way, and actually
obtaining the greatest benefit with the least expense. This idea is very well
established in the economic science up to the point in which opening any eco-
nomics book will reveal some sort of maximization or optimization behavior.

It is true that optimization is very useful tool in order to model behavior,
without maximization we as scientist studying the human behavior would be
lost without knowing what choice is at least, the most likely to be taken. In
an essay by John Stuart Mill (1844, 144) refers to this very phenomenon:

[...] Political Economy presuppose an arbitrary definition of man,
as a being who invariably does that by which he may obtain the
greatest amount of necessaries, conveniences, and luxuries, with
the smallest quantity of labour and physical self-denial [...]

Notice that this interpretation identifies the the agent as a an optimizer;
this individual could be easily described by a utility maximization problem.
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But more importantly, it brings the intuition of a trade-off between bene-
fit and cost; the trade-off is central to understand choice, especially if it is
optimal, since it means that the choice maker has been able to select the ac-
tions that will lead to his best desirable outcome while keeping his discomfort
at minimum. This task of choosing optimally is is not trivial, otherwise we
would not even bother to think about choice. Nevertheless the optimal choice
problem, actually, seems to be the opposite, requiring enormous quantities of
cognitive power that seems unrealistic that an everyday person would even
be willing, or much less, capable of devoting that kind of resources in the
decision making process.

Maybe, as Simon (1955) thought, the agent in reality is not even aware of
the fact that an optimization is being taken place in order to reach a decision,
or maybe the brain is more skilled than we know to make choices. Whatever
the case may be, it is at least worth consider the idea that real agents want
to maximize outcome, but are not burdened by thousands of variables but
instead make choices using easier rules of thumb or cognitive shortcuts, what
we called heuristics.

This idea inspires the concept of behavioral economics, on one side the
real world is a complex system of interactions and individuals, but on the
other side we navigate through it without making specialized computations
every single move. In particular the idea of having in reality thousands of
variables but neglecting most of them in favor of just a few of them that are
more important is what is called sparsity.

In the present document I study the recent development in the field of ra-
tional inattention using sparsity as a modeling tool made by professor Xavier
Gabaix. The approach essentially consists in optimally assigning attention
to those parameters that are more untactful in the objective function. In
order to do that the method defines a 2 stages optimization where the first
stage is to chose attention and the second to solve the base maximization
program.

After studying the method, I propose to introduce a partial attention
interest rate into a 3 period model developed by the author. Firstly we
modeled interest rate as an anchoring process, parting from a default value
Rd. This interest rate will interact no only with the variables of the model
but also with a partial attention future income shock.

I compare the results with the base 3-period model. The sparse agent
can be seen a 2 separate individuals sharing the same intertemporal budget
constraint; on the one hand, the sparse agent is fully rational with the initial
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endowment, it shows patience and is able to perfectly smooth consumption
over the three periods, on the other hand the it is partially myopic to the fu-
ture income shock and also discounts with the perceived interest rate instead
of the actual one.

Through sparse behavioral inattention we could derive an euler equation
for an intertemporal problem, however this is nos longer a good way to char-
acterize the agents behavior, because the actual consumption depends on the
realization of the world in the next period, up until then the agent is partial
myopic. in Since the income shock is in the future, the interest rate decreases
the price of inattention in the income variable.

In regard to the attention function, the attention will depend on the
magnitude of the parameter and the curvature of the objective function, I
argue that the shape of this function is intuitive but not without its issues.
Also there is no interaction term between attention variables, so the trade-off
of assigning attention to certain variable, does not affect others.

This document is organized in the following way, the first section will
present some basic concepts on behavioral economics, will elaborate on a
discussion about rationality and bounded rationality and will provide some
key concepts to understand the sparse behavioral inattention model. On
section 2 we revisit the method proposed by professor Gabaix and try to
structure all the basic insights necessary to develop the model. On section 3
we develop the model, first I present the 3 period model as a reference and
later introduce the interest rate, the last part of this section will conclude on
the model solved, section 4 will add some conclusions and final thoughts.

1 Background concepts

1.1 Rationality

A rational individual is not difficult to imagine in modern day economics,
a typical economical agent will maximize his utility over some monetary
constraint, and this idea is profoundly settled into the core of economics.
Economist Gary Becker (1976) thought that one of the key elements of ra-
tionality was the maximizing behavior, this intuition was shared of course by
a wide range of economist and other scientist as Becker himself pointed out.
”It is not from the benevolence of the butcher, the brewer, or the baker that
we expect our dinner, but from their regard to their own interest” says Adam
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(?, 20) clearly implying a maximizing behavior of the butcher, the brewer or
the baker.

The type of behavior we expect from a homo economicus where F (·) could
be a production function or a price system transformation is the following:

max
Z

U (z1...zL) subject to F (z1...zL) ≤ T (1)

This maximizing behavior is related to scarcity concludes Becker, this or
any type of behavior, but importantly the existence of markets allowed for
the scarce resources to be efficiently allocated, but also for the scarcity to be
perceived by the agents in society. Compare this insight to a more modern
approach to rationality by Amartya Sen’s (2017) which refers to rational
behavior to a maximizing conduct over a set of preferences and requiring
internal consistency, this means that this rational behavior must correspond
to others’ rational behavior over their corresponding sets of preferences.

Contrasting both concepts we can see that both require maximizing be-
havior to exist beyond an individual level into a societal scale. This is inter-
esting because the full intuition on rationality by Becker (1976) states three
elements, (1) maximizing behavior over a set of (2) stable preferences and the
(3) existence or at least assumption of markets. Markets will ensure internal
consistency from the individual to the aggregate level and stable preferences
allow the markets to remain efficient.

For our purposes we will refer as Rational Behavior to a given behavior
which is the result of an optimization over a set of preferences, we will dis-
regard the effect of the market since our analysis is on partial equilibria. In
a program like (1) we will refer to the main unit of decision as rational then.

On the other hand, rationality will refer also to an optimizing behavior
which takes into account all available information over the set of preferences
(Becker, 1976). Notice a depart from the traditional microeconomic concept
of rationality given by completeness and transitivity properties over the set
of preferences; we will implicitly assume this kind of rationality for all of our
models, although they could be build in more general setups.

Is important to note that an agent might not be even aware of the fact that
a maximization is being conducted as pointed out by Friedman (1953); Becker
(1976). Such unawareness will later be consistent with biases of thought of
which a behavioral version of a rational economic agent is prone to.1

1Becker (1976) indicates that the optimizing behavior in the economic approach need
not to be on a complete information or costless transactions setup, however, some scientist
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Finally assume the utility and the transformation functions are increasing
in every zi and T is non negative in (1). Then, there is a clear trade-off
between the maximization objective and the constraint, an increase in any
zi implies less available resources to transform (T − zi). This trade-off is
important as a tool because the rational agent manages to minimize the loss
while obtaining the maximum benefit.

1.2 Bounded Rationality

While most of the economics framework has been developed under the as-
sumption of rationality. Some theories challenge rationality as a viable or
even believable assumption at all. Hence, bounded rationality could be seen
as an alternative way of thinking choice in economic agents. This concept
was first proposed by Simon (1955), We remark that in this framework that
behavioral agents are not irrational (choosing a non optimal outcome)2, but
instead should be thought as rational entities of choice over a (simplified) set
of alternatives bounded by the their computational limitations.

In simple words, human beings do not make all the necessary compu-
tations, like assigning pay-offs and computing probabilistic outcomes before
every single decision; as a matter of fact, Simon claims that no computation
might have taken place at all in the first place. Instead, continues Simon,
The agent may rely on computational simplifications that produce an approx-
imate model for the choice process under evaluation (Simon, 1955). 3 This
type of model could defy how economics draw conclusions and in turn how
policies are made. Something similar to Keynes’ contribution to economics
as it is recalled by Cristopher Sims (2003, 665):

Keynes’s seminal idea was to trace out the equilibrium implica-
tions of the hypothesis that markets did not function the way
a seamless model of continuously optimizing agents, interacting
in continuously clearing markets would suggest. His formal de-
vice, price ”stickiness” is still controversial, but those critics of it
who fault it for being inconsistent with the assumption of con-
tinuously optimizing agents interacting in continuously clearing

use these market flaws to draw conclusion on irrational behavior which is a mistake.
2In modern behavioral economics there exist cases in which agents are irrational, how-

ever we are more interested in the former in the present study.
3This is an heuristic as we will define below.

5



markets miss the point. This is its appeal, not its weakness.

If true, the concept that agents are bounded but rational would, as price
stickiness, imply that market is not the result of perfectly synced utility
maximizing individuals, hence, possibly changing how conclusions are drawn
and how policy is made. Meaning that models of all sorts (e.g. Dynamic
optimization models) should be revisited with a new paradigm in hand. Sims
(2003) proposes the inline concept of Rational Inattention, even though his
approach focuses on an specific method, conceptually he formalizes the idea of
bounded rationality as an optimization within an optimization. The central
idea of Rational Inattention is the fact that agents have a limited information
throughput (due to mental or informational limitations), in consequence,
they optimize the use of limited bandwidth. Thus, only the most relevant
information will be processed, later the agent will maximize the final outcome
given the informational constraint.

The idea is to measure the transmission of information under uncertainty.
The measurement of information transmitted will be the change in entropy, a
stochastic variable X has a measure of entropy of: −E [log(p(X)] where p(X)
is the PDF of X. The maximum possible change in entropy given the shape
of random variable will determine the bandwidth or the channel’s capacity.
Now say that X is a signal and Y is another random variable that represents
our optimal choice (similar to a mixed strategy in a game), then we inform
Y from the signal and then draw Y with some pdf ; by building the difference
in entropy between Y and the signal, in order to maximize the information
received, that is the the resulting strategy will be the conditional distribution
of Y given X.

1.3 Heuristics and Biases

One of the most notably advances in Behavioral Economics is Prospect The-
ory by Kahneman and Tversky (1979). These authors show that choices are
not always optimal when risk, and therefore uncertainty, is involved. This
non-optimality according to the authors, is due to the fact that people per-
ceive more a loss than a gain, this is clearly a bias towards uncertainty in
losses. 4

4Prospect theory could be seen as an example of irrational behavior, since people
is choosing a non-optimal outcome rather than choosing the best outcome within their
bounded set of alternatives. However, it could be argued that there is a preference for risk
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Recall from bounded rationality that people make choices based on sim-
plifications of reality; We will define this simplifications as heuristics. This
elements could take the form of rules of thumb or shortcuts in the model
that draw conclusions more easily than making all computations (Kahne-
man, 2003). In its text about taking heuristics seriously, Gigerenzer (2016,
9) explain that ”In AI, heuristics are used to make computers smart, yet in
some corners of behavioral economics, heuristics are still seen as the reason
why people aren’t smart.”. But in reality, heuristics could derive in errors
as having optimal results, which maybe is a consequence of the unawareness
of the agent that an optimization process is taking place as Friedman (1953)
said, even in an heuristic process. This reinforces the idea that maybe ”the
unconscious is a better decision-maker than the conscious” (Simon, 1955,
104) in which case, heuristics offer the additional feature of requiring much
less computational resources.

Now, heuristics could lead indeed to failure or bad predictions, and spe-
cially they make us susceptible to biases in the choice process (Samson, 2016).
For our purposes we will define a (cognitive) bias in this context as a sys-
tematic error in the way a person thinks or analyses a certain choice problem
(Ariely, 2008). This (systematic) error could be seen as a deviation from
what could be considered a desirable outcome (e.g. rational choice).

One of the most important heuristic tools that people use to make de-
cisions is anchoring. According to Tversky and Kahneman (1974) this is a
process in which an individual would take a value as a reference point (an
anchor), and then take a decision by adjusting from that value upwards or
downwards accordingly. This reference value could be anything, like the pre-
vious know value of the interest rate, the average house price in the market
or a given parameter as in the experiments by Tversky and Kahneman. Since
anchoring leads to serious bias in prediction, it is a useful tool in modeling
bounded rationality. Recall the maximization problem in (1), say for simplic-
ity the shapes of the objective and constraint give us a convex maximization
problem, furthermore assume that:

∃φ (z1...zL) s.t. φ (z1...zL) = Z∗

This function φ(z1...zL) is the optimal action of (1). So, a behavioral

action ˆφ (·) could be thought as a deviation from some anchor value. This
default value could be anything, like the action taken in the previous period

(risk aversion), in which case this agents are perfectly rational.
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or a suggestion made by a social planner. Then, the behavioral action will
be a convex combination of the optimal action and the default action:

ˆφ (·) = mφ (z1...zL) + (1−m)φd (2)

Where the dampening factor m ∈ [0, 1] is the modeling tool that captures
the adjustment from the default value of the action towards the optimal ac-
tion. m = 1 will imply a perfectly rational agent. This formulation, with
some variants or generalizations, is the main flavor to model bounded ratio-
nality as Gabaix (2017a) indicates. What is interesting of this formulation
is that, unless m = 1, the adjustment done by the agents will never be suffi-
cient, this is consistent with Tversky and Kahneman (1974) about insufficient
adjustment being typical.

2 Sparsity as rational inattention

2.1 Principles

Entropy based informational economics have very nice properties in general
but it could be difficult to deal with the algebra and build a tractable model.
Within the contexts of bounded rationality, that is agents that build sim-
plifications of the world around them and use heuristics to navigate it, and
rational inattention we would like to model behavior in a way that resem-
bles existing microeconomics theory. From the latter (context), we expect to
see agents conducting two stages of behavior optimization, one to maximize
their limited attention, and one to maximize outcome given limited atten-
tion. Xavier Gabaix proposes the use of the sparsity5 notion to achieve such
goal; an sparse individual will have many parameters to consider but will be
attentive to only a handful of them (Gabaix, 2014a, 1662):

For any decision, in principle, thousands of considerations are
relevant to the agent: his income, but also GDP growth in his
country, the interest rate, recent progress in the construction of
plastics, interest rates in Hungary, the state of the Amazonian

5Sparse could mean diverse or scattered which is not much indicative of this agent’s
behavior; thus, it is more useful to think of sparsity in computational terms: a sparse
array has very few non-zero elements. Then, all zeroes are factors to which the agent is
inattentive.

8



forest, and so on. Because it would be too burdensome to take
all of these variables into account, he is going to discard most of
them.

It is important to note that in principle, we could assigned a fixed cog-
nitive cost to each of these parameters and given an attention upper-bound
let the agent run a cost minimization, similar to a minimizing expenditure
scenario where prices are cognitive costs and wealth or initial endowment is
the attention upper-bound. Nevertheless, ”fixed costs, with their noncon-
vexity, are notoriously ill-behaved” (Gabaix, 2014a, 1663). Thus, a modeling
tool that do not lead to discontinuities and non-convexity issues which are
difficult to deal with is much preferred. On the contrary, sparsity ”entails
well-behaved, convex maximization problems” (Gabaix, 2014a, 1662).

To start modeling the sparse agent behavior lets focus first on the final
stage of optimization. Following Gabaix (2014a)6, let us consider a tradi-
tional utility maximization problem as follows:

max
a

U (a, x) subject to b (a, x) ≥ 0 (3)

Both a and x are vectors of arbitrary length, and b(·) is some budget
constraint. a is the optimizing action that our agent must take to maximize
her outcome, and x is the vector of parameters to which the agent can be
attentive to, we will refer to them as parameters of attention. Finally, m
is a vector of same length as x, every mi is between 0 and 1 and these are
the choice variables of attention, they could be called variables or levels of
attention, or just attention. Now, lets assume that ∃m∗ and is the solution
to the first stage optimization (i.e. is the optimal attention vector), then the
problem will transforms as follows:

max
a

U (a, xs) subject to b (a, xs) ≥ 0 (4)

6This author is the creator and, at the best of my knowledge, the only source of
documentation on the model. For this reason, during the rest of this section I will elaborate
on the author’s work and draw heavily from his literature(mainly Gabaix, 2014a, 2017a,b).
Some references may be omitted for the sake of reading and writing, but do note that most
of the ideas and the development of the model in this section are not my doing
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2.2 The attention function

Where xs := m∗x. Notice that this is a known optimization problem, thus we
know how to solve it already using microeconomics and optimization theory
and the real problem in hand is how to chose m∗. There is only one difference
in this stage from a traditional maximization problem, and that is the budget
is taking perceived instead of actual parameters, but in order to understand
how to choose m is better if we deal with such issue later so for a moment
we will assume an unconstrained problem.

Since the agent is inattentive her outcome will deviate from the fully
rational one. Call v(m) to the utility that the agent obtains given m level of
attention, ι will be the reference level of attention like the perfectly attentive
case or some default. Then v(m) − v(ι) will be the differential of utility
due to the deviation from the reference case. Then by Lemma 2 (Gabaix,
2014a, 1700) the utility losses from attention deviation from reference can be
approximated by Taylor (to a second degree)7 with the following shape:

E [v(m)− v(ι)] = −1

2
(m− ι)tΛ(m− ι) + o (‖x2‖)

The cost of inattention Λi,j = −σi,jaxiuaaaxj with σi,j = E [xixj] is a very
intuitive expression. The first component σ measures the correlation between
parameters, ax is the marginal impact in the optimal action of a change in the
attention parameter x and uaa measures the curvature of the utility function,
hence, how much utility will be loss (or gained) by a change in the optimal
action a induced by a change in attention. Since sparse agents rely on anchor-
ing, then all derivatives are taken around this default value (typically fully
inattentive), also the function above is a Taylor approximation, so is impor-
tant that the derivatives are taken in a vicinity of x = 0 or the corresponding
reference value.

It is important to note that the curvature of the objective and the marginal
impact of the parameters on the optimal action are intimately linked: it is
defined by:

axi =
∂a

∂xi
= −u−1

aa ua,xi

The last term of this identity is the curvature of the objective function
both in the action and the parameter. If we compare (1) and (3) we could

7for a proof of the lemma and further insight on the derivation of the cost of inattention
check (Gabaix, 2014b)
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see that there is not much difference between the program of a rational
agent and of an sparse one; in particular both share an objective function
u that takes both actions and parameters as input, hence we could have
a function v(a, x,m) that takes additionally attention as an argument, this
shadow function v mimics up to a degree the real (rational) objective function
into the rational inattention world, so the behavioral agent maximizes over
his perception v. We would expect that:

v (a, x,m) = u (a,m · x) (5)

Where (·) is a component by component vector product8. If (5)is true,
then Gabaix (2017b) proposes an additional characterization of the marginal
impact of parameters on actions:

ami
=

∂a

∂mi

= axi
∣∣
m=(1...1),x=0

xi (6)

Notice that the expression for the utility differentials (E [v(m) − v(ι)])
resembles a quadratic loss function, so if we assume o (‖x2‖) is negligible and
add a cost κ we obtain an objective function from which m∗ will minimize
both cognitive cost and utility loss, hence:

m∗i = argmin
m∈[0,1]

1

2

∑
i,j

(1−mi)Λi,j(1−mj) + κ
∑
i

mα
i

where Λi,j = −σi,jaxiuaaaxj

(7)

Lets define a function: m∗ = A
(
σ2

κ

)
, the quotient argument captures

both variance and cost which will affect the shape of the attention function
and hence the resulting attention level. The cognition cost measures the effort
of taking into account much information while making a decision and it is ”a
taste for sparsity. When κ = 0 the agent is the traditional agent” (Gabaix,
2017b, 10). In the Lemma 1 (Gabaix, 2014a, 1672) the author states that
only when the cognitive cost is linear in the attention parameters, then the
attention function A induces ”both sparsity and continuity”. Which is the
reason why Gabaix suggest using linear costs in most application. Finally
the author proposes an easy formula for the attention function with linear
costs:

8Later on this document we will use indistinctively the notation mx, that given the
appropiate context, will represent the component by component vector product
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A
(
σ2
i

κ

)
= max

(
1− 1

σ2
i

, 0

)
(8)

If (5) holds true, then: Λi,j = −E[ami
uaaamj

]. All derivatives are evalu-
ated atmd typicallymd = (1...1) and ad. In this scenariom∗i = A(E[amiuaaamj ]/κ).
Equivalently using the other set of derivatives: m∗i = A(− σ2

i axiuaaaxj/κ).

2.3 the sparse operator

As given already by our definition of bounded rationality, the sparse agent
will have two stages of maximization. The above is the first stage consist-
ing in choosing attention optimally, and the second stage will be solving for
the optimal action with the chosen attention. This algorithm is denoted by
Gabaix (2014a) as Definition 1 and it will be the main algorithm for solving
sparse rational inattention behavior, thus formally:

Sparse-max operator unconstrained: Define the smax operator as the
following algorithm in order to solve the program: smaxa,m v (a, x)

Step 1: m∗i = A(σ2
i/κ) = argmin

m∈[0,1]

1
2

∑
i,j(1−mi)Λi,j(1−mj) + κ

∑
im

α
i

Step 2: Solve a∗ = arg maxa v(a, xs). with xsi = m∗ixi ∀i = 1...n

Now, recall the main optimization problem (4) in which the agent takes
the action that maximizes the outcome subject to a budgetary constraint.
Say that x is a price or an income shock, therefore the perceived budget in
which the agent chooses her optimal behavior is not consistent, and it may
lead to non-exhaustion of the budget, or even worse, over-consumption. Th
force the agent to take into account the budget constraint we transform the
program into an unconstrained one using a Lagrangian L which is now the
new objective function. By building a Lagrangian, the agent will tune the
multiplier to ensure that the budget constraint binds (Gabaix, 2014a).

Sparse-max operator allowing for constraints: Define the smax op-
erator as the following algorithm in order to solve the program:

smax
a,m

v (a, x) subject to b(a, x) ≥ 0

Step 1: Build the Lagrangian: L(a, x) = v (a, x) + λb(a, x)
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Step 2: Solve the model using L(a, x) as new objective and following the
smax unconstrained operator algorithm.

2.4 Dynamic programming

Lets start with a familiar setup, a rational agent will maximize:

max
at

T−1∑
t0

βt u (at, zt)

s.t. zt+1 = F (at, zt, εt+1)

Where F (·) is a law of motion. Equivalently we can write this problem
to a corresponding Bellman equation as follows:

V t,r(z) = max
a

u (a, z) + β E [V t+1,r (F (at, zt, εt+1))]

dynamic sparse-max operator: the optimal action given by the dynamic
smax operator is such that:

as(z, V t,p) = arg smax
a,m|md

u (a, z,m) + β E [V t+1,p (F (at, zt, εt+1,m))]

where V t+1,p is the proxy (anchor)
(9)

Similarly as in the case of static optimization with sparse agents, we define
a utility function to mimic the actual utility function, u(a, z,m); additionally
we define a similar function for the law of motion F (at, zt, εt+1,m). We
also define a proxy value from which the agent’s value function will deviate,
typically this proxy value will be: V t,p(·) = V t,r(·), this assumption will imply
that the agent projects herself as rational in the future, or more realistically,
she fails to see her inattention.

The concepts regarding the dynamic optimization will be clearer in the
3-period example in the following section. A key element of the dynamic
approach is that the anchoring point is rationality, moreover we will learn
that this result is central in resolving rational inattention model with sparse
agents.
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3 A behavioral agent in action

We will study a cake eating model with partial inattention in both an income
shock and the interest rate. The model consist in 3 periods. The utility is∑2

t=0 u (ct) with no discounting. There is an income shock of magnitude xw
in the last period and an interest rate R between periods 1 and 2 that will
be perceived as a deviation from a default interest rate.

3.1 A 3-period example

Before solving the model described we revisit a simpler 3-periods model pro-
posed by Gabaix (2017b) in which there is no interest rate with agent’s full
awareness of it (i.e Rd = 1). Thus, there is not additional incentive to save
for retirement other than to attempt to smooth consumption and the budget
constraints for periods 0, 1 and 2 respectively are: c0 + w1 ≤ w0, c1 + w2 ≤
w1 and c2 ≤ w2 + x. This primer example will allow us to understand the
consumption profile of an sparse agent and provide some useful insight on
how to solve the algebra. A rational agent in this scenario, since there is not
discounting nor interest rate, will perfectly smooth consumption, so she will
distribute her lifetime income (w0 + x) among all three periods:

crt =
w0 + x

3
∀t = 0, 1, 2

As Gabaix (2017b) indicates, a dynamic policy version of this behavior is
as follows:

cr0 =
w0 + x

3
, cr1 =

w1 + x

2
, cr2 = w2 + x

Notice that this policy is intuitive, as at time 1, for example, the agent
equally divides the remaining income among the remaining two periods; in
the same way during the final period (t = 2) the agent simply consumes all
her available resources.

Since there is only one parameter to be attentive to, we will drop the
subscript in x. Now, we introduce partial attention in income with the vari-
able mt, hence, the sparse agent perceives the income shock at time t by:
xst = mtx. So a fully inattentive agent mw = 0 will be completely unaware
of the income shock, on the contrary a fully attentive agent is rational in the
income shock variable.
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Time 2: The agent maximizes only his present consumption and no
attention is required since the income shock has been realized already:

V 2 (w2, x) = max
c2

u (c2) subject to c2 ≤ w2 + x

The agent will consume all her available income, hence:

c2 = w2 + x

Time 1: The maximization problem is:

smax
c1,w2,m1

v̂1 (c1, w2, w1, x,m1) = u (c1) + V 2 (w2, x)

s.t. c1 + w2 ≤ w1

m1 = m∗1 i.e. optimal attention level

Following the smax operator definition we should choose attention first,
however we will see that assuming m1 optimal as given for the moment
is more practical. Then, we transform the problem into an unconstrained
optimization9 with optimal attention, thus the problem is no longer an smax:

max
c1

v1 (c1, w1, x,m1) = u (c1) + V 2 (w1 − c1,m1x)

By FOC = 0 we obtain: u′ (c1) = V 2
w (w1− c1,m1x) = u′ (w1− c1 +m1x),

Thus:

c1 = w1 − c1 +m1x =⇒ c1 =
w1 +m1x

2
(10)

Thus, the default consumption is cd1 = c1|m1=0 = w1

2
. Now, with a func-

tional form for the policy rule we can compute more easily the cost of inat-
tention which is needed to choose m1 optimally. Recall from (7) that the
cost of inatention is given by the curvature of the objective function:

v1
cc (·)

∣∣
cd2

= u′′ (cd2) + V 2,p
ww (w1 − c1,m1x)

∣∣
cd2

We assume, following (9), that the agent will project herself as rational
in the next period, that is: V 2,p (w1 − c1,m1x) = V 2,r (·) = u (cr2). Notice

9we assume nice properties on the function u so the constraint is saturated, hence no
need to build a Lagrangian
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that cr2 = w2 + x, consequently V 2,p
ww = u′′ (cr2). We have then, the curvature

of the objective is:

v1
cc (·)

∣∣
cd1

= 2u′′ (cd1) (11)

Finally, to choose m1 optimally we take linear cognitive cost κ as sug-
gested by the author (Gabaix, 2014a, 2017b). Then, the attention function
A (·) can be characterized by the easy formula in (8) with the following ar-
guments:

m1 = A
(

1

κ
v1
cc var

(
∂c1

∂m1

))
= A

(
1

2κ
u′′ (cd1)σ2

x

)
(12)

Time 0: For the last period the agent’s problem is:

smax
c0,w1,m0

v̂0 (c0, w1, w0, x,m0) = u (c0) + V 1 (w1, x)

s.t. c0 + w1 ≤ w0

m0 = m∗0 i.e. optimal attention level

Following the same procedure as before the problem above becomes the
following unconstrained optimization:

max
c0

v0 (c0, w0, x,m0) = u (c0) + V 1 (w0 − c0,m0x)

FOC = 0 implies: u′ (c0) = V 1,p
w (w0 − c0,m0x) = u′

(
w0−c0+m0x

2

)
using

(10), Hence:

c0 =
w0 +m0x

3
(13)

Following, the default consumption is cd0 = w0

3
. To compute the curvature

we use (9) again and obtain: V 1,p (w0−c0,m0x) = V 1,r (·) = u (cr1)+u (cr2). In
the rational case the consumption is perfectly smooth so: V 1,r (·) = 2u (cr1),
therefore V 1,p

ww = 1
2
u′′ (w1+x

2
). With all of the above we get the curvature of

the objective:

v0
cc (·)

∣∣
cd0

= u′′ (cd0) +
1

2
u′′ (cd0) =

3

2
u′′ (cd0) (14)

Finally, the optimal attention m0 is:
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m0 = A
(

1

6κ
u′′ (cd0)σ2

x

)
(15)

The consumption policy function for the behavioral agent in terms of
attention is the following:

cs0 =
w0 +m0x

3
, cs1 =

w0

3
+
(m1

2
− m0

6

)
x, cs2 =

w0

3
+

(
1− m1 +m0

2

)
x

(16)
By comparing (12) and (15) we have that

m0 ≤ m1 iff
1

6

∣∣∣u′′ (w0

3
)
∣∣∣ ≤ 1

2

∣∣∣u′′ (w1

2
)
∣∣∣

This is true trivially in x = 0 because is the rational case and as long x is
not to large since w1 is increasing in x.

We can conclude that sparse agents are patient as rational agents, that
is they do not spend everything in one period, however they are myopic to
future changes. Given the shape of the attention function in particular, the
smaller the change in the future, the more myopic the agents will be. It is
interesting that on one side the agents have been able to fully smooth the
wealth through all 3 periods like is evident in (16), and at the same time the
are myopic to the income shock.

Notice an important feature about the sparse agents, namely the ability to
fulfill the perceived euler equation but fail the actual euler. (Gabaix, 2017b)
points out that euler equations are a poor way of modeling behavioral agents,
whereas sparse consumption functions are much more robust, specially since
they can adapt to any circumstance, including the rational and fully irrational
cases.

3.2 Introducing interest rate to an sparse agent

After solving the previous example we can build on those results to insert
an interest rate (i.eR > 1). We have two attention variables this time, so we
retrieve the subscript in xw to denote the income shock. On the other hand,
the interest rate will use the concept of anchoring so the actual interest rate
is R = Rd +xR; since R will be applicable only to the second period savings,
all the budget constraints remain the same but the one from period 2 that
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becomes: c2 ≤ Rw2 +x. Similar to the previous example we should first visit
the rational agent. We expect smooth consumption over periods 0 and 1 due
to free transfer of resources and the agent will consume all her remaining
resources in period 2. The dynamic policy correspondingly is:

cr0 =
w0 + xw/R

3
, cr1 =

w1 + xw/R

2
, cr2 = Rw2 + x

In contrast to the rational agent, the sparse agent will optimize a different
program. On the income side, partial attention will be modeled the same
way as in the previous example using now the variable mw,t. To model partial
attention to the interest rate the agent will start from a default value and
adjust her perception given attention mR,t; hence the perceived interest rate
is: Rs

t = Rd+mR,txR. To shorten notation we define the vectors x̄ := (xR, xw)
and m̄t := (mR,t,mw,t).

Time 2: Now the optimization problem of this agent will look like:

V 2 (c2, w2, x̄) = max
c2

u (c2) subject to c2 ≤ Rw2 + xw.

We know already that the agent at time 2 will simply consume all her avail-
able income:

c2 = Rw2 + xw = (Rd + xR)w2 + xw (17)

Time 1: Now we need to consider attention variables (m̄t) for both
parameters (x̄). The problem to solve is:

smax
c1,w2,m̄1

v̂1 (c1, w2, w1, x̄, m̄1) = u (c1) + V 2 (w2, x̄)

s.t. c1 + w2 ≤ w1

m̄1 = m̄1
∗ i.e. optimal attention level

As in the simpler example we assume m̄1 optimal and proceed with the
optimization, hence, the unconstrained problem is:

max
c1

v1 (c1, w1, m̄1x̄) = u (c1) + V 2 (w1 − c1,mR,1xR,mw,1xw)

From FOC[c1] = 0 we have an euler condition:

u′ (c1) = V 2
w (w1 − c1,mR,1xR,mw,1xw) = Rs

1 u
′ (Rs

1(w1 − c1) + xsw)
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This perceived euler equation cannot be solved analytically so we need to
make a further assumption: u(ct) = log(ct) ∀t = 0, 1, 2. Hence, the FOC
becomes:

1

c1

=
Rs

1

Rs
1(w1 − c1) + xsw

=⇒ c1 =
Rs

1w1 + xs1
2Rs

1

(18)

Thus, the default consumption is cd1 = c1|m̄1=0 = w1

2
. Following the steps

in the example we will assume that the agent will project herself as rational
in the future, so we have: V 2,p (w1 − c1,m1x) = V 2,r (·), moreover:

V 2,p(·) = u (cr2) = u′ (Rw2 + xw)
∣∣
x̄=m̄1x̄

To finish the first period we need to compute the attention variables’
value, but here is where we depart from the previous example because the
following identity is not valid anymore: ∂c

∂x
= ∂c

∂m
x, this is due to the non-

linear interactions between the attention variables in the policy rule (18), this
implies that the marginal impact on the action of the attention parameter
x is not characterized by the partial derivative w.r.t. the attention level m;
instead, the more general definition of the marginal impact cx is given by the
identity: ctx = −(vtcc)

−1 vtcx.
Also the simplified formula provided in (Gabaix, 2017b) is no longer appli-

cable and the general definition (7) needs to be applied. Firstly the curvature
of the objective function is:

v1
cc (·)

∣∣
cd1

= u′′ (cd1) + V 2,p
ww (w1 − c1,m1x)

∣∣
cd1

= u′′ (cd1) Rs
1 u
′′ (Rs

1(w2) + xsw)
∣∣
cd1

v1
cc (·)

∣∣
cd1

= (1 +Rs
1)u′′ +

(
w1

2

)
(19)

By the identity mentioned above, we need to compute the curvatures of
the objective function on c and x. Thus, we get:

v1
c,xR

(c1, w1, m̄1x̄) = Rw2u
′′ (cr2)

∣∣
x̄=m̄1x̄;cd1

= Rd (w1 − cd1)u′′ (cd1) =
Rdw1

2
u′′
(
w1

2

)
v1
c,xw(c1, w1, m̄1x̄) = R2 u′′ (cr2)

∣∣
cd1

= Rd2
u′′
(
w1

2

)
19



Costs of inattention are computed combining (19)with v1
c,xw and v1

c,xR

from above such that: Λt
x = −σxctxuccatx:

mR,1 = A

(
−
σ2
xR

κ

Rd2
w2

1

4(1 +Rd2)
u′′
(
w1

2

))
(21a)

mw,1 = A

(
−
σ2
xw

κ

Rd2

1 +Rd2 u
′′
(
w1

2

))
(21b)

Time 0: For the last period, assuming m̄0 optimal, the unconstrained agent’s
problem is:

max
c0

v1 (c0, w0, m̄0x̄) = u (c0) + V 1 (w0 − c0,mR,0xR,mw,0xw)

From FOC[c0] = 0 we obtain the following euler: u′ (c0) = 2u′
(
Rs

0(w0−c0)+xsw,0

2Rs
0

)
.

Using functional form of utility we have the following policy rule:

1

2c0

=
Rs

0

Rs
0(w0 − c0) + xsw,0

=⇒ c0 =
w0 + xsw,0/Rs

0

3
(22)

Thus, the default consumption is cd0 = c0|m̄0=0 = w0

3
. Again the agent

assumes herself rational in the future, thus:

V 1,p (·) = V 1,r (·) = u (cr1) + u (cr2)

= u

(
w1 + xw/R

2

)
+ u (Rw2 + xw)

To finish the last period we need compute the arguments necessary to
characterize the attention level program. The curvature of the objective
function is:

v0
cc (·)

∣∣
cd0

= u′′ (cd0) +
1

4
u′′ (cd0) +Rd2

u′′ (cd0)

=

(
5

4
+Rd2

)
u′′
(w0

3

) (23)

The curvatures of the objective function on c and x are:

v0
c,xR

(c0, w0, m̄0x̄) =
Rdw0

3
u′′
(
w0

3

)
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v0
c,xw(c0, w0, m̄0x̄) =

(
1

4Rd
+Rd

)
u′′
(
w0

3

)
Costs of inattention are computed combining the curvature of the objec-

tive (23) and the latter results as follows: Λt
x = −σxctxuccctx and using the

characterization given by (8) we obtan:

mR,0 = A

(
−
σ2
xR

κ

(
Rd2

w2
0

9(5/4 +Rd2)

)
u′′
(
w0

3

))
, (25a)

mw,0 = A

(
−
σ2
xw

κ

(
1

4Rd
+Rd

)2 (
5/4 +Rd2

)−1

u′′
(
w0

3

))
(25b)

The consumption policy function for the behavioral agent in terms of
attention is:

cs0 =
w0

3
+
xsw,0
3Rs

0

, cs1 =
w0

3
−
xsw,0
6Rs

0

+
xsw,1
2Rs

1

, cs2 =

(
w0

3
−
xsw,0
6Rs

0

−
xsw,1
2Rs

1

)
R+xw

(26)
Consider the policy function above, the agent is able to behave rationally

with respect to the investment, that is she smooths consumption during the
first two periods and the third period it consumes savings plus interest. On
the contrary the agent behaves myopic with respect to the income shock and
the interest rate, this is intuitive since the agent deals with investment from
the first period instead of having to anticipate it, so this sparse agent is fully
rational and attentive to the elements at time 0 (or the period in which she
lives). Adopting the functional logarithmic form of the utility we can see
that the myopia increases with time, if the period is further in time, then the
agent will be more myopic to the changes in it.

We cannot analyze income and interest rate separately because all wealth
flows (especially the income shock) are discounted by the interest rate, this is
interesting because an interest rate greater than 1 will actually decrease the
price of inattention on the income shock due to discounting. Now, assume
that both xR and xw are positive, now, lets follow the optimal choice of our
agent. In the first period the agent, as we mentioned before behaves rationally
with the information on her current period, thus she smooths consumption
over the positive income shock in the future, however she perceives both the
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magnitude of the shock and the discount rate smaller than what they are.
Each period she subtracts the share of wealth consumed in the period before,
however the perceived income shock keeps growing so the most likely scenario
is that this share of wealth consume with respect to the actual wealth (or
the new perceived) keeps shrinking. Both c1 and c2 are decreasing in R, so a
higher xR or more attention to the interest rate are incentives to save more
in the second period.

To analyze the attention we need to recall that the attention function
is increasing in the argument, also that the argument is strictly positive.
Notice that sigma2 represents the magnitude of the attention parameter, so
the attention is increasing in the magnitude of the x. Another important
remark is that the attention in xR is increasing in the amount of available
wealth at the period, it comes from the budget constraint at period 2, so
that means that more available resources increases the amount of possible
savings.

Notice that all the attention functions have the same second derivative
of the utility function evaluated at different default parameters, if we would
take the rational case as the default notice that both cd0 and cd1 will increase
in size because the income shock is now visible for the agents, this would
imply that the derivative would be closer to 0, that is the derivative shrinks
in absolute value, and so the argument would shrink. This means that an
agent whose default is closer to the rational will have smaller attention levels
according to this model.

4 Conclusions

Conclusions
The sparse behavioral agents are an interesting tool to model less than

rational behavior. The simplicity of the model make it ideal to recreate
most of the already existing results in economics as the author has done with
several models, especially in microeconomics; and revisit already existing
results from a behavioral perspective. The tractability is one of its main
advantages and also the fact that is already a readily framework, with its
smax operator, to model various kinds of choice theory scenarios. Especially
the former means that this tool could be heavily draw from a computational
point of view if the necessary results for convergence exist or could be derived.
In fact the author does mention some contraction mapping theory which is

22



a good sign.
The behavior modeled in this paper with sparse inattention produced

some interesting and consistent results. The agents behave as rational actors
during the current period but failed to anticipate future shocks seems to
agree with the theory of tunneling or similar by which us, agents, would
assign much more of our attention to the current period. Another consistent
result is the fact that agents would save in case of negative income shock,
but due to short-sightedness this savings will more likely be insufficient. The
introduction of the interest rate also produce some satisfactory and consistent
results like increasing the incentive to save for the agents and decreasing the
price of attention to the income shock. A possible extension could be to
study solely the effect of the interest rate or to further study dominance of
income over interest rate.

The shape of the attention function is intuitive and is very relatable which
is always desirable for a behavioral model. however, the Taylor approxima-
tion taken to compute a functional form for the attention works only in the
vicinity of a small x, and we are always evaluating at the default, it may
be incorrect to draw conclusions so far off the point where derivatives were
taken.

Notice that the attention function takes all attention parameters at once
and assign optimally attention to each of them in an individual manner. This
may be convenient for computational purposes, but also implies that there is
no interaction between the parameters and variables, especially there is no
trade-off between assigning too much attention to one parameter versus the
other. A solution to this will be to formulate a generalization of the attention
function, taking into consideration the actual program to choose attention
optimally; in this program we could have correlated variables and the objec-
tive function will become an interaction term between them. Nevertheless
this is still a geometric interaction which not necessarily captures the idea of
a trade-off.
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