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Abstract

In this paper I build a framework for modelling agents that can hold beliefs belonging to

a coarse space rather than a continuum in the context of a two-armed bandit problem. I

show that coarseness of beliefs does not imply a difference in optimal behavior compared

to agents that think in a continuum, such that any difference in exploration among these

agents has to be related with the way they interpret evidence. I then discuss broad classes of

interpretation rules and analyze what they imply in the exploration-exploitation dilemma.

More specifically, I show that coarse thinkers whose interpretation roughly follows that of a

fine thinker can be thought of as agents that think in a continuum that is partitioned into

categories such as “likely”, “unlikely” and so on. For such agents, the length of exploration

will ultimately depend on how the cutoff belief of the two-armed bandit is perceived.
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1. Introduction

Learning is a process of observation and interpretation of evidence. People are constantly

facing uncertainties about aspects of reality that are relevant for their lives, and in order

to navigate through these uncertainties they act based on their beliefs. Naturally, beliefs

are not static, and they can always be subject to change upon observation of new evidence.

New evidence is then interpreted, process by which we try to assess their true informational

content, and a (possibly new) belief is adopted.

A sailor exploring an unknown sea will observe signals such as drifting land vegetation or

the behavior of birds around him in order to learn about whether or not he is approaching
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land. A job-interviewer, faced by a candidate she has never seen before, will interpret the

candidate’s responses and CV in order to form a belief about whether he is suited or not

for the job. A hungry tourist wandering through the streets of Paris might look at the

movement in different restaurants while trying to assess which one is better.

In all of those cases individuals observe signals in order to form beliefs about an uncertain

state. The type of evidence they observe, however, is different in each scenario: the sailor

interprets signals from nature while learning if there is land nearby, the job-interviewer

evaluates information conceded by an agent that is himself interested in getting hired while

assessing his suitability for the job, and the hungry tourist observes the actions taken by

other (formerly) hungry tourists while evaluating the quality of a restaurant.

Such differences help shedding light into different aspects of the transmission and ac-

cumulation of information. The problem of the hungry tourists, for example, is one of

aggregation of dispersed information: each tourist holds some private imperfect information

about the quality of the restaurants, such that a tourist interested in choosing the best

restaurant to have dinner will not rely solely on his piece of information, but also try to

infer the private information of other tourists by observing which restaurant they choose. A

given tourist choosing between dining at Le Piège or Chez Augustin, for example, might have

imperfect private information favoring the latter. Still, observing enough people choosing Le

Piège might lead him to optimally ignore his private information and just herd along. If he

does so, his presence in this restaurant will serve as further evidence for other tourists even

though it does not reflect his private information. Such informational cascades are studied

in the Social Learning literature (Banerjee [1], Bikhchandani et al.[2], Acemoglu et al.[3]).

The problem of the job applicant and the interviewer, on the other hand, is one of

strategic information transmission: the job applicant is informed about whether he is suited

or not for the job, so that he will choose how to disclose information about himself so as to

induce the interviewer to hire him. Such separation between possession of information and

agency motivates many interesting works in the Cheap Talk (Crawford and Sobel [4], Farrell

and Rabin [5]) and Bayesian Persuasion literature (Kamenica and Gentzkow [6], Bergemann

and Morris [7]).
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Finally, the problem of the sailor that chooses whether he should continue exploring

an unknown sea or sail back home is one of strategic exploration: the sailor has to choose

how to optimally allocate his resources (in this case, his time) into exploring and learning

about an uncertain state (whether or not this sea has islands he can discover) or exploiting

a certain alternative (going back to his homeland). This exploration-exploitation dilemma

has been studied in a variety of different settings (Bolton and Harris [8], Keller et al. [9],

Fryer and Harms [10]).

Such problems are traditionally studied in a setting where agents have prior beliefs about

the unknown state and know the conditional distributions of signals, so that they are able

to fully extract the information contained in the evidence they observe. Modifications of

such models in which the agents’ rationality is bounded, however, are increasingly common

(Mullainathan et al. [11], Guarino and Jehiel [12], Bohren and Hauser [13]).

In this paper we propose such a modification in the context of the exploration-exploitation

dilemma. Instead of assuming an agent with an infinite belief space, we think about an agent

that thinks about the uncertainties he faces in terms of coarse categories. This has a clear

impact on the way agents interpret information: while agents that think in a continuum can

map their information to an infinite number of points, coarse thinkers have a finite number

of beliefs with which they can represent such information.

For the adventurous sailor, observing drifting land vegetation, shorebirds flying or even a

distinctive pattern of swells in the sea will serve as signals that there are islands around him.

Conversely, not observing those is suggestive that such islands might not exist. Thinking

about this uncertainty in terms of coarse categories such as “very likely”, “likely”, “unlikely”

and so on instead of in a continuum will necessarily imply a difference in the way he interprets

the signals he is faced, which could potentially affect the length of time he will choose to

engage in exploration.

Categorical thinking has for long been subject to study in psychology (Macrae and

Bodenhausen [14], Markman and Gentner [15]). In Murphy and Ross [16], authors present an

experiment in which people were exposed to different sets of drawings (containing geometrical

shapes, faces, etc), each identified as having been drawn by a particular child. They were
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then shown a new drawing and asked which child they thought had drawn it and whether or

not they thought the drawing would exhibit a given property (e.g. have originally been drawn

in red). Whereas bayesian inference would require subjects to evaluate the recurrence of this

given property over the drawings of every children, the study showed that subjects generally

relied solely on the recurrence of this property in the category they used (e.g. drawings by

Lucy). Further evidence that individuals often ignore information from alternative categories

was found in Malt et al. [17], Kahneman and Tversky [18] and Kahneman, et al. [19].

Another interesting experiment is presented in Krueger and Clement [20]. In it, subjects

where asked to estimate the average temperature in their city during several days in the

year. The results exhibited greater differences in the predicted temperatures for days in

different months than for days in the same month, even when the distance between the days

in different months was smaller than the distance between the days in the same month. For

example, the average prediction for the higher temperature in the 2nd of February was 38◦F,

which is very close to the average prediction for the higher temperature during the 24th of

February: 42◦F. The average prediction for the 4th of March (which is roughly a week away

from the 24th of February), however, was significantly higher: 53◦F. This suggests that the

predictions relied almost entirely on the category of the day (i.e. the month).

Categorization naturally implies a notion of coarseness. Mullainathan [21] provides a

model of inference under coarse thinking in which agents have their belief space partitioned

into categories, such that every posterior categorized under a given category is perceived

equally. For example, an agent could have its belief space over an unknown state [0, 1]

partitioned equally into 5 categories such that beliefs in [0, 0.2) are treated as “very unlikely”,

beliefs in [0.2, 0.4) are treated as “unlikely”, and so on. This would imply a coarse set

of adoptable beliefs such as M ={“very unlikely”, “unlikely”, “medium”, “likely”, “very

likely”}, where each of these beliefs is associated to the posteriors that are categorized

under them.

Our way of modelling coarseness of beliefs is more general. Although each of the beliefs

in M ={“very unlikely”, “unlikely”, “medium”, “likely”, “very likely”} need to represent

a point in [0, 1], we do not constrain them to represent a specific partition on [0, 1]. A
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categorical representation might be possible depending on the interpretation rule adopted

by the agent (we show the conditions for that), but that does not have to be necessarily the

case.

The remaining of the paper is organized as follows: in Section 2 we introduce the two-

armed bandit and then proceed to describe the coarse thinkers and to characterize their

optimal behavior in the bandit problem. Section 3 discusses broad classes of interpretation

rules and how they affect the exploratory behavior of agents and Section 4 concludes.

2. The Model

2.1. The Two-Armed Bandit

There is an infinite number of periods t = 0, 1, ... and an unknown state of nature

θ ∈ {0, 1}. In each period an agent chooses an action at ∈ {R, S}, where the safe action

at = S yields a safe payoff normalized to 0 and the risky action at = R yields a payoff Xi,t

that can be either xL or xH , with xL < 0 < xH . In the remaining of the paper we will

sometimes refer to obtaining a payoff xH as a success, and obtaining a payoff xL as a failure.

The usual illustration of this problem is that of a gambler that has to choose how much

resource (in this case time) to allocate into a slot machine that yields a known reward and

into one whose payoff process is unknown to her and potentially better than the safe one,

hence the Two-Armed Bandit name. By pulling the risky arm a payoff is realized, which

then serves as evidence for an agent that is looking to learn about the true state of nature.

Risky payoffs are drawn independently at each period, conditional on the state of nature

θ. When θ = 1, the high payoff is given with probability Pr(xH |θ = 1) = π ∈ (0, 1), whereas

when θ = 0 such payoff is never drawn (i.e. Pr(xH |θ = 0) = 0). Since in this model high

payoffs xH can only be drawn on the good state of nature, a single draw of xH is fully

revealing about θ.

We call Ej the conditional expectation E[Xit|θ = j] for j ∈ {0, 1}. Since xL < 0,

we know that E0 = E[Xit|θ = 0] = xL < 0, and we assume that E1 = E[Xit|θ = 1] =

πxH + (1− π)xL > 0.
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Given a prior belief p0 that the state of nature is good, the agent chooses an action plan

(at)
∞
t=0 in order to maximize the expected payoff

max
(at)∞t=0

Ep[
∞∑
t=0

δt1{at=R}Xi,t] (1)

where δ ∈ [0, 1] is her time discount factor. This problem is often referred to as the

exploration-exploitation dilemma, since it involves the trade-off between exploiting a certain

alternative and gathering information about the process underlying an uncertain one.

Interpretation of evidence is done through belief updating. Optimal extraction of infor-

mation from evidence requires that the belief is updated according to Bayes rule, that is,

that after pulling the risky arm and observing payoff realization Xi,t = xL an agent with

prior belief p forms a posterior belief given by p′ = (1−π)p
p(1−π)+1−p . More generally, the belief

of an agent after observing n failures and no success will be B(n, p0) = (1−π)np0
(1−π)np0+1−p0 . Since

payoff xH can only be realized under θ = 1, after the first success in the risky arm the belief

is updated to p = 1.

By the dynamic programming principle we can focus on action plans in which at is a

time-invariant function of the belief held at that moment, such that p is the relevant state

variable. The value of a given state variable p is given by:

V (p) = max{pπ(xH + δ
E1

1− δ
) + (p(1− π) + (1− p))(xL + δV (p′)), 0} (2)

where E1

1−δ is the value of exploring forever while knowing that the state is θ = 1. When

V (p) = 0 the agent exploits (i.e. plays S) and when V (p) > 0 she explores (i.e. plays R).

As such, for some values of p it will be optimal for the agent to play at = R, while for

other values it will be optimal for the agent to play at = S. She will be indifferent between

playing R or S for a given p for which pπ(xH+δ E1

1−δ )+(p(1−π)+(1−p))(xL+δV (p′)) = 0. We

know in this scenario that for the next belief she will prefer playing S, such that V (p′) = 0.

The cut-off belief which makes her indifferent is then given by:

p∗ = −(1−δ)E0

(1−δ)(E1−E0)+δπE1
(3)
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An agent will thus choose at = R as long as she holds a belief p > p∗. As soon as her

belief reaches the cut-off p∗ she will shift to exploitation on the safe arm S.

As an exercise we can consider an agent that only cares about the present period, i.e. an

agent for whom δ = 0. The cut-off belief for this myopic agent is then pm = −E0

E1−E0
, which

is clearly greater than the previous cut-off p∗. This reflects the fact that a forward-looking

agent values the information contained in the payoff realizations of the risky arm and will

thus be willing to engage in exploration for longer than the myopic agent.

2.2. Coarse Thinkers

Coarse thinking is here treated as a bound on the belief space of agents. Instead of holding

any belief on [0, 1], coarse thinkers have a finite belief space M = {µ̄, µ0, µ1, ..., µk,
¯
µ} where

µi ∈ (0, 1)∀i ∈ {0, 1, ..., k}. The only assumptions we make on this belief set are that (i) it

includes certainty beliefs µ̄ = 1 and
¯
µ = 0 and that (ii) all the other beliefs in the set are

either the prior or beliefs smaller than the prior. Assumption (ii) is made without loss of

generality since beliefs higher than the prior but different from 1 would never be adopted

in this problem (as evidence here can only lower the agent’s belief or make him certain that

θ = 1). For convenience we label the prior belief as µ0, and the subsequent beliefs in the set

in decreasing order.

We denote by ht = (y0, y1, ..., yt−1) the observable history of risky payoffs at time t, where

yi ∈ {xL, xH}∀i ∈ {0, 1, ...}. An interpretation rule will then be a mapping I : {xL, xH}t →

M.

We will here restrict our attention to mappings that satisfy the following basic criteria:

(i) any history with at least one success is mapped into µ̄; conditional on not having observed

any success so far, (ii) if a given history ht is mapped into µi, then every other history h′t

with more failed attempts than ht has to be mapped into a µj with j ≥ i and (iii) if a

history hlt with l failed attempts is mapped into µi and a history hnt with n failed attempts

is mapped into µi+2, then there exists a history hmt with l < m < n failed attempts that is

mapped into µi+1. Conditions (i) and (ii) ensure that we are working with interpretation

rules that (correctly) see a success as conclusive evidence that θ = 1 and failures as evidence
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suggestive that θ = 0, while condition (iii) ensures that agents can potentially use all beliefs

available for them.

Under such conditions the interpretation rules are going to define, for each belief µi, the

number of failures to be observed before switching to belief µi+1. We will call k̄(µi) the

inertia of belief µi, which indicates the number of failures observed under belief µi before

belief µi+1 is adopted in a given interpretation rule. The interpretation rules will thus define

a sequence (k̄(µi))
k
i=0 such that:

µ(ht) = µ(f(ht), s(ht)) =



µ̄, if s(ht) 6= 0

µ0, if f(ht) ≤ k̄(µ0) and s(ht) = 0

µ1, if k̄(µ0) < f(ht) ≤
1∑
j=0

k̄(µj) and s(ht) = 0

...
...

µk−1, if
k−2∑
i=0

k̄(µi) < f(ht) ≤
k−1∑
j=0

k̄(µj) and s(ht) = 0

µk, if
k−1∑
i=0

k̄(µi) < f(ht) ≤
k∑
j=0

k̄(µj) and s(ht) = 0

¯
µ, if

k∑
i=0

k̄(µi) < f(ht) and s(ht) = 0

where s(ht) = |{i ∈ {0, 1, ..., t− 1} : yi = xH}| and f(ht) = |{i ∈ {0, 1, ..., t− 1} : yi = xL}|.

Notice that this implies two important features of coarse thinkers: (i) the coarse thinker

will under-respond to the k̄(µi) first failures observed under µi (i.e. every time it observes

evidence and doesn’t update his belief) and (ii) it will over-respond to the k̄(µi) + 1th

observation (which we will refer to as the pivotal observation) by updating from belief µi to

belief µi+1.

We will often compare the belief adopted by the interpretation rule with the posterior

that a fine thinker would form upon observing the same evidence. We thus define the function
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that yields the posterior belief obtained from Bayes updating after observing evidence ht as:

B(ht) = B(f(ht), s(ht)) =


1, if s(ht) 6= 0

µ0, if f(ht) = s(ht) = 0

(1−π)f(ht)µ0
(1−π)f(ht)µ0+1−µ0

, if f(ht) > 0 and s(ht) = 0

(5)

2.3. Exploration and Exploitation under Coarse Thinking

The state variable upon which the coarse thinker bases his decision on which action to

take at a given period is (µ, n), where µ ∈M is the belief used and n is the number of failed

attempts observed under this belief. A coarse thinker holding a belief µ that has observed

n failures under this belief will then choose either to continue exploring (play R) or begin

exploitation (play S).

Coarseness implies a modified dynamic programming problem for the agent, as beliefs

are not updated continuously. The values of each state variable for a given belief µi will be:

V (µi, 0) = max{µiπ(xH + δ
E1

1− δ
) + (µi(1− π) + (1− µi))(xL + δV (µi, 1)), 0}

V (µi, 1) = max{µiπ(xH + δ
E1

1− δ
) + (µi(1− π) + (1− µi))(xL + δV (µi, 2)), 0}

...

V (µi, k̄(µi)− 1) = max{µiπ(xH + δ
E1

1− δ
) + (µi(1− π) + (1− µi))(xL + δV (µi, k̄(µi)), 0}

V (µi, k̄(µi)) = max{µiπ(xH + δ
E1

1− δ
) + (µi(1− π) + (1− µi))(xL + δV (µi+1, 0)), 0}

(6)

such that, for a given state variable (µ, n), it will play R if V (µ, n) > 0 and play S if

V (µ, n) = 0.

Proposition 1. If V (µi, 0) > 0 for a given µi ∈M, a coarse thinker will certainly explore

as long as it holds belief µi.

Proof. Imagine value functions as in (6). The expressions for all V (µi, ·)’s are identical except

for the value in the next period conditional on observing a new failure. If V (µi+1, 0) is small
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enough to make V (µi, k̄(µi)) = 0 then every other V (µi, ·) = 0. Conversely, V (µi, 0) > 0

only if every other V (µi, ·) > 0.

Proposition 1 implies that exploration will only stop upon a change in belief, that is,

when the state variable is such as (µ, 0) for some µ ∈M.

Proposition 2. If there is a µj ∈M for which V (µj, 0) = 0 then, for a µi > µj, there can

only be exploration under µi if µi > p∗.

Proof. We know that pπ(xH +δ E1

1−δ )+(p(1−π)+(1−p))xL is increasing in p, and we defined

p∗ as the p for which such expression is equal to 0. As such, we know that if V (µj, 0) = 0,

µj−1π(xH + δ
1−δE1) + (µj−1(1− π) + (1− µj−1))xL will be (i) greater than 0 if µj−1 > p∗ or

(ii) smaller or equal to 0 if µj−1 ≤ p∗. On scenario (ii) we would have V (µj−1, k̄(µj−1)) = 0,

which by Proposition 1 implies that V (µj−1, 0) = 0, so that the same logic could be applied

for µj−2 and so on.

Proposition 2 defines µ > p∗ as a necessary condition for exploration if there exists a

µ′ ∈M for which V (µ′, 0) = 0.

Proposition 3. If there is a µj ∈ M greater than p∗ for which V (µj, 0) > 0 then, for any

µi > µj, V (µi, 0) > 0.

Proof. For an agent holding state variable (µj−1, k̄(µj−1)), the expected value of exploration

is:

µj−1π(xH + δ
E1

1− δ
) + (µj−1(1− π) + (1− µj−1))(xL + δV (µj, 0))

We know that V (µj, 0) > 0, so that whatever the value of µ necessary to make such expres-

sion equal to zero is, it must lie in between (0, p∗). As µj−1 > µj > p∗, we know that such

expected value of exploration will be positive and that V (µj−1, ·) > 0.

Let’s denote µs−1 = min{µ ∈M : µ > p∗} (or equivalently µs = max{µ ∈M : µ ≤ p∗}).

Since we assume that agents can hold belief
¯
µ and we know that V (

¯
µ, ·) = 0, by Proposition
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2 we know that V (µj, ·) = 0∀j ∈ {s, s+ 1, . . . , k}. For µs−1 we know that, since µs−1 > p∗:

V (µs−1, k̄(µs−1)) = µs−1π(xH + δ
E1

1− δ
) + (µs−1(1− π) + (1− µs−1))xL > 0

such that by Proposition 1 V (µs−1, 0) > 0 and then, by Proposition 3, V (µi, ·) > 0∀i ∈

{0, 1, . . . , s − 1}. As such, Propositions 1 to 3 define µ > p∗ as a necessary and sufficient

condition for exploration, such that we know that the length of exploration for a coarse

thinker will be the amount of time it holds beliefs greater than p∗.

2.4. Stubbornness and Pliancy

Thinking through a coarse space rather than a through a continuum has interesting

implications. First, it means that the belief held at each point in time is an imperfect rep-

resentation of the information the agent possesses. While agents that think in a continuum

can map the information they possess to one particular point among infinite other points,

coarse thinkers can only map their information to finitely many points, which naturally

implies a sense of imperfectness.

Second, it means that agents will not be able to fully extract the information present

in the signals they receive. While an agent that thinks in a continuum can finely tune his

belief upon observation of new evidence and thus fully extract the information present in

it, a coarse thinker that is confronted with new evidence will always face an informational

trade-off between remaining inert or doing a coarse and imperfect adjustment to his belief.

As such, coarse thinkers will under-respond to some evidence and over-respond to others.

A coarse thinker that has just adopted belief µi will remain inert (and thus under-respond)

to the k̄(µi) first failures he observed under this belief. Upon observation of the k̄(µi) + 1th

failure he will over-respond by making a coarse adjustment from belief µi to belief µi+1.

High values of k̄(µi) can be then interpreted as stubbornness regarding this belief: the

agent requires a lot of evidence that θ = 0 in order to lower his expectations about θ

being 1. Low values of k̄(µi), on the other hand, are associated with pliancy: the agent

requires just a few evidence to abandon his current belief in favor of a smaller one. Different

interpretation rules will define different sequences (k̄(µi))
k
i=0 and thus different balances
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between stubbornness and pliancy for each belief in his belief set, and such balance will

determine the way the learning process will develop.

As we have seen in the former section, coarseness does not imply a difference in optimal

behavior given belief held compared to agents that think in a continuum: both coarse and

fine thinkers explore when they hold beliefs greater than p∗ and exploit when they hold

beliefs smaller or equal to p∗. What is different in their behavior, though, is the way

they interpret signals. In the next section we will further discuss signal interpretation for

coarse thinkers and analyze, for particular classes of interpretation rules, what are their

implications on the learning process of agents and on how coarse thinkers would behave

under a exploration-exploitation dilemma.

3. Interpretation Rules

Interpretation is treated in this paper in a very general but intuitive way. Just like the

sailor that adopts a belief about whether or not he is approaching land as a function of his

observation on the pattern of the swells in the sea or the behavior of other animals around

him, the coarse thinker will adopt a belief about the state of nature θ as a function of the

evidence ht available to him at that time.

This generality allows for many biases. A superstitious sailor that has dreamed about

reaching an island filled with fruits and fresh water might be very confident about approach-

ing land and ignore all evidence of the opposite, just like a stubborn coarse thinker with an

arbitrarily large k̄(µ0) will effectively ignore all evidence of θ in fact being zero.

A high degree of stubbornness implies the constant underestimation of the informational

content present in the signals the coarse thinker observes, and thus causes the belief adopted

by it to be systematically above the belief of the fine thinker. That is, for any history

ht yielding B(ht) ∈ [µi+1, µi), the interpretation would always result in µ(ht) = µj with

j ∈ {0, 1, . . . , i}.

Conversely, an overly pliant interpretation rule would result in the overestimation of the

informational content present in the signals, such that the belief of the coarse thinker would
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be systematically below the belief of the fine thinker. That is, for a history ht yielding

B(ht) ∈ (µi+1, µi], the interpretation would give µ(ht) = µj with j ∈ {i+ 1, i+ 2, . . . , k}.

Even though there are infinite possible interpretation rules, including those that always

under or over-estimate the informational content present in signals, there is a class of inter-

pretation rules that carries a sense of centrality. Imagine a history ht such that B(ht) = µi

and another history h′t such that B(h′t) ∈ (µi+1, µi). The “central” interpretation rules are

those that would assign µ(ht) = µi and µ(h′t) ∈ {µi, µi+1}.

Notice that these interpretation rules do not incur in a systematic error other than the

natural misrepresentation that arises from coarseness: the information available in history

h′t is misrepresented by the adoption of belief µi or µi+1, but whenever the fine thinker

reaches a belief belonging to M the coarse thinker will be holding that belief as well. The

belief decay implied by these interpretation rules over time will not be detached from the

belief decay curve of fine thinkers, but will rather zigzag it, such that the coarse belief is

sometimes higher and sometimes lower than the fine belief.

Suppose that a fine thinker reaches belief µi ∈M at a time t = m. A coarse thinker with

an interpretation rule of this type will always shift from belief µi−1 to belief µi at a time

t ≤ m, and will always shift away from belief µi to belief µi+1 at a time t > m. The fact that

the coarse belief decay roughly follows the bayesian decay allows these interpretation rules

to be interpreted in categorical terms: they will behave just like a fine thinker whose belief

space [0, 1] is partitioned into categories, such that every posterior under a given category

is treated as the same belief. This class of interpretation rules will be analyzed in section

3.1, while the rules that do incur in a systematic error will be treated in section 3.2.

The key aspect we are interested in studying is the extent of over or under exploration

that is implied by an interpretation I. As we have seen, each interpretation rule will define

a sequence (k̄(µi))
k
i=0. Consider µs = max{µ ∈ M : µ ≤ p∗}, the highest belief in M

that is lower or equal to p∗. The length of exploration under interpretation rule I (i.e. the

amount of failures the coarse thinker will observe before shifting to exploitation) will then

be L(I) =
s−1∑
i=0

k̄(µi). We can thus define the amount of over/under-exploration in a given
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interpretation rule I to be:

A(I) =
s−1∑
i=0

k̄(µi) + 1−B−1(p∗) (7)

such that A(I) > 0 when the coarse thinker over-explores and A(I) < 0 when the coarse

thinker under-explores.

Notice that, given the fact that interpretation rules pick a sequence (k̄(µi))
k
i=0 belonging

to the set of k-dimensional non-negative integers, which is infinite but bounded from below,

there exists a lower bound (but not an upper bound) on A(I). Consider the most pliant

of interpretation rules, the one that leads to a shift to the next belief every time the agent

observes a failure. He will then hold beliefs larger than p∗ for the s − 1 first failures he

observes, and will stop exploration upon observing the sth failure.

For agents with a given belief set M, the amount of under-exploration under such inter-

pretation rule will correspond to a bound on under-exploration:

A = s−B−1(p∗) (8)

In order to simplify notation, in the remaining of this section I will note B(f(ht) =

i, s(ht) = 0) as B(i).

3.1. Categorical Interpretation Rules

Coarseness has been previously modelled in theoretical work (Mullainathan [21], Mul-

lainathan, Schwartzstein and Schleifer [11]) as the product of a categorization on belief space

[0, 1]. Although it is true that the concept of categorization naturally implies imposing a

coarser granularity to a set, coarse thinking does not need to presuppose the categorization

of an underlying space. In fact, such supposition already relies on assumptions on how the

agents interpret information.

As we have previously seen, any interpretation rule I will define a partition on the space

of possible evidence observed at a given period {xL, xH}t. Let’s restrict our attention to the

sub-space of {xL, xH}t in which no success was realized (i.e. the space of realized payoffs

that could possibly lead to exploration in our problem). The function B(f(ht)) yielding
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the Bayesian posterior after observing a history ht with f(ht) failures and no successes

defines a bijection between this sub-space and [0, 1], such that, under two conditions, we can

understand the interpretation rules as defining a convex partition on the posterior space of

an implied bayesian thinker.

Let’s imagine a categorical bayesian: an agent whose posterior space is partitioned into

categories, with each category being associated with a specific belief. Formally, this would

account for an agent with category space C and categorization function c : [0, 1]→ C, where

each category in C adopts a belief qc belonging to the set of posteriors that are mapped into

that category.

A coarse thinker that shifts from belief µ0 to belief µ1 after observing the k̄(µ0) + 1th

failure will do so at the same time as a categorical bayesian with B(k̄(µ0)) = sup{p ∈ C1}.

It will then shift from belief µ1 to µ2 after observing k̄(µ1) further failures, just like the

categorical bayesian with B(k̄(µ0) + k̄(µ1)) = sup{p ∈ C2}.

A coarse thinker with an interpretation rule I defining a given sequence (k̄(µi))
k
i=0 will

then behave identically as a categorical bayesian with posterior space partitioned as

C0 = [B(k̄(µ0)), 1)

Ci = [B(
i∑

j=0

k̄(µj)), B(
i−1∑
j=0

k̄(µj))) ∀i ∈ {1, 2, ..., k}

C = [0, B(
k∑
j=0

k̄(µj))]

(9)

As long as µi = qci ∈ Ci∀i ∈ {1, 2, . . . , k}, i.e. as long as the belief associated to each

category belongs to that category.

It is easy to see that, in order for belief µi to belong to category Ci, µi must lie in

between sup{p ∈ Ci} and max{p ∈ Ci+1}. As such, any interpretation rule defining a

sequence (k̄(µi))
k
i=0 will allow for a categorical representation with categories as defined in

(9) if it satisfies:

i−1∑
j=0

k̄(µj) + 1 ≤ B−1(µi) ∀i ∈ {1, 2, . . . , k} (10)
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i∑
j=0

k̄(µj) + 1 > B−1(µi) ∀i ∈ {1, 2, . . . , k} (11)

Condition (10) defines a bound on the stubbornness implied by the interpretation rule,

stating that the coarse thinker should not be overly stubborn so as to still be holding belief

µi−1 at the time the fine thinker adopts belief µi; whereas condition (11) defines a bound on

the pliancy implied by the interpretation rule, stating that the coarse thinker should not be

overly pliant so as to have already abandoned belief µi at the time the fine thinker adopts

it.

Proposition 4. Any interpretation rule that allows for a categorical representation will

induce A(I) > 0 if p∗ is categorized under Cs−1 and A(I) ≤ 0 if p∗ is categorized under Cs.

Proof. Categorizing p∗ under Cs−1 implies that
s−1∑
i=0

k̄(µi) + 1 ∈ (B−1(p∗), B−1(µs)], which in

turn implies that A(I) ∈ (0, B−1(µs)−B−1(p∗)].

Conversely, categorizing p∗ under Cs implies that
s−1∑
i=0

k̄(µi) + 1 ∈ (B−1(µs−1), B−1(p∗)],

which in turn implies that A(I) ∈ (B−1(µs−1)−B−1(p∗), 0].

By Proposition 4 we know that any interpretation rule that allows for a categorical

representation will lead to over-exploration when p∗ is categorized under Cs−1 and under or

just-exploration when p∗ is categorized under Cs. This is intuitive: if the agent understands

the cut-off belief p∗ and its neighbours as “just sufficiently likely”, then it will certainly be

still exploring once it reaches p∗ and thus the error in exploration will certainly be positive.

On the other hand, if the agent understands the cut-off belief p∗ as “likely but just not

enough”, then it will not be exploring anymore once it reaches p∗ and thus the error in

exploration will almost surely be negative (it can also be 0 if p∗ is the highest belief in that

category).

The bounds on potential error in exploration can give us an idea on how coarseness

relates to the extent of over or under-exploration under such interpretation rules.

Proposition 5. The error in exploration resulting from any interpretation rule that allows

for a categorical representation can be made arbitrarily low as the partition of the implied

belief space [0, 1] gets finer around p∗.
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Proof. The maximum error in interpretation for such interpretation rules is B−1(µs) −

B−1(p∗) when p∗ is categorized under Cs−1 and B−1(µs−1) − B−1(p∗) when p∗ is catego-

rized under Cs. As the categorization gets finer around p∗ we will have:

lim
µs−1→p∗−

B−1(µs−1)−B−1(p∗) = lim
µs→p∗+

B−1(µs)−B−1(p∗) = 0

3.1.1. Optimal Interpretation Rule

We can understand the optimal interpretation rule as the one that maps every possible

history ht into the belief that the fine thinker would pick if she was constrained to choose

only between the beliefs belonging to M.

It is easy to see that such interpretation rule has to satisfy the conditions for categorical

representation defined in the earlier section. We know that for a history ht yielding B(ht) =

µi, a fine thinker would choose µ(ht) = µi and that for any history ht′ yielding a B(ht′) ∈

(µi, µi+1), a fine thinker would choose either µi or µi+1. We thus know that the optimal

interpretation rule will define for every i ∈ {0, 1, ..., k} a k̄(µi) such that
i∑

j=0

k̄(µj) + 1 ∈

(B−1(µi), B
−1(µi+1)], which is equivalent to conditions (10) and (11).

We then know by Proposition 4 that the optimal interpretation rule will lead to over-

exploration if the partition of [0, 1] defined by it is such that p∗ is categorized along with

µs−1, or to under-exploration in the case the cut-off belief is categorized along with µs. We

can, however, narrow these results down a bit.

We know that upon observing history ht, a coarse thinker commits an interpretation error

e(ht) = µ(ht)−B(ht). We can define the degree of misinterpretation during the explorative

phase implied in a given interpretation rule as:

D(I) =

L(I)∑
i=0

µ(f(ht) = i, s(ht) = 0)−B(f(ht) = i, s(ht) = 0) (12)

Which sums for every period the distance between the belief adopted by the interpreta-

tion rule and the belief that a fine thinker would form if confronted with the same evidence.
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The optimal interpretation rule can then be defined as:

(k̄∗(µi))
k
i=0 ∈ arg min

(k̄(µi))ki=0

|D(I)| (13)

subject to constraints (10) and (11).

This interpretation rule is equivalent to choosing, for every history ht with f(ht) failures

and 0 successes, the belief in M that is closer to B(f(ht)).

Considering µ̄i,i+1 = µi+µi+1

2
, the optimal interpretation rule will thus define (k̄(µi))

k
i=0

such that, for every i ∈ {0, 1, ..., k},
i∑

j=0

k̄(µj) + 1 = B−1(µ̄i,i+1). More specifically, this

interpretation rule implies that agents stop exploring when f(ht) = B−1(µ̄s−1,s).

The amount of over/under-exploration will be then given by:

A(I) = B−1(µ̄s−1,s)−B−1(p∗) (14)

As such, over (under) exploration will happen when p∗ is higher (lower) than µ̄s−1,s.

Notice that, since the optimal interpretation rule satisfies the conditions for categorical

representation and defines µ̄s−1,s = max{p ∈ Cs}, p∗ being higher (lower) than µ̄s−1,s is

equivalent to it being categorized under Cs−1 (Cs).

If the cut-off belief belongs to the set of coarse beliefs that the agent can hold (i.e. if

µs = p∗ ∈ M), the optimal interpretation will imply A(I) ≤ 0. Whether p∗ belongs to M

or not, by Proposition 5 we know that over/under-exploration gets arbitrarily close to 0 as

the partition of the posterior space gets finer around p∗.

3.1.2. Punctual Interpretation Rule

Imagine an interpretation rule that always adopts belief µi at the same time as the

bayesian thinker would adopt the same belief, such that
i−1∑
j=0

k̄(µj) + 1 = B−1(µi)∀i ∈

{1, 2, . . . , k − 1}. This interpretation rule is the most stubborn among the class of cate-

gorical interpretation rules: the belief adopted by it is always either the same or above the

belief of the fine thinker.

The belief decay implied in this rule is not detached from the bayesian belief decay, since

both curves meet periodically (whenever the fine thinker reaches a belief µ ∈ M). But
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since µ(ht) ≥ B(ht) for any possible history, its degree of misinterpretation D(I) will be

persistently positive.

The categorization implied by this interpretation rule is one in which µi = max{p ∈

Ci}∀i ∈ {1, 2, . . . , k}. In particular, µs = max{p ∈ Cs}, such that we know that p∗ will

be categorized under Cs−1 whenever it does not belong to M. That is, when p∗ 6∈ M this

interpretation rule will certainly lead to over-exploration of magnitude A(I) = B−1(µs) −

B−1(p∗) > 0, whereas when p∗ ∈M there will be just-exploration.

3.2. Detached Interpretation Rules

In the last section we analyzed interpretation rules that roughly followed the decay

of a bayesian belief. We have seen that such interpretation rules are bounded on their

stubbornness and pliancy, which prevents the resulting beliefs from becoming too detached

to the belief that a fine thinker would form if confronted with the same evidence. We now

look at interpretation rules that systematically violate conditions (10) and (11) and that

thus lead to a belief decay that is detached from the bayesian one.

3.2.1. Over-Stubbornness/Anchoring

An interpretation rule that systematically violates condition (10) will always underesti-

mate the informational content of the signals it observes, such that the resulting belief will

always be above that of the fine thinker. Violating the stubbornness condition for every

belief would account to defining a sequence (k̄(µi))
k
i=0 such that:

i−1∑
j=0

k̄(µj) + 1 > B−1(µi)∀i ∈ {1, 2, . . . , k} (15)

That is, for every history ht with B(ht) ∈ [µi+1, µi), the anchored interpretation rule

would yield a µ(ht) = µj with j ∈ {0, 1, . . . , i}. Such systematic bias can be thought of in

terms of the anchoring bias discussed in the behavioral literature (Tversky and Kahneman

[19], Chapman and Johnson [22]). Beliefs that are anchored around a certain value will

exhibit a greater inertia and insufficient adjustments to later signals. The sailor that has
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dreamt about reaching a tropical island, for example, might anchor his beliefs about its

existence and underestimate the value of signals that indicate otherwise.

It is thus intuitive that such interpretation would lead him to over-explore the unknown

sea in his search. More specifically, we know that agents with such stubbornness will always

reach a belief µi with i ∈ {1, 2, . . . , k} after the fine thinker has reached µi, such that the

extent of over exploration would lie in:

A(I) ∈ (B−1(µs)−B−1(p∗),∞)

3.2.2. Over-Pliancy

An interpretation rule that systematically violates condition (11) would always over-

estimate the informational value of the evidence it encounters, such that the belief adopted

by it would be always below that of a fine thinker. An interpretation rule that violates the

pliancy condition would then define a sequence (k̄(µi))
k
i=0 such that:

i∑
j=0

k̄(µj) + 1 ≤ B−1(µi)∀i ∈ {1, 2, . . . , k} (16)

For any history ht yielding a B(ht) ∈ (µi+1, µi], this interpretation rule would adopt a

µ(ht) ∈ {µi+1, µi+2, . . . , µk,
¯
µ}. Since the pliant coarse thinker will always abandon a given

belief belonging to M before the fine thinker adopts it, it is clear that such interpretation

rules will always exhibit under-exploration.

As we have already previously mentioned, pliancy is bounded for coarse thinkers. The

most pliant of interpretation rules is the one that shifts to the next belief available every

time it observes a failure. The under-exploration implied by such interpretation rule is then

A(I) = A = s−B−1(p∗).

As such, pliant interpretation rules would always imply under-exploration in the interval:

A(I) ∈ [s−B−1(p∗), B−1(µs−1)−B−1(p∗)]

We can observe that the minimum extent of under-exploration in this case coincides

with the maximum extent of under-exploration possible under a categorical interpretation

20



rule. Similarly, the minimum extent of over-exploration under a stubborn interpretation

rule will coincide with the maximum extent of over-exploration possible in a categorical

interpretation. These results can be summarized as follows:

A(IP ) < 0 and A(IP ) ∈ [s−B−1(p∗), B−1(µs−1)−B−1(p∗)]

A(ICs) ≤ 0 and A(ICs) ∈ (B−1(µs−1)−B−1(p∗), 0]

A(ICs−1) > 0 and A(ICs−1) ∈ (0, B−1(µs)−B−1(p∗)]

A(IS) > 0 and A(IS) ∈ (B−1(µs)−B−1(p∗),∞)

(17)

4. Concluding Remarks

Modeling coarseness of beliefs poses a challenge in terms of how to represent evidence

interpretation. For fine thinkers, such process is smooth: they can always finely adjust

their beliefs based on the information contained in the signals they encounter. Coarse

thinkers, however, are restricted to representing their information through finitely-many

beliefs. Furthermore, whenever they are exposed to new evidence they will face a trade-off

between maintaining their current belief or performing a coarse and imperfect adjustment.

As such, each interpretation rule will define a particular balance between stubbornness and

pliancy regarding each belief.

Although a coarse thinker would adopt the same strategy as a fine thinker in a two-

armed bandit problem, the fact that he conditions his actions on an imperfect measure of

his information should affect the way he allocates resources into exploration. We analyzed

such impact for different types of interpretation: agents that underestimate the informa-

tional value of the evidence they observe would incur in over-exploration, whereas agents

that overestimate the information contained in their evidence would under-explore. These

results highlight the impact that imbalances in the stubbornness and pliancy implied in an

interpretation rule might have in the learning process of a coarse thinker.

For agents whose interpretation follows roughly that of a fine thinker, the extent of

exploration will depend on how they perceive the cut-off belief. As we have seen, such

interpretations imply that the coarse thinker can be treated as an agent whose continuum
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belief space is partitioned into coarse categories, such that every posterior belonging to a

given category is perceived equally. As such, exploration length would depend on whether

the cut-off belief is categorized into a belief that still treats the good state of nature as

sufficiently likely or not. This result highlights the impact that the imperfect representation

of information through coarse beliefs might have in an exploration setting.
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