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Abstract

We provide the first evidence that air pollution causes economy-wide reductions in market

economic activity. We combine satellite-based measures of air pollution with statistics on

regional economic activity throughout the European Union since 2000. We use an instrumental

variables approach, based on both thermal inversions and the direction of prevailing wind, to

identify the causal impact of air pollution on economic activity. We estimate that a 1 µg/m3 (10

percent) increase in fine particulate matter concentrations causes a 1.1% reduction in gross

domestic product, with over 90 percent of this impact due to reductions in output per person

and the remaining amount due to reductions in population. Our estimates suggest that the

economic benefits of reducing air pollution are much larger than previously thought, and of

similar magnitude to the benefits associated with reductions in mortality.
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1 Introduction

Air pollution represents a major threat to human health in the 21st century. The World Health
Organisation estimates that only 1 in 10 people globally live in areas where air pollution is at
recommended levels, and that outdoor air pollution is responsible for at least 4.2 million deaths a
year globally and over 400,000 in the EU alone. Air pollution dominates all other major causes of
avoidable death including tobacco smoking, alcohol use, road accidents, and transmissible diseases
such as AIDS, malaria, and tuberculosis. Since air pollution continues to rise at an alarming rate
worldwide, especially in low- and middle-income countries, these numbers may grow even larger
in the years to come (OECD, 2016; European Commission, 2013).

The consequences of air pollution on human health have led to the introduction of increasingly
stringent environmental regulations around the world (Botta and Koźluk, 2014), but controversy
remains over their appropriate stringency. Imposing environmental regulations is typically seen as
a trade-off between generating non-market benefits to health or the natural environment but impo-
sing costs on the economy, as resources may be redirected away from productive activities towards
pollution control activities. Therefore, this debate is often framed in terms of “jobs versus the en-
vironment” (e.g. Morgenstern, Pizer, and Shih 2002). However, this framing ignores the potential
that reductions in air pollution may lead to improved productivity, which itself can translate into
greater economic output.

The objective of this paper is to inform this debate by estimating the causal impact of air
pollution on economic activity, using data from across Europe. The results show that higher levels
of air pollution, as measured by PM2.5 concentration (small airborne particles with a diameter less
than 2.5 microns, the pollutant with by far the largest estimated impacts on mortality and health
outcomes), exert a substantial direct burden on the market economy, principally by reducing output
per worker. This implies that reducing air pollution could yield large market economic dividends
in addition to the well-established non-market benefits, and suggests that prior estimates of the
benefits of pollution reduction are substantially too low.

In cost-benefit analyses of air pollution control policies, the benefits are typically vastly domi-
nated by non-market impacts such as avoided deaths. In contrast, market benefits–such as reduced
absenteeism at work–appear of second order importance in these evaluations. For example, the
U.S. Environmental Protection Agency estimates that the benefits of the Clean Air Act Amend-
ments over the period 1990-2020 amount to $12 trillion (in 2006 USD), with 85 percent of these
benefits attributable to reductions in premature mortality (US EPA, 2011). Similarly, recent analy-
sis by the OECD estimates that the total market costs of outdoor air pollution (including reduced
agricultural yields, absenteeism at work and health expenditures) amount to 0.3 percent of glo-
bal income in 2015 while the welfare costs from non-market impacts represent 6 percent of total
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income (OECD, 2016).
However, recent evidence is emerging that suggests poor air quality may cause direct reductions

in economic activity because it negatively impacts cognitive or physical ability (Graff Zivin and
Neidell (2018); Deryugina et al. (2019); Graff Zivin and Neidell (2012)). This literature–which we
review in the following section–mostly focuses on observing the changes in individual productivity
as well as on work absenteeism caused by concurrent exposure to poor air quality. This emerging
literature points towards a consistent finding that air pollution negatively impacts the productivity
of both low-skill and high-skill workers. However, it is difficult to draw a conclusion about the
overall impact of poor air quality on the broader economy from these studies, which focus on idi-
osyncratic groups in particular locations, some of which in emerging economies with particularly
high pollution levels (China, India). Another limitation is that prior studies make inferences about
the effect of pollution on concurrent daily or even hourly economic performance, and for the most
part have little to say about longer-run effects of pollution on productivity.

In this paper, we build on this literature by providing the first estimate of the causal impact
of air pollution (measured by PM2.5 concentration) on aggregate economic activity in a developed
country context, using regional data from Europe for the period 2000-2015. We focus on the relati-
onship between annual pollution and economic outcome measures, for the population at large, and
thus get around both the concern about idiosyncratic populations as well as potential productivity
displacement effects within a year. Our study is based on data from highly disaggregated European
administrative regions (NUTS3 regions, similar to U.S. counties) between 2000 and 2015, and thus
reflects the impact of pollution on developed countries in a contemporaneous period.

Estimating the causal effect of air pollution on economic outcomes at an aggregate level is
challenging because of the potential for reverse causality. Not only might air pollution impact eco-
nomic output and productivity (the effects we seek to measure), but economic activity clearly also
affects pollution emissions through a number of potential channels. To circumvent this problem,
we adopt an instrumental variables strategy, in which we use thermal inversions as well as wind
direction as instruments, which generate quasi-random variation in pollution. Both of these in-
struments are strong, in that they predict pollution, are exogenous, in that they are not themselves
caused by economic activity or pollution, and do not affect economic outcomes (conditional on
weather) except through their effect on pollution.

The results show that air pollution adversely economic activity substantially. A 1 µg/m3, or
roughly 10 percent, increase in the average annual concentration of air pollution causes a 1.1%
reduction in real gross domestic product in the average NUTS3 region. This implies that a 10
percent reduction in PM2.5 concentration across Europe would increase European GDP by about
e150 billion. On a per capita basis, this works out to about e300 per person. The impact of high
pollution levels is heterogeneous across sectors, with the agriculture sector being the most severely
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affected. Our results also suggest that the marginal damage from pollution is falling in pollution
concentration, which helps to reconcile findings from this study with those undertaken in high-
pollution regions of the world, and also suggests that air pollution can affect economic outcomes
even in relatively low-pollution regions.

We undertake a range of robustness tests, including using alternative instrumental variables,
using pollution measures from a number of different sources, including spatial and temporal lags in
our estimation, removing outliers, and weighting observations, and find that the sign, significance,
and magnitude of our key results is preserved.

These findings can inform ex-ante cost-benefit evaluations of air pollution reduction policies.
On the benefits side, a back-of-the-envelope calculation suggests that the market benefits of re-
ducing air pollution uncovered in this study are of similar magnitude to the widely recognized
non-market benefits from reduced mortality. This compares with relatively small abatement costs:
a recent assessment by the European Commission of the cost of reducing PM2.5 emissions by 25
percent in the European Union would bee1.2 billion annually (European Commission, 2013). Our
estimates suggest that the economic benefits from such emissions reductions would be around two
orders of magnitude greater. Therefore, much stronger air quality regulations could be warranted
based on their previously underestimated economic benefits.

Simulations based on our statistical model show that the improvement in air quality between
2010 and 2020 required by the European Commission Ambient Air Quality Directives would in-
crease European GDP by 1.25%, with some countries experiencing GDP growth of up to 3%.
Environmental policies may also have contributed positively to economic growth in Europe in the
recent period, and could further contribute to growth in the near future, as well as to the economic
convergence between Western and Eastern European regions.

Our paper relates to the emerging literature which seeks to estimate the impact of air pollution
on productivity and economic activity more generally. Alongside a number of studies that focus
on the concurrent impact of pollution on individual outcomes (which we discuss in the following
section), three papers use large-scale datasets that are representative of economy-wide economic
activity. Probably closest to our paper is Fu et al. (2017), who use the near-universe of manufactu-
ring plants in China and find that a 1µg/m3 increase in average annual PM2.5 concentration reduces
manufacturing sector productivity by 1.1%. Our paper complements Fu et al. (2017) by focusing
on a developed country context where average pollution levels are much smaller than in China, and
by estimating the impact on all sectors, rather than just manufacturing. The fact that our estimates
are extremely similar to the ones reported by Fu et al. (2017) suggest that air pollution matters even
at much lower average concentration levels. This finding is reinforced by our non-linear estimates,
which show that an additional unit of PM2.5 has a large impact at lower ambient pollution levels.
Borgschulte et al. (2020) focus on pollution peaks in the U.S. caused by forest fires. They estimate
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that each day spent in a forest fire smoke plume causes a reduction in income of 0.04 percent over
two years. Ignoring non-linearity, this result implies that continuous exposure to wildfire smoke
would reduce income by a third. In contrast, our study focuses on the impact of exposure to pollu-
tion levels experienced on a daily basis by a typical resident of Europe. Isen et al. (2017) examine
changes in lifetime income due to changes in exposure to pollution in infancy, and find that a 10
percent reduction in particulate matter during infancy causes a 1% increase in mean earnings later
in life. Although the context is different, the magnitude is again similar to the findings reported in
this paper.

Our paper is more generally related to the literature which seeks to understand the impact of
environmental quality on economic activity. In particular, a growing literature empirically estima-
tes the effect of temperature shocks on economic outcomes (see Auffhammer (2018) for a review).
For example, Dell et al. (2009) document that in the year 2000, a 1◦C warmer climate is associ-
ated with an 8.5 percent lower income per capita. Dell et al. (2012) find that economic growth is
around 1 percentage point lower per additional ◦C. Burke et al. (2015) find evidence of a global
non-linear relationship between temperature and economic production, and Deryugina and Hsiang
(2014) find that the negative relationship between temperature and output is evident even in a rich
country where adaptation opportunities (e.g., air conditioning) are presumably available.

The rest of the paper is organized as follows. Section 2 provides the background on the potential
effects of pollution on economic outcomes. Section 3 describes our approach to estimating the
causal effect of pollution on economic activity, including a discussion of our instrumental variable
approach. Section 4 introduces the data. Section 5 provides the main results of our empirical
analysis. Section 6 discusses the implications of our results, including by comparing our results
to other studies, comparing the economic benefits of pollution reduction estimated in this study
with estimates of mortality and morbidity benefits used in regulatory impact assessments, and by
comparing our estimates of the benefits of pollution reduction to estimates of the cost of pollution
reduction. Finally, Section 7 concludes.

5



2 Background

2.1 Conceptual framework

In this section, we provide a simple conceptual framework to illustrate the mechanisms through
which pollution can impact economic output. The model is used to show how we measure the im-
pacts of pollution on total economic output and to motivate the empirical analysis that follows. We
also use the model to situate prior literature on the impact of air pollution on health and economic
outcomes.

A representative firm in a closed economy has output given by Y = Y (K,L,P), where Y is
economic output, K is capital input, L is effective labor input, and P is pollution. We define y as per
capita economic output, such that Y = Ny, where N is the population. Each of the N representative
households has an endowment of time, and uses its income to finance consumption of the produced
good. The total time endowment (t) of each household is specified as t = h+s(P), where h is labor
and where we use s(P) to capture time periods in which the household is sick, and cannot work.
Because the focus of this paper is not on optimal regulation of pollution, in this simple framework,
we maintain pollution as an exogenous variable (see Graff Zivin and Neidell (2013) for a similar
model in which pollution is treated as exogenous). The effective labour force available for work is
L = N(P)φ(P)h, where φ(P) reflects the impact of pollution on worker productivity, conditional
on not being sick, and where we model the total population as a function of the level of pollution,
to capture the idea that pollution can affect births, deaths, and migration. Given these assumptions,
total economic output is given by:

Y = Y (K,N(P)φ(P) [t− s(P)] ,P).

The impact of pollution on economic output is then given by:

d logY
dP

= ψ

[
∂ logN

∂P
−θ

∂ logs
∂P

+
∂ logφ

∂P

]
+

∂ logY
∂P

, (1)

where ψ is the elasticity of output with respect to effective labor and θ = s
t−s is the benchmark

ratio of sickness to labor supply.
In square brackets, the first term is the impact of pollution on total economic output as a result

of changes in population. The second term is the impact of pollution on output as a result of
changes in the number of hours worked, conditional on population. The third term is the effect
of pollution on the productivity of the labour force. Finally, the last term on the right hand side
(outside of the square brackets) captures the potential that air pollution directly affects economic
output (not via its impact on labor supply or productivity). In the following subsection, we show
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that the literature suggests that pollution reduces economic output through all of the channels
identified in this simple framework.1

In the empirical analysis that follows, we estimate the sign and magnitude of d logY
dP —the left

hand side variable in (1). We decompose the change in economic output as a result of changes in
pollution following our conceptual model. Unfortunately, we lack data on s as well as on any direct
impact of pollution on output, and so our empirical decomposition does not parallel (1) exactly.

2.2 Prior literature

In this section, we provide evidence on the expected sign of each of the terms in (1): the impact
of pollution on population, the impact of pollution on sickness and absenteeism, the impact of
pollution on worker productivity, and the direct impact of pollution on output. It is not our intention
to provide a systematic summary of the literature, but instead to highlight key results that help to
provide a prior estimate of the key signs and magnitudes in (1).

2.2.1 Pollution and population (d logN
dP )

It is widely recognized that air pollution imposes a substantial burden on human health (Graff
Zivin and Neidell, 2013). Large cohort-based studies conducted by epidemiologists have provided
evidence since at least 25 years ago that pollution by small airborne particles (PM2.5) increases the
rate of death (Dockery et al., 1993; Pope et al., 2002), especially through increases in respiratory
and heart diseases. Calculations based on these and other studies suggest that ambient (outdoor)
air pollution (especially PM2.5) caused about 4.2 million deaths worldwide in 2015 (7.6% of all
deaths), and was one of the leading causes of premature loss of life and loss of health (Cohen et
al., 2017). Deryugina et al. (2019) estimates the short-run impact of air pollution on mortality,
using a similar instrumental variables approach as in this paper, and finds that a 1µg/m3 increase
in PM2.5 results in a 0.2% contemporaneous increase in elderly mortality.

A substantial literature also finds evidence that pollution impacts birth outcomes. For example,
Chay and Greenstone (2003) find that reductions in total suspended particulates (TSP, including
both PM2.5 as well as coarser particulates) caused reductions in infant mortality. They estimate
that a 1-percent reduction in TSP reduced infant mortality by 0.35 percent in the early 1980s.
Currie and Neidell (2005) find that reductions in PM10 and carbon monoxide (CO) in California
both cause reductions in infant mortality. Jayachandran (2009) uses variation in exposure to smoke
from the 1997 Indonesia forest fires to estimate “missing children” in downwind communities. She
finds a large effect of exposure to forest fire smoke on infant mortality.

1For simplicity, we do not consider here the dynamics of capital accumulation, and thus ignore impacts of pollution
on the capital stock.
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Recent research also suggests that air pollution may impact migration. Chen et al. (2017) find
great movement between provinces in China to avoid air pollution. Taken together, these studies
suggest that air pollution likely reduces population in a region, by increasing deaths, reducing live
births, and increasing net outmigration.

2.2.2 Pollution and absenteeism (d logs
dP )

In addition to its effect on overall population, pollution has been found to affect sickness, and
as a result, absenteeism. Ransom and Pope III (1992) provided early evidence on the relationship
between outdoor pollution and absenteeism, by focusing on school attendance in Utah. They found
that an increase in monthly PM10 of 100µg/m3 was associated with a 40% increase in absenteeism.
Currie et al. (2009) report similar findings in Texas schools for CO.

Studies have also been conducted addressing absenteeism from work. For example, Holub et
al. (2016) find that a 10µg/m3 increase in PM10 concentration results in a 1.6% increase in job
absenteeism in Spain. Similarly, Hanna and Oliva (2015), Hansen and Selte (2000), and Aragon
et al. (2017) show that increases in pollution reduce hours of work by a substantial magnitude.
Interestingly, Aragon et al. (2017) finds that a key factor in explaining absenteeism from work,
especially at moderate pollution levels, is the presence of dependents in the household (since, if a
child is sick, a parent may have to stay home). Thus there may be a link between the school and
work absenteeism outcomes.

2.2.3 Pollution and productivity (d logφ

dP )

In addition to causing substantial ill-health and mortality, air pollution is also believed to impair
cognitive and physical function. Again PM2.5 is of particular concern. When this pollutant is
inhaled, the particles can enter deep into the lung and damage lung function. Additionally, they
pass through the lung into the bloodstream, where they can affect the heart and brain function
(Calderón-Garcidueñas et al., 2014; Du et al., 2016; Ranft et al., 2009). Because pollution affects
physical and cognitive function, there is a clear pathway through which it could impact workplace
productivity. Starting with Graff Zivin and Neidell (2012), a number of studies have investigated
the link between productivity and other economic outcomes and elevated pollution. These studies
have typically focused on groups of individuals for which productivity, or some similar measure,
is directly observable and for whom tasks cannot easily be delayed or shifted in location.

Chang et al. (2016) examine the daily productivity of pear-packers at an indoor facility. They
find that the number of boxes packed is reduced on days when air quality is poor. Adhvaryu et
al. (2019) use data on hourly worker output at a garment manufacturing facility in India to show
that increases in PM2.5 concentrations cause reductions in worker productivity (measured by the
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number of garments sewn per hour). He et al. (2019) obtain data on worker-level output from
two textile manufacturing facilities in China. They find that a sustained increase in PM2.5 causes
a reduction in worker output. Chang et al. (2019) show that the effect isn’t limited to physical
workers. They obtain a worker-level dataset from a Chinese call centre, and find that the number
of calls handled by workers falls with increases in the air quality index, due to longer breaks at
work taken by workers on polluted days.

Estimating the potential effect of pollution on high-skill workers is more challenging, because
tasks are typically less routinized and can often be shifted in time and space. Nevertheless, there is
some evidence that pollution also affects productivity in high-skill tasks. For example, Ebenstein
et al. (2016) estimate the causal effect of poor air quality on student performance in standardi-
zed high-school examinations, and find that a 10µg/m3 increase in PM2.5 concentration causes a
0.023% decline in exam scores. Archsmith et al. (2018) finds that the number of incorrect calls
made by major-league baseball umpires increases by 2.6% when PM2.5 increases by 10µg/m3, and
Heyes et al. (2016) finds that a 7µg/m3 increase in PM2.5 in New York causes a same-day fall of
12% in NYSE returns.

While it is difficult to generalize from these highly-specific tasks to the broader population, and
while the magnitude of the measured impacts on these populations due to air pollution are quite
varied, the emerging evidence points towards an increasingly consistent finding that air pollution
impacts on-the-job outcomes, conditional on being at work. It is important to note that most of
these studies focus on contemporaneous air quality and productivity, and so the estimates do not
include any longer-run effects of pollution on productivity. An exception is Fu et al. (2017), who
examines annual productivity, and He et al. (2019), who estimate productivity based on cumulative
exposure over 25 days.

2.2.4 Direct impacts of pollution (∂Y
∂P )

In addition to impacts of pollution that are mediated through the labor market, air pollution may
also have a direct impact on output. This is most likely in the agricultural or forestry sectors, where
air pollution has the potential to damage crops or trees and thus cause reductions in yield.

A number of papers find that agricultural output is impacted by ambient pollution. Van Din-
genen et al. (2009) use empirical dose-response relationships to estimate that current levels of
pollution (primarily ozone) reduce global yields by 7-12% for wheat, 6-16% for soybean, and 3-
4% for rice and maize. Avnery et al. (2011) report very similar results. Chameides et al. (1999)
estimates that most crop yields in China are depressed by 5-30% as a result of suspended parti-
culate matter, as this pollutant causes reductions in direct sunlight reaching plants, which is well
known to depress yields. Schulze (1989) shows that deposition of air pollutant in soils affects
soil acidity, and thus tree root development, long term growth rates, and tree health. Proctor et al.
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(2018) estimates that pollution from the Pinatubo volcanic eruption substantially reduced agricul-
tural yields (by about 5 to 10%, depending on crop). Outside of the agricultural sectors, Li et al.
(2017) find that PM2.5 pollution in China causes large losses in solar photovoltaic output (by 20%
on an annual average basis in Eastern China) as it reduces direct radiation reaching solar panels.

2.2.5 Summary

These recent results, based on study populations around the world, suggest that air pollution affects
population health and size, absenteeism, on-the-job productivity, and in some cases has direct
impacts on output. While the evidence remains thin, the results also suggest that the on-the-job
productivity of both low-skill and high-skill workers are affected by air pollution. Our aim in this
paper is to tie these results together by examining overall impacts on economic performance due
to high levels of air pollution.

Notably, estimates in our paper correspond to the aggregate effect of pollution, which could
differ from prior studies for at least two reasons. First, prior studies could have been based on set-
tings that were not representative of the entire economy. For example, many studies on pollution
focus on particular activities because of data availability, rather than representativeness. Second,
as a result of pollution, we expect that factors may reallocate away from negatively affected acti-
vities. Our approach aims to capture the net effect of pollution on economic activity, after most
such adjustments have taken place (although it does not capture avoidance through moving across
regions or shifting activities across years).

3 Empirical strategy

3.1 Econometric model

Consider a basic equation characterising the relationship between economic output and pollution
concentration in region i in year t, which is the empirical analogue to equation (1):

log(Yit) = β0 +β1Pit +β2 f (Wit)+ηi + γt + εit , (2)

where Yit is a variable measuring economic output (GDP, GDP per capita, or gross value-added by
sector), Pit is the average pollution concentration in region i in year t, f (Wit) is a flexible function
that captures how economic output may be affected by weather (temperature, precipitation, etc),
ηi are region fixed effects which capture any time-invariant differences between regions, such as
differences in geography, γt are year fixed effects which account for changes in economic activity
and pollution that occur across regions in the sample, and εit is a random disturbance term.
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To sweep out the region fixed effects ηi and ensure that any persistent differences between
regions, such as due to differences in geography, do not contribute to identification of the effect,
and to address non-stationarity in the left hand side variable, we estimate Equation (2) in first
differences:

∆ log(Yit) = β1∆Pit +β2 f (∆Wit)+∆γt +∆εit . (3)

The coefficient β1 can then be interpreted as the contemporaneous impact of pollution on GDP
from a one-unit increase in the pollution concentration.

Our objective is to capture the causal effect of pollution on overall economic activity. This is
not straightforward, because reverse causality is likely a major feature in this relationship. On the
one hand, high levels of air pollution might increase absenteeism, mortality, and morbidity, and
reduce workplace productivity, all of which contribute to reductions in overall economic activity,
as in Equation (1). This is the effect we seek to investigate. However, on the other hand, chan-
ges in economic activity affect air pollution, through changes in technology, scale, preferences,
regulations, trade, or other determinants of air pollution. As a consequence, a simple regression
of economic outcomes on pollution, even controlling for other variables, will confound these two
effects, and yield uninformative estimates of the effect of pollution on economic activity. In order
to overcome the challenge associated with reverse causality, we require one or more variables that
shift pollution quasi-randomly, and whose only effect on economic activity occurs via their effect
on pollution. We adopt thermal inversions and wind direction as two such variables and carry out a
two-stage estimation, in which we predict pollution in the first stage, based on observed prevalence
of thermal inversions or the direction of wind, and in the second stage, estimate the effect of our
predicted pollution measure on economic output. We explain the relevance of our instruments in
the next sub-section.

The first stage of the model can be written as:

∆Pit = α1∆T Iit +α2∆WDit +α3∆ f (Wit)+λt +πit , (first stage) (4)

where T Iit is one or more measures of the frequency of thermal inversions in region i in year t,
WDit is one or more measures of the frequency of wind from different directions in year t and
region i, and πit is a disturbance term.

We then estimate the effect of our predicted pollution measure on economic output:

∆ log(Yit) = β1∆̂Pit +β2∆ f (Wit)+ γt +νit , (second stage) (5)

where νit is a random disturbance.
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Both regressions are estimated in first differences, which implies that identification of the im-
pact of pollution on economic activity is based on within-region differences in pollution. The
regression equations also include time fixed effects (λt and γt respectively), to account for changes
in economic activity and pollution that are common across regions, such as the 2008-09 economic
downturn. In most of our results, we weight observations by population, such that results are not
dominated by low-population regions (although we show that results are not particularly sensitive
to weighting).

Note that we can also directly estimate the reduced form equation:

∆ log(Yit) = ζ1∆T Iit +ζ2∆WDit +ζ3∆ f (Wit)+κt +φit , (reduced form) (6)

which recovers the impact of our instrumental variables directly on economic activity (κt are time
fixed effects).

It is important to note that the instrumental variable approach to estimating the effect of air
pollution on economic activity also addresses the two other main sources of endogeneity, namely
measurement error in air pollution–a feature of all studies on this topic (Graff Zivin and Neidell,
2013)–and omitted variables.

3.2 Instrumental variables

Our two-stage approach to estimating the effect of air pollution on economic activity requires
instrumental variables that (1) affect pollution (i.e., are relevant instruments); (2) are not caused
by pollution or economic activity (i.e., are exogenous and thus as good as randomly assigned); and
(3) only affect the dependent variable through their effect on pollution, the endogenous variable
(i.e., satisfy the exclusion restriction). We explain our choice of instrumental variables in the sub-
sections below, and focus on how each of them satisfy these conditions.

3.2.1 Thermal inversions

The relationship between air temperature and pressure/altitude under normal atmospheric condi-
tions is illustrated in Figure 1. Under normal conditions, air temperature decreases with altitude
above the surface through the troposphere. At an altitude of roughly 11km above sea level (corre-
sponding to 226 hPa), temperature reaches -56.5◦C, and remains constant throughout the stratosp-
here before increasing towards the top of the atmosphere.

Thermal inversions occur in the lower troposphere, and represent a deviation from the normal
monotonic relationship between air temperature and altitude/pressure. They form when a mass of
cooler air becomes trapped below a warm mass of air. For example, the large-scale movement of
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Figure 1: Typical atmospheric pressure and temperature. Under normal atmospheric conditions,
temperature falls approximately linearly with height above surface until about 11km in elevation,
where it reaches a temperature of about -56.5◦C. Above that point, temperature is stable and then
increasing until about 30km above surface at which point it decreases again until the top of the
atmosphere. In this study, we retain temperatures within roughly 1,000m of surface—given by the
lower dashed black line.

air masses throughout the atmosphere typically forms thermal inversions at its leading edge, as
warm air masses pass over cooler air masses. Thermal inversions also form in winter at higher
latitudes, as the low-angle sun heats the air higher in the atmosphere faster than the air at ground-
level. Thermal inversions can also form as the surface cools overnight. Thermal inversions work
with different mechanisms in winter and in summer. Summer inversions typically happen in the
morning, whereas winter inversions typically take place in the afternoon, which also implies that
they will have a different effect on pollution levels (Hicks et al., 2016).

Under normal atmospheric conditions, warm air at the surface is drawn upwards as a result of
its lower density. This atmospheric ventilation can help to reduce pollution levels at the surface.
During a thermal inversion, however, the inversion layer prevents the normal atmospheric venti-
lation from taking place, trapping polluted air at the surface. This effect is widely known, and
has been documented in the scientific literature (Wallace and Kanaroglou, 2009; Gramsch et al.,
2014). A similar strong relationship between thermal inversions and pollution is observed in other
economics papers, such as Hicks et al. (2016), Chen et al. (2017), and Fu et al. (2017). In the
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results section, we formally demonstrate that air pollution, as measured by PM2.5 concentration,
increases significantly in the presence of thermal inversions.

Having established that thermal inversions are a relevant instrument, it remains to show that
they are as good as randomly assigned (i.e., not caused by pollution or economic activity) and
that they satisfy the exclusion restriction (i.e., only affect economic variables via their effect on
pollution). Both of these must be shown by argument, rather than demonstrated using our data.

To demonstrate that thermal inversions are not caused by pollution or economic activity, we ap-
peal to two branches of literature. First, in the climate economics literature, deviations in surface-
level temperature from one year to the next within a region are typically assumed to be exogenous
(e.g. Deryugina and Hsiang, 2017; Dell et al., 2012; Burke et al., 2015). Once we accept the exo-
geneity of the surface-level temperatures, the exogeneity of higher-altitude temperatures is easy
to accept. Second, the atmospheric physics literature shows that aerosols can cause thermal in-
versions, by reflecting sunlight, but this happens only at extremely high levels of pollution, about
100 times larger than our sample average (50 times larger than our sample maximum) Rémy et al.
(2015). Thus, in a European setting, reverse causality is not an issue.

To show that thermal inversions affect the economy only via pollution, it is important to re-
member that thermal inversions are an atmospheric phenomenon that takes place above ground
level (where economic activity takes place). This fact should guarantee that thermal inversions
satisfy the exclusion restriction. However, thermal inversions are linked with weather, which can
potentially influence economic activity on the ground level (Dell et al., 2012; Burke et al., 2015).
For example, thermal inversions often occur in winter, when surface temperatures are cooler. In
order to rule out the potential correlation between inversions and economic conditions that occurs
through weather, we carefully and flexibly control for on the ground weather conditions in all our
regressions, as described below. These flexible controls for ground-level weather are given by the
functions f (Wit) in Equations (4) and (5), and ensure that our instrument satisfies the exclusion
restriction.

Several other papers have relied on similar arguments and used thermal inversions as an instru-
mental variable to understand the impact of pollution on behavioral and economic outcomes, such
as Sager (2019), Arceo et al. (2016), Chen et al. (2017), and Bondy et al. (2020).

3.2.2 Wind direction

Airborne pollutants can be carried by the wind. This basic insight suggests that wind may be a re-

levant instrumental variable for predicting pollution concentrations. Indeed, there are a number of
papers that use wind direction as an instrument for predicting pollution concentrations (Herrnstadt
and Muehlegger, 2015; Ward, 2015; Deryugina et al., 2019; Bondy et al., 2020).

Unlike for thermal inversions, however, we do not begin with a clear idea of which wind di-
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rection may be associated with higher levels of pollution across all the geographical units in our
study. To get around this, we use pre-sample data to establish which wind directions are associated
with the highest levels of pollution in each region in our study sample (data is described in more
detail in Section 4). Specifically, we gather daily data on wind direction and pollution concentra-
tion for the five-year period immediately preceding the period that we use for our main analysis.
For each region in the data set, we calculate the average pollution concentrations associated with
winds originating from each compass octant (for the pre-sample period). For example, Figure 2
shows the average PM2.5 concentration associated with wind from each compass octant for a re-
gion in the Northwest of France (to the West of Paris). As shown in the Figure, for this region,
in the pre-sample period, on days with winds blowing from the west, the pollution concentrations
are on average lower than on days were the wind comes from the east. The most polluting wind
directions for this region are the North-east and East, and the least polluting wind direction is the
West.

We repeat this calculation for each of the 1,352 NUTS3 regions throughout Europe, again
using pre-sample data to rank wind directions for each region according to the average pollution
concentration. Figure 3 illustrates the unconditional relationship between daily wind direction and
pollution concentrations across all of the regions covered by this study. We construct this figure
using daily data for the five-year period immediately preceding the period that we use for our main
analysis. For each region, we rank the compass directions from 1 to 8, where a ranking of 1 reflects
the “cleanest” wind direction, and a ranking of 8 reflects the “dirtiest” wind direction, as described
above.

The figure shows that the direction of the prevailing wind has an important impact on air pol-
lution concentrations. On days when the wind originates from the “cleanest” direction, pollution
concentrations are about half of what they are on days when the wind originates from the “dirtiest”
direction. We use these observations based on pre-sample data to construct an instrument for pollu-
tion. In the main analysis, we use a variable to indicate the share of days in each year in which the
wind originates from a “clean” direction (octants 1 through 3 in Figure 3) and another variable to
indicate the share of days in which the wind originates from a “dirty” direction (octants 6 through
8).2 As described above, the classification into clean and dirty directions is based on pre-sample
data. In sensitivity analyses, we show that other reasonable choices for the wind instrument yield
very similar results (for example, using only the dirtiest direction, the cleanest direction, or dummy
variables for the number of days the wind originates from all eight directions). We formally show
the relationship between our chosen instruments and pollution in the results section.

Wind patterns are caused by continental-scale movements in air masses, and as a result are

2Using the 4 cleanest and 4 dirtiest directions would produce variables that are colinear, so we drop the two middle
directions.
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Figure 2: Illustration of method for categorizing wind directions using pre-sample data. The fi-
gure shows the average pre-sample (1995-1999) PM2.5 concentration for each wind direction for a
region in the Northwest of France, to the west of Paris (Départment Orne, NUTS FR253), highlig-
hted in red. The length of the arrow corresponds to the average pollution concentration for wind
blowing from the direction indicated by the arrow. Rankings of the wind directions from (1=) clean
to (8=) dirty are given in brackets below the average PM2.5 concentration.
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Figure 3: Relationship between daily average wind speed and wind direction and daily average
PM2.5 pollution concentrations. The ranking of wind direction is from 1(=cleanest) to 8(=dirtiest).
Data used to construct this figure are drawn from the five-year period immediately preceding the
main sample period, 1995-1999.
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exogenous to the localized economic data that we employ. Wind direction is therefore an exo-
genous variable. Moreover, conditional on weather, the direction of wind satisfies the exclusion
restriction. As described above, we condition very flexibly on both temperature and wind speed,
as well as on other weather variables, such that the weather instrument is not confounded by cor-
relation with weather. That is, there is no reason to believe that wind direction affects economic
activity (conditioning on weather), save through its effect on pollution concentrations.

3.3 Weather covariates

As emphasized in the discussion above, we believe that our proposed instruments satisfy the ex-
clusion restriction conditionally. That is, conditioning on weather covariates, the only pathway
through which thermal inversions and wind direction affect economic activity is via their effect on
pollution. To address possible confounding between weather and our instruments, we control very
flexibly for a large variety of weather variables. Specifically, the function f (Wit) in equations (4)
and (5) above includes a count of the number of days each year in which the average daily tempe-
rature falls into 20 temperature bins (that span the range of observed temperatures), a count of the
number of days each year in which the daily average wind speed falls into one of 12 wind speed
bins (defined using the Beaufort wind scale), a count of the number of days in each year in which
precipitation falls into one of 20 exhaustive bins, second-degree polynomials in relative humidity
and sea-level pressure, and interaction terms between all 20 temperature bins and both humidity
and squared humidity. Additionally, we find very little sensitivity in our results to changes in the
definitions of weather variables in regressions that we report later in the paper, suggesting that
further changes in the set of weather controls are unlikely to influence the results.

4 Data

4.1 Air pollution data

The key endogenous independent variable in our model is air pollution. There are a a large number
of potential air pollutants, and specific concern focuses on particulate matter, ground-level ozone,
nitrogen oxides, and sulfur oxides.3 Our analysis focuses on fine particulate matter, PM2.5. There
are two key reasons for this choice. First, PM2.5 stands out as the pollutant with by far the largest
estimated impacts on mortality and health outcomes. For this reason, the World Health Organi-

3Measures of these pollutants are used to construct the European Air quality Index, produced by the Euro-
pean Environment Agency: https://www.eea.europa.eu/themes/air/air-quality-index. The US EPA
constructs its Air Quality Index using a similar range of pollutants (also including carbon monoxide): https:

//www3.epa.gov/airnow/aqi_brochure_02_14.pdf.
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zation uses PM2.5 concentration as an indicator of general population exposure to air pollution
(World Health Organization, 2016). Similarly, most of the studies reviewed in the Section 2 use
PM2.5 as a proxy for air pollution more generally. Second, we are able to gather a comprehen-
sive estimate of PM2.5 concentrations covering the temporal and geographic scope required for our
study.

Although we focus on this pollutant in our empirical application, it is important to emphasize
that our empirical estimates of the impact of pollution on economic output likely confounds the
effect of PM2.5 with other air pollutants, since various air pollutants are typically correlated with
one another, and since we mostly lack the data to control for other air pollutants (although we do
use gridded SO2 data in a multi-pollutant model). The various key ambient air pollutants share
many sources in common—in particular they are all released as a by-product of combustion and
industrial activity. As a result, our estimates should be taken as the effect of pollution on economic
output, rather than the marginal effect of just PM2.5 on economic output.4

It is useful to note that the IV approach to estimating the effect of air pollution on economic
activity should help to address potential measurement error in air pollution, which is a feature of
all studies on this topic (Graff Zivin and Neidell, 2013).

This section outlines the PM2.5 data we use in our empirical analysis. In order to ensure that
our results are not driven by a particular data set, we employ several alternative measures of air
pollution in our analysis.

4.1.1 MERRA-2

Like a number of other papers, we make use of gridded air pollution data derived from a global
reanalysis product. This has the advantage of providing complete geographic and temporal co-
verage for the period and units covered by our analysis. For our main specifications, we obtain
air pollution data from NASA’s MERRA-2 Aerosol product (MERRAero) (Buchard et al., 2017).
MERRAero is a gridded aerosol and climate reanalysis product that produces a continuous esti-
mate of aerosols since 1980 with complete global coverage. MERRAero produces an estimate of
five different species of fine particulate matter, and we use the method of Buchard et al. (2016)
to aggregate these into a consolidated estimate of PM2.5 concentrations.5 MERRA-2 estimates
these particulate emissions by combining satellite measurements of aerosol optical depth (AOD),

4Most other research in this area is likewise unable to disentangle the individual effect of multiple pollutants. For
examples, see Schlenker and Walker (2015) and Chang et al. (2018). In the robustness checks later in the paper we do
introduce controls for co-pollutants and continue to find similar impacts of PM2.5 on output.

5As in Buchard et al. (2016), we use the following calculation:

PM2.5 = [DUST2.5]+ [SS2.5]+ [BC]+1.4× [OC]+1.375× [SO4],

where SS is sea salt, BC is black carbon, and OC is organic carbon.

19



with estimates of particulate sources from an emissions inventory. The inputs are then assimilated
using a global three-dimensional circulation model, including climate variables as well as aerosol
transport and chemistry (this meterological model itself assimilates monitoring data on an extre-
mely large number of relevant variables, such as surface temperature, wind, moisture, etc.). By
combining satellite measures of aerosol optical depth (AOD) using an assimilation model based on
well-understood physical and chemical dynamics, MERRAero achieves substantial improvements
in fit compared to raw satellite AOD measures (Buchard et al., 2016).

The MERRA-2 pollution data contains hourly measures of aerosol concentration by species,
which we aggregate as described above.6 We retain the daily mean PM2.5 concentration for each
MERRA grid cell in the (longitude, latitude) range (-15,35) to (35,70).7 We obtain air pollution
data from January 1, 2000 to December 31, 2015. In our main empirical specification, we aggregate
daily data up to an annual average. In addition, we obtain five years of daily observations of pre-
sample data in order to rank wind directions according to average particulate concentrations, as
described above. We choose MERRA-2 as our main source of air pollution data because it is
the only data product with (1) complete spatial and temporal coverage for our data set, (2) high-
resolution (daily) observations of air pollution, and (3) data available in the pre-sample period to
construct our wind direction instrument.

4.1.2 Alternative measures of air pollution

We aim to ensure the results of our analysis are robust to alternative measures of air pollution. To
do so, we conduct the analysis using alternative sources of air pollution data. The first alternative is
based on Van Donkelaar et al. (2016). This product merges satellite air quality measurements with
a geochemical transport model, and uses geographically-weighted regression based on surface air
monitoring stations in order to obtain an improved match with surface air quality measures. Data
is available at an annual basis on a very fine (0.01 or 0.1 degree) resolution grid. This data is
widely-used. For example, the Lancet and World Health Organization use the data to produce the
Global Burden of Disease report, and the OECD uses it to measure exposure to poor levels of air
quality. Data is available at an annual frequency, and we obtain data from 2000 to 2015 for the
entire region covered by our study.8

The second alternative data source is CAMS—the Copernicus Atmospheric Modeling Ser-
vice.9 This is an ensemble reanalysis, consisting of seven numerical air quality models developed

6We obtain our air pollution data from the M2T1NXAER files distributed by NASA. See: https://disc.gsfc.
nasa.gov/.

7MERRA grid cells are 2/3 degree longitude and 1/2 degree latitute, or about 60 km by 60 km.
8Because Van Donkelaar et al. (2016) is low-frequency (annual), we continue to use MERRA-2 pre-sample data to

construct our wind instrument.
9See atmosphere.copernicus.eu.
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for Europe. These models incorporate meteorological data, satellite data, and ground-level air qua-
lity monitoring data into reanalysis products. Data is available from 2003-2015, and we use daily
average data, which is merged to annual resolution.10

In addition, we obtain PM2.5 pollution data from all ground-based monitoring stations in Eu-
rope from the European Environment Agency.11 We impute average PM2.5 concentrations by
NUTS3 region as the annual average over all monitoring stations with the region. The ground
monitoring network was very sparse at the beginning of our study period, and is gradually built
out during the period covered by our analysis. The monitoring station data therefore contains a
large number of missing observations. See Appendix A for additional details on the ground-based
monitoring station data.

Although as a sensitivity test, we conduct our analysis with these three alternative air pollu-
tion measures, our preferred air pollution measure is the MERRA-2 product, which we use in our
main results. We use MERRA-2 to obtain several of our other measures of atmospheric condi-
tions, notably wind speed and direction and measures of thermal inversions. Because these are
produced from a unified reanalysis, the MERRA-2 air pollution is physically consistent with other
atmospheric measures from the same model. Moreover, it is the only product with full coverage
over the analysis period that is available at a high temporal frequency (which we exploit above in
categorizing wind directions in the pre-sample period).

4.2 Thermal inversions data

Thermal inversions data come from the MERRA-2 reanalysis.12. These files contain, among other
variables, the air temperature at 42 vertical atmospheric levels (delineated by pressure) from 1000
hPa (near-surface) to 0.1 hPa (top of atmosphere). We obtain measures of daily mean air tempera-
ture at each grid cell, at each level from January 1, 2000 to December 31, 2015, and covering the
bounding box defined by the coordinates (-15,35) to (35,70). We retain only observations within
1,000m above local surface level to focus on inversions that are most germane to ground-level
pollution. There are 5 to 6 pressure levels in the MERRA-2 product in this region.

An inversion is a deviation from the normal monotonic declining relationship between air tem-
perature and altitude. We operationalize this definition in three different ways, in order to ensure
that our results are not sensitive to idiosyncratic choice of thermal inversion definition. A schema-
tic overview of the manner in which we account for thermal inversions is given in Figure 4. First,

10Because CAMS data starts in 2003, we continue to use MERRA-2 pre-sample data to construct our wind instru-
ment.

11See European Environment Agency Air Quality e-Reporting Database at www.eea.europa/data-and-maps/
data/aqereporting-2

12We use the M2I3NPASM files distributed by NASA
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we measure the presence of inversions at the lowest level of the atmosphere above the surface.
Indexing atmospheric levels from v = {1,2, . . .22} with v = 1 representing the lowest atmospheric
level above surface, we generate an indicator variable TILL = 1(Tv=2−Tv=1 > 0) that is equal to
one if the temperature of the second layer is higher than that of the lowest layer (note that we
drop indices for latitude, longitude, and time for clarity in this section; TI is short for Thermal
inversion).13 This measure of thermal inversions is closest to that adopted by Chen et al. (2017).

Second, we measure the presence of inversions at any atmospheric layer (below the 600 hPa
layer and below 1,000m above surface level). We generate an indicator variable that is equal to
one if there exists any pair of adjacent levels of the atmosphere, v and v+1, where the temperature
of the upper layer is higher than that of the lower layer: T IA = 1(∃v(Tv+1−Tv)> 0).

Third, we measure the presence of thermal inversions as the maximum deviation in temperature
between all levels and the surface. To do so, we generate an indicator variable that is equal to one
if there is any layer of the atmosphere (above 600hPa and below 1,000m above surface) in which
the temperature is above the surface temperature: T IS = 1(∃v(Tv−Tv=1)> 0).

In addition to measuring the presence of thermal inversions annually, it is also possible to me-
asure the frequency of thermal inversions by season, since we observe temperature data at a high
temporal frequency. Because the impact of thermal inversions may be seasonally heterogeneous,
we separately measure the frequency of winter and summer thermal inversions using two instru-
mental variables for thermal inversions (in robustness checks, we show that alternative ways of
accounting for thermal inversions generate very similar results).14

4.3 Weather and wind data

We obtain data on daily surface temperature, precipitation, and sea level pressure from the Eu-
ropean Climate Assessment and Dataset.15 This is a gridded product produced by amalgamation
of all weather station data across Europe and interpolation (Haylock et al., 2008). The grid re-
solution is one quarter of a degree. We also observe daily surface temperature in the MERRA-2
data product, along with daily wind speed and direction as well as relative humidity.16 All of
our regressions produce identical conclusions whether using the European Climate Assessment or
MERRA-2 surface temperature variables.

13It is important to note that in many cases, we do not observe temperature at the lowest pressure (1000 hPa) reported
by MERRA because surface pressure is below 1000 hPa either because the land surface is elevated or due to a low
pressure system. As a result, the set v is defined dynamically—in each grid cell in each day—with the index v = 1
always corresponding to the lowest pressure level above surface.

14We define summer as 16 April to 15 October and winter as 16 October to 15 April each year.
15See http://www.ecad.eu/.
16These variables are also derived from the M2I3NPASM files, and we use the same bounding box and temporal

restrictions as for the thermal inversions data, above.
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Figure 4: Schematic to define inversion variables used in the paper. The solid blue line shows the
normal atmospheric lapse rate. Over the altitudes considered, temperature is monotonically decli-
ning with altitude under normal atmospheric conditions. The dashed red line shows our measure of
inversions at the lowest level of the atmosphere. The dotted black line shows our second measure
of inversions, which is the highest positive deviation between the surface and atmospheric tem-
peratures. The dash-dotted green line shows our third measure of inversions, which is the largest
positive deviation between any two adjacent atmospheric levels.
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4.4 Economic outcomes data

We obtain data on economic outcomes from Eurostat’s rural development database.17 Our main
indicator variable is gross domestic product at current prices by NUTS3 regions. We deflate this
to real prices, and we refer to this measure of real economic output as Yit , where i indexes NUTS3
regions and t indexes year. We also obtain data on gross value added by sector, deflate, and use
this to measure economic outcomes at the sector level. We also obtain data from Eurostat on the
annual population in each NUTS3 region. The source and construction of each of these variables
are described in Appendix A.

4.5 Summary statistics

Figure 5 shows the average concentration of PM2.5 over the period covered by our data. There
is a substantial range in PM2.5 concentrations, even on an annual level, with annual concentra-
tions in some regions as low as 3.3µg/m3 in Northern Europe and over as 20µg/m3 in Eastern
Europe and other regions. PM2.5 concentrations are typically higher in Eastern Europe and the
Mediterranean coast compared to the Atlantic coast and Scandinavia. It is important to note that
the concentrations we report here are not exposure- or population-weighted, and thus significantly
understate the typical pollution concentrations in urban areas. Figure 15 in Appendix B compares
PM2.5 concentrations from the gridded reanalysis product that we use in the analysis to measures
from ground-based monitoring stations. While the two measures are highly correlated, the level of
PM2.5 concentration recorded by the ground-based monitoring stations—which are typically situ-
ated in urban regions with higher than average pollution—is about double the average level in the
gridded reanalysis data.

Figure 6 shows the trends in the key instrumental variables as well as the endogenous variable,
PM2.5 concentrations, averaged over all of the regions. It is clear that there is no substantial
upwards or downwards trend in the instrumental variables, but that there is some year-to-year
variability in these variables, even at an aggregate level.18 In addition, some correlation between
thermal inversion strength and PM2.5 concentrations is visually apparent from the figure—the years
2003 and 2011 stand out as the highest years for thermal inversions as well as the highest years for
PM2.5 concentrations in the figure.

Figures 8 and 9 in Appendix B show the identifying variation in two of the instrumental
variables—thermal inversions and wind direction. Both figures show a histogram of these varia-
bles after first differencing and conditioning on year fixed effects. The figures show that even after

17The data is available at: http://ec.europa.eu/eurostat/web/rural-development/data.
18Note that identification of the econometric model is based on within-region variation in (instrumented) pollution

and controls for time fixed-effects, so this figure does not show the variation that is used to identify the effect in the
paper. Instead, it is provided as a summary of the data.

24



Figure 5: Map of average 2000-2015 PM2.5 concentrations in economic regions used in the study.
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Figure 6: Annual trends in key independent variables.The top panel shows the variation in inver-
sions over time, averaged across all of the regions in the data. The inversion measure captures
low-level inversions (see text) in which the second atmospheric level is warmer than the lowest
level. Inversions in both summer and winter periods are shown separately. The middle panel
shows the proportion of days with winds from a “dirty” direction and “clean” direction (see text),
averaged over all regions in the data. The bottom panel shows particulate matter concentrations
averaged over all the regions in the data.
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removing these fixed effects, there remains a substantial amount of variation in these variables.
For example, it is normal to observe 5% or (365×0.05=)18 days more or less of thermal inversions
than the average (i.e., the standard deviation in the share of days with inversions is approximately
5%). A somewhat larger amount of variation exists for the wind instruments. It is evident there
there exists considerable variation in these instruments even after controlling for geographic and
time fixed effects, which we leverage for identification in our regressions. Appendix A also shows
the distribution of geographic variance in the instrumental variables. The figure shows that wind
direction is most variable throughout central Europe, such that these regions will contribute most to
the identification of the effect of the impact of pollution on GDP using this instrument. In contrast,
Northern Europe experiences the most variation in inversions from year-to-year, such that these
regions will contribute most to identification of the impact of pollution on GDP using the inversion
instrumental.

Summary statistics for all key variables in the data are provided in Appendix A.

5 Results

5.1 Main results

5.1.1 Ordinary least squares results

For completeness, we begin with results from an ordinary least squares specification without in-
strumental variables, i.e., equation (3). Results are given in Table 1. Recall that all regression
coefficients are weighted by the population in each NUTS3 region to be representative of the
average inhabitant in Europe rather than the average region. Column 1 shows the results estimated
using a log-linear specification (log of GDP regressed on units of PM2.5 pollution), while column
2 shows the results estimated in log-log form (log of GDP regressed on log of PM2.5 pollution,
which allows the results to be interpreted as an elasticity). Regressions are estimated in first dif-
ferences and include year fixed effects. In all regressions, we condition flexibly on ground-level
weather: we include counts of the number of days each year in each of 20 exhaustive temperature
bins, counts of the number of days each year in each of 12 wind speed bins (corresponding to
levels of the Beaufort scale), counts of the number of days in each year in each of 20 exhaustive
precipitation bins, and second-degree polynomials in relative humidity and air pressure as well
as interactions between temperature and humidity. Both regression coefficients indicate a statisti-
cally significant positive relationship between particulate matter and economic output. However,
as explained above, these regression coefficients do not estimate the causal effect of pollution on
economic output in which we are interested. Instead, they confound the impact of economic output
on pollution with the impact of pollution on economic output, failing to identify either. To identify
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Table 1: OLS estimation: association of PM2.5 and GDP.
(1) (2)

ln(GDP) ln(GDP)

PM2.5 0.0026 ***
(0.0004)

ln(PM2.5) 0.0192 ***
(0.0049)

Observations 17099 17099

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01.
Clustered standard errors (on NUTS3
level) are in parentheses. All estimations
are conducted in first difference and
include year fixed effects, 12 wind speed
bins, 20 temperature bins, 20 precipitation
bins, second order polynomials of relative
humidity and atmospheric pressure, and
interactions between temperature bins and
humidity and humidity squared. Regres-
sion coefficients weighted by each region’s
population.

the causal effect of pollution on economic output, we instead turn to our instrumental variables
approach.

5.1.2 First-stage results: The effect of wind direction and thermal inversions on pollution

Table 2 reports the results of estimating Equation (4), which is the first stage in our two-stage
approach to estimating the effect of pollution on economic output. In this stage, we estimate the
impact of the instrumental variables on pollution concentrations, after conditioning on weather
covariates. In each case, we flexibly condition on weather as described above. Each regression
also includes year fixed effects, while unit fixed effects are swept out due to the first-differencing
approach, such that identification is from within-region variability. In the baseline regressions,
we define the inversion instrument as the share of days in a year in which thermal inversions
are observed, where inversions are defined as a positive vertical temperature gradient between
the first two atmospheric layers (the variable T ILL, defined earlier). We separately count winter
and summer inversions, as described above, so there are two instrumental variables for thermal
inversions. We define the wind direction instrument as the share of days in a year in which the wind
in a region originates from one of the three “dirtiest” ranked compass octants and the share of days
in a year in which the wind in a region originates from one of the three “cleanest” ranked compass
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Table 2: First stage results: instruments effect on PM2.5.
(1) (2) (3)

PM2.5 PM2.5 PM2.5

Summer inversions (low) 7.024 *** 5.913 ***
(1.276) (1.291)

Winter inversions (low) -0.075 0.394
(0.627) (0.662)

Clean winds -2.460 *** -2.334 ***
(0.264) (0.283)

Polluting winds 1.562 *** 1.396 ***
(0.285) (0.269)

Observations 17099 17099 17099
Adjusted R2 0.213 0.231 0.244

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on
NUTS3 level) are in parentheses. All estimations are conducted in
first difference and include year fixed effects, 12 wind speed bins,
20 temperature bins, 20 precipitation bins, second order polynomi-
als of relative humidity and atmospheric pressure, and interactions
between temperature bins and humidity and humidity squared. The
instruments are defined as follows: inversions are the share of days in
a year when an inversion is observed at the lowest atmospheric level,
with summer and winter inversions separately counted. Clean (dirty)
winds are the share of days in a year where the wind originates from
one of the three cleanest (dirtiest) octants, based on pre-sample data.
Regression coefficients weighted by each region’s population.

octants (with ranking based on pre-sample data) as described earlier, so there are two instrumental
variables for wind direction. For the wind instrument, the coefficients on clean and dirty winds
can be interpreted as the impact on pollution relative to the two middle-ranked compass octants
(neither clean nor dirty), while for the inversion instrument, the coefficients can be interpreted as
the impact on pollution relative to a non-inversion day.19 We focus here on log-linear results, but
the results using a log-log specification deliver coefficients with nearly identical magnitudes and
significance (see Appendix B.3.9 Table 23).

We use two sets of instruments—wind direction and thermal inversions—to generate exoge-
nous variation in pollution. The instruments are not highly correlated with one another. For exam-
ple, the correlation between the share of days where wind originates from one of the three dirtiest
wind directions and the share of days with either summer or winter inversions is about 0.15 (after
first differencing and controlling for year fixed effects), which suggests that they provide two sepa-

19We test the robustness of the results to alternative instrumental variables later in the paper. For detailed robustness
checks see Appendix B.3 Tables 14 and 15.
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rate sources of identification. Clean winds are similarly relatively uncorrelated with the inversion
instruments.20

Column (1) of Table 2 shows the result when only thermal inversions are used as an instrument.
Column (2) uses instead wind direction as an instrument, and column (3) uses both instruments
simultaneously. The results suggest that both of our chosen instruments have a strong impact in the
predicted direction on pollution concentrations. Specifically, summer thermal inversions cause a 6
to 7µg/m3 increase in pollution concentrations. In contrast, we do not find a significant effect of
winter inversions on pollution concentrations, consistent with winter inversions happening early in
the morning and dissipating quickly as the sun starts shining. Likewise, changes in the direction of
the wind cause substantial impacts on pollution concentrations. Winds from the “clean” directions
cause a 2.4µg/m3 reduction in pollution concentrations, and winds from “dirty” directions cause
a 1.5µg/m3 increase in pollution concentrations, relative to winds from ”neutral” (middle-ranked)
directions. Both of these effects are highly statistically significant and very large, suggesting that
both chosen instruments are relevant. An F-test on the excluded instruments produces a value of
24 to 160, depending on which instruments are included, much higher than the weak instrument
threshold of 10 normally adopted as a rule of thumb (Angrist and Pischke, 2008), again confirming
the relevance of our selected instruments (see Table 3).21

5.1.3 Second-stage results: The effect of pollution on economic output

Table 3 presents the main results of the paper, which correspond to estimating equation (5) in which
we regress economic activity on instrumented pollution and controls, with coefficients weighted
by each region’s population.22 The organization of the table follows from Table 2 above. Speci-
fically, column (1) uses thermal inversions as the instrument set, column (2) uses wind direction,
and column (3) uses both sets of instruments simultaneously. The coefficient on instrumented pol-
lution shows that a 1µg/m3 increase in pollution concentrations causes a 1.1% to 1.2% reduction
in economic activity depending on which instrument is used. In our preferred specification where
both instruments are used (column 3), the marginal effect of a 1µg/m3 increase in pollution con-
centrations on GDP is -1.16%. The effect is strongly statistically significant irrespective of which
instrument, or combination of instruments, is used. The fact that we obtain similar results from
two unrelated instruments lends substantial credibility to our results. The impact is also conside-
rable in magnitude: an increase in PM2.5 concentrations of 1µg/m3 roughly corresponds to a 10%
increase, suggesting the elasticity of GDP to pollution concentration is about -0.1. We present

20Appendix A.4 Table 9 provides a complete pairwise correlation matrix for the instrumental variables.
21The weak ID test reported throughout the paper is the Kleibergen-Paap rk Wald F statistic.
22Reduced form results showing the impact of wind direction and inversions on GDP are available in Table 10 in

the Appendix.
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log-log results in Appendix B.3.9 Table 24, and show that these deliver nearly identical results in
magnitude and significance.

It is notable from Table 3 that both the wind direction and thermal inversion instruments suggest
an economically and statistically significant negative effect of pollution on economic output. The
magnitude of these effects differs by around 20%, and it is worth pointing out that there are two
potential reasons for differences in magnitude of these effects. First, the instrumental variables
estimator recovers the local treatment effect for “compliers”: entities for which the instrument
changes predicted pollution. In our case, the thermal inversion instrument changes pollution only
in regions/years where there is variation in the share of days with thermal inversions from one year
to the next (and similarly for the wind direction instrument). Appendix Figures 10 to 13 show that
regions with variation in (summer and winter) inversions are different than those with variation in
wind direction. In particular, Northern Europe experiences more substantial year-on-year variation
in inversions, while Central Europe experiences higher year-on-year variation in wind direction.
Thus the wind direction instrument will be more heavily weighted by Central European regions,
and the thermal inversion instrument will be more heavily weighted by Northern European regions.
Second, as discussed above, we proxy air quality by PM2.5 concentrations, although other air
pollutants also affect air quality. It is possible that wind and thermal inversions carry different
mixes of co-pollutants, and thus the reported effect of PM2.5 is associated with different mixes of
pollutants using the two instruments. Despite these factors, the two instruments do recover a very
similar point estimate for the effect of pollution on output.

In Equation (1) we show how we can decompose the effect of pollution on economic activity
into four terms, reflecting the impact of pollution on population, presence at work, productivity,
as well as a direct impact on output. Here, we use that framework to decompose the main results
to better capture the mechanisms underpinning the effects we find. Unfortunately, we do not
observe presence at work (s in Equation (1)) and cannot separately distinguish the direct impact of
pollution on output (∂Y

∂P in equation (1)) and so we are only able to decompose our results into two
components—the effect of pollution on population and the effect of pollution on output per capita.
We refer to this latter term as the impact of pollution on productivity, but it important to note that
it is the joint effect of changes in work attendance, changes in work productivity conditional on
attendance, as well as any direct impact of pollution on output, such as in the agricultural sector.23

Table 4 reports the results. The result for the total effect of pollution on economic output is -

23Specifically, we set up an identity to decompose the results: Y ≡ Population×Y/Population. We take logs and
write the total derivative with respect to pollution as:

d ln(Y)

dP
=

d ln(Population)
dP

+
d ln(Y/Population)

dP
.

We then estimate each of the terms on the right hand side in a separate regression, using both the wind and inversion
instruments.
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Table 3: IV estimations of the economic effect of PM2.5.
(1) (2) (3)

ln(GDP) ln(GDP) ln(GDP)

PM2.5 -0.0106 ** -0.0121 *** -0.0116 ***
(0.0046) (0.0023) (0.0021)

Observations 17099 17099 17099
Weak id. stat. 23.98 160.2 107.0
Hansen J stat. p-value 0.751 0.0480 0.242

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on
NUTS3 level) are in parentheses. All estimations are conducted in
first difference, and include year fixed effects, 12 wind speed bins,
20 temperature bins, 20 precipitation bins, second order polynomials
of relative humidity and atmospheric pressure, and interactions bet-
ween temperature bins and humidity and humidity squared. The first
column uses the share of days in the year with (summer and winter)
thermal inversions as instrument, the second column uses the share of
days in the year with clean and dirty winds as an instrument, and the
third column uses both sets of instruments. Regression coefficients
weighted by each region’s population.

0.0116 as in Table 3. Column (2) shows the effect of pollution on (labour) productivity (output
per capita). The estimate is -0.0111, so an increase in pollution by 1µg/m3 decreases productivity
by 1.1%. These point estimates imply that about (−0.0111

−0.0116 =)96% of the total effect of pollution
on economic output is due to reduced productivity, with the remainder due to reduced population.
This is confirmed in column 4 of the table, which shows that an increase in PM2.5 concentration
by 1µg/m3 causes a reduction in population by 0.05%. Column (3) of the table instead determines
the effect of productivity by normalizing output by the working age population, and recovers a
similar (but slightly smaller) impact on productivity. In each case, the main impacts of pollution
on economic output occur as a result of reduced productivity, not reduced population.

5.2 Robustness checks

We conduct a large number of robustness checks to ensure that similar results are delivered by
alternative choice of model and data. We report detailed robustness check results in Appendix B,
and highlight key results and motivation for robustness checks here. Table 5 summarizes the key
results from our robustness checks, in each case reporting the coefficient on instrumented pollution
on output in our two-stage regression.

Weights. We re-estimate the model, weighting the observations by GDP rather than population
(as in the baseline) and with unweighted observations. Weighting does not substantially affect our
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Table 4: Decomposition of PM2.5’s effect into effect on productivity and population.
(1) (2) (3) (4)

ln(GDP) ln(GDP/pop.) ln(GDP/work pop.) ln(Population)

PM2.5 -0.0116 *** -0.0111 *** -0.0103 *** -0.0005 *
(0.0021) (0.0021) (0.0021) (0.0003)

Observations 17099 17099 17099 16204
Weak id. stat. 107.0 107.0 107.0 100.3
Hansen J stat. p-value 0.242 0.0756 0.0754 0.0000183

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on NUTS3 level) are in parent-
heses. All estimations include year fixed effects, 12 wind speed bins, 20 temperature bins, 20
precipitation bins, second order polynomials of relative humidity and atmospheric pressure, and
interactions between temperature bins and humidity and humidity squared. Each column reports
instrumental variable estimates of variables in each column on pollution. Instrumental variables are
the share of days in a year with winter and summer thermal inversions, and the share of days in a
year with clean and dirty winds. Regression coefficients weighted by each region’s population.

results. Neither estimate is statistically different from the baseline, but they do suggest that the
impact of air pollution on economic activity is slightly larger in small regions (as measured by
GDP or population) than in larger ones. In our policy simulation results later in the paper, we use
the GDP-weighted estimates as they provide the cleanest impact on aggregate European GDP, but
note that using population-weighted estimates provide very similar results.

Dropping outliers. To ensure that our results are not driven by extreme values, we re-run the
regression, but this time dropping extreme values. Specifically, we remove the observations below
the 1st (or 5th) and above the 99th (or 95th) percentile of pollution levels. In both cases, we
continue to obtain similar regression results, with our coefficient estimate increasing somewhat in
absolute magnitude when we drop a larger number of observations.

Spatial lags and autocorrelation. Results are attenuated somewhat, but remain large and preci-
sely estimated, when adding spatial controls (spatial distance-weighed lags of pollution and GDP
in a 100km and 200km radius around each regions centroid). Allowing for spatial autocorrela-
tion by clustering standard errors on NUTS2 and NUTS1 regions has no bearing on the statistical
significance of the result.

Weather controls. As emphasized above, our instrumental variables satisfy the exclusion re-
striction conditionally. That is, conditional on ground-level weather, both thermal inversions and
wind direction should only affect economic outcomes via their effect on pollution. Because both of
these variables are likely correlated with weather, which can itself impact economic outcomes, it is
important to carefully control for weather. We do this in the main results using a flexible approach
to controlling for temperature, precipitation, and wind speed, including other weather variables

33



using second-degree polynomials, and interacting temperature bins with relative humidity. In the
appendix, we show that our results are invariant to adopting an even more flexible approach to
including the effect of temperature (conditioning on 70 temperature bins, rather than 20 as in the
baseline, and interacting those 70 temperature bins with humidity and squared humidity). Moreo-
ver, we estimate the model without conditioning on any weather covariates and continue to obtain
almost the same results as in the baseline specification, suggesting that our choice of weather
controls is unlikely to substantially affect the results.

Alternative instruments. In our main specification, we adopt (by necessity) particular definiti-
ons for the wind direction and thermal inversion variables. Specifically, we use the number of days
of thermal inversions at the lowest atmospheric level (in both winter and summer) and the number
of days with winds from the three most and least polluting directions (based on pre-sample data)
as instruments (a total of four instruments). We re-run the analysis with a wide range of different
definitions for both of these instrumental variables (using the three different definitions of inversi-
ons described above; using annual counts or four seasons instead of two; changing the definition
of the cleanest and dirtiest directions; and including dummy variables for all wind directions). We
also run a specification in which we rank order the wind directions for each NUTS3 region based
on the prior 5 years of daily pollution, rather than the pre-sample period. Overall, our results are
robust to using a large set of different instrumental variables. The main coefficient varies between
-0.0066 and -0.0133 depending on the instrument, and all different choices of instrument deliver
precisely estimated and economically large estimates of the impact of pollution on output.

Alternative air pollution data. We re-estimate the model with different air pollution data, based
both on the Van Donkelaar et al. (2016) and the CAMS models (see Section 4). In both cases, we
continue to find a negative impact of pollution on GDP, however, the results are somewhat smaller
than the benchmark estimates. It is important to note that the CAMS results are based on data
with incomplete coverage of the observation period used for other results (2003-2015). We also
estimate the model using data from the ground-level pollution monitoring stations. Here we do
not find a statistically significant impact of pollution on economic output. It is important to note
that the EEA ground-level monitoring data set is much smaller than the other data sets, due to
the incomplete coverage of Europe by ground-based monitoring stations, especially early in the
sample (see the above discussion). While the point estimate is not precisely estimated using the
ground-based stations, it is of similar magnitude to other estimates.

Alternative specifications. We test the sensitivity of our results to the inclusion of alternative
fixed effects and control variables. We add country linear time trends, country quadratic time
trends, country-year fixed effects, and NUTS3 linear time trends. The coefficient remains unchan-
ged except in the case of country-year fixed effects which remove too much variation in pollution,
resulting in large standard errors and making the coefficient statistically insignificant (though not
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statistically different from the baseline). The reanalysis data sets that we use are heavily interpo-
lated, such that measurement error is an important concern (but which should be alleviated by our
IV approach). As we saturate the model with fixed effects, our estimates as a result are attenuated.

Co-pollutants. We control for SO2 in an attempt to isolate the impact of PM2.5 from other
pollutants. However, instruments are weaker in predicting two pollutants together and standard
errors increase. We continue to find a large negative impact of PM2.5 on output that is close to our
baseline estimate. We do not find a statistically significant impact of SO2 on output.

Placebo test. We estimate a placebo model where we randomly assign pollution and meteo-
rological variables from each region to a different random region in our data set, and re-estimate
the model with these ”placebo” treatment variables. The placebo regression delivers a coefficient
of zero on the instrumented pollution, suggesting that our results are not driven by our empirical
approach, but instead by the data.

Overall, the results are robust to multiple sensitivity tests. The marginal impact of a 1µg/m3 (about
10%) increase in PM2.5 on GDP varies between about -0.6% and -1.3% depending on the specifi-
cation, suggesting that our baseline estimate of -1.1% which stands in the middle of this range is
a good approximation of the true effect. We provide additional details on the robustness checks in
the Appendix.

5.3 Extensions

5.3.1 Non-linearity

We next explore potential non-linearity of the effect of PM2.5 concentration increases on econo-
mic activity, to determine if the marginal effect of pollution on economic activity is increasing or
decreasing in pollution concentrations. Understanding how marginal effects change as pollution
concentration changes can be helpful in extrapolating beyond this study to other regions where
pollution concentrations are higher (e.g., South-east Asia) or lower (e.g., North America) than in
Europe. Existing literature that studies the health impacts of air pollution is suggestive of non-
linear pollution impacts. In particular, studies typically find declining marginal impacts of air
pollution on health; this phenomenon is sometimes referred to as a “supra-linear” dose-response
function (Pope III et al., 2015; Arceo et al., 2016).

We seek to understand potential non-linearity in the pollution-output relationship using several
complementary approaches. In column (1) of Table 6, we include both a linear pollution term as
well as a quadratic term in pollution as endogenous variables in the second-stage regression. In
the first stage, we use the same instrumental variables as in the baseline regression, and include
squares of these instruments as well. Our instruments are not as strong in this context (first stage
F-stat is below 10), but the results are suggestive of non-linearity. The linear term is negative and
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Robustness check Coefficient
Weighing

Unweighted -0.0129***
GDP-weighted -0.0101***

Excluding extreme values
1% -0.0123***
5% -0.0174***

Spatial controls
Spatial lag (100km) -0.005***
Spatial lag (200km) -0.009***

NUTS2 clustered s.e. -0.0116***
NUTS1 clustered s.e. -0.0116***

Weather controls
20 temp. bins -0.0134***
70 temp. bins -0.0132***

70 temp. bins + humidity interaction -0.0106***
No weather control -0.0082***

Instrument choice
Inversions any (annual) -0.0096***

Inversions any (two seasons) -0.0082***
Inversions any (four seasons) -0.0095***

Inversions low (annual) -0.0117***
Inversions low (four seasons) -0.0110***
Inversions surface (annual) -0.0111***

Inversions surface (two seasons) -0.0113***
Inversions surface (four seasons) -0.0116***

Wind direction (dirtiest three directions) -0.0133***
Wind direction (cleanest three directions) -0.0105***

Winds (cleanest and dirtiest two directions) -0.0098***
Winds (all directions) -0.0101***

Winds (rolling all directions) -0.0066***
Database choice

Van Donkelaar et al -0.008***
CAMS -0.007***

EEA monitoring data -0.008
Specification

Linear country-trends -0.0112***
Quadratic country-trends -0.0118***

Linear NUTS3-trends -0.0110***
Country-year effects -0.0041

Control for co-pollutants
Control for SO2 -0.0119 ***

Placebo
Placebo 0.002

Table 5: Results of selected robustness checks.
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the squared term is positive, pointing to a declining marginal damage from pollution, consistent
with the health literature.

In column (2), we take an alternative approach to understanding non-linearity in the pollution-
output relationship. Here, the key endogenous variable in our second-stage regression is the in-
teraction of first-differenced pollution with the level of pollution. We instrument for this variable
with both the baseline (first-differenced) set of instruments and interaction terms between first-
differenced instruments and the corresponding instrument in level terms. We find results that are
qualitatively consistent with those in column (1), such that the marginal damage from pollution
appears to decline with increases in pollution.

In column (3), we explore potential non-linearity in a different way, by creating dummy vari-
ables that indicate whether pollution in each NUTS3 region is above or below the region-specific
median. We interact this dummy variable with pollution in the second-stage equation. In the
first-stage equation, we interact our instruments with the indicator variable as well. Again, we
find evidence of declining marginal damage from pollution using this approach, with the marginal
damage in above-median pollution years somewhat below the marginal damage in below-median
pollution years.

Our non-linear results should be interpreted cautiously, because our instruments are less strong
in some cases. However, the finding that marginal damage falls as pollution increases is consistent
across our different approaches to understanding non-linearity, and is consistent with the health
literature. Moreover, a declining marginal damage of pollution can help reconcile the finding that
pollution causes significant damages in relatively low-pollution regions of the world with similar
results in high-pollution regions.

5.3.2 Heterogeneity

Finally, we go beyond the average effect across European regions and explore the possibility of
heterogeneous effects across sectors, income levels, and population density.

We begin by examining heterogeneous impacts of pollution on sector output. Figure 7 breaks
the results of our estimates down by sector. In this figure, we report the results from a series of
separate regressions, in which we use the gross value added of each economic sector that is repor-
ted in Eurostat as a left hand side variable in our second-stage equation. Each point reflects the
change in sector gross value added (in log points) resulting from a 1µg/m3 (roughly 10%) increase
in PM2.5 concentrations. For most sectors, the estimated coefficient is similar to the economy-wide
value of about -0.011 (see Table 3; this mean estimate is given by the light red line). That is, for
most sectors, output is estimated to fall by about 1.1% due to a 1µg/m3 increase (10%) in pollu-
tion. There is one main outlier: we find a much larger impact of increases in air pollution on the
agricultural sector than on other sectors. For this sector, a 1µg/m3 increase in PM2.5 concentration

37



Table 6: Nonlinearities in PM2.5’s effect on GDP.
(1) (2) (3)

Squared Interaction with level Below/above region-median

PM2.5 -0.0457 *** -0.0448 ***
(0.0108) (0.0121)

PM2
2.5 0.0017 ***

(0.0005)
PM2.5× PM2.5 (level) 0.0034 ***

(0.0012)
PM2.5 × 1(Below median) -0.0128 ***

(0.0026)
PM2.5 × 1(Above median) -0.0100 ***

(0.0024)
Observations 17099 17099 17099
Weak id. stat. 4.196 2.433 54.12
Hansen J stat. p-value 0.00000580 0.00000460 0.0131

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on NUTS3 level) are in parentheses.
All estimations are conducted in first differences and include year fixed effects, 12 wind speed bins, 20
temperature bins, 20 precipitation bins, second order polynomials of relative humidity and atmospheric
pressure, and interactions between temperature bins and humidity and humidity squared. Each regression
uses both wind and thermal inversions as instruments (same instruments as main regression). Column
(1) includes quadratics in each instrument. Column (2) interacts first-differenced instruments with the
corresponding instrument in level terms. Column (3) interacts each instrument with an indicator variable
denoting whether pollution is above or below region-median in a given year. Regression coefficients
weighted by each region’s population.
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leads to a roughly 4% reduction in sector gross value added. A number of studies have shown the
sensitivity of the agriculture sector to high levels of pollution concentration, so this result can be
rationalized based on the extant literature (e.g. Wahid et al., 1995; Agrawal et al., 2003; Proctor et
al., 2018). Considering the framework in Section 2, it is likely that there are direct effects of pollu-
tion on output in this sector, and that the outdoor work environment exposes workers to additional
pollution. In particular, there is evidence that crop output falls with increasing concentration of
atmospheric PM2.5, which scatters incoming sunlight and affects the ratio of direct to diffuse radi-
ation. In addition, there is evidence that poor air quality causes reductions in agricultural worker
productivity (Graff Zivin and Neidell, 2012), which would also affect gross value added of the sec-
tor. More generally, differences in sector impacts can be rationalized in the theoretical framework
to the extent that different sectors use different combinations of inputs, are differently exposed to
pollution, and differently suffer direct effects of pollution on output.

We next explore heterogeneity in results by income, population density, and by economic struc-
ture. To this end we run separate regressions on sub-groups of the data, to reveal the heterogeneous
impact of air pollution for different categories of regions as described in Appendix B.2. It is im-
portant to recognize at the outset that regions in our sample differ in many ways, so that—while we
are estimating a causal relationship of pollution on output—we cannot estimate causally how this
relationship changes with heterogeneity, since there may be multiple dimensions of heterogeneity
that co-vary.

Results differentiating regions by level of income show a weak “inverted-U” relationship, with
the largest marginal effects of pollution evident in the lowest- and highest-income regions, and
smaller marginal impacts of pollution in medium-income regions (Figure 16 in Appendix B.2).
As described above, the “inverted-U” pattern is hardly causal, since there are many factors that
are correlated with income and vary between regions. Thus the heterogeneity in causal effects of
pollution across different regions represent associations rather than causal effects of heterogeneity
on damages from pollution.

We next divide the sample according to population concentration into urban, rural, and “inter-
mediate” regions (see Table 11 in Appendix B.2). The classification is adopted from the OECD
and is based on population density and proximity to urban centres.24 Impacts of air pollution are
unsurprisingly concentrated in urban and “intermediate” regions where pollution concentrations
are typically higher than elsewhere.

Finally, we divide the sample into industry-intensive regions and service-intensive regions,
based on the sectoral contributions to total value added. We separately estimate the impact of
pollution on economic output in industry- and service-intensive regions (Table 12 in Appendix

24See: https://www.oecd.org/regional/regional-statistics/OECD_regional_typology_Nov2012.

pdf.
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Figure 7: The impact of PM2.5 by sector.
This chart shows the estimated coefficients and 95% confidence intervals for regressions of sector gross
value added on pollution using the two stage least squares model described in the text. To generate the
figure, we run separate regressions on the gross value added of each sector. The dependent variables are
the log real gross value added of the given industry (based on NACE rev. 2). All estimations are conducted
in first differences and include year fixed effects, 12 wind speed bins, 20 temperature bins, 20 precipitation
bins, second order polynomials of relative humidity and atmospheric pressure, and interactions between
temperature bins and humidity and humidity squared. Regression coefficients weighted by each region’s
population. The line reflects the average impact across the economy estimated in Table 3. In each case, we
use summer and winter thermal inversions, and clean and dirty winds as instrumental variables, as defined
in the text.
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B.2). We find larger impacts in service-intensive regions. This could be due to higher labour-share
in these industries, since labour is more likely to be affected by pollution than capital.

6 Discussion and policy implications

6.1 Overall magnitude of finding

The most striking feature of our results is the magnitude of the effects we uncover. Our baseline
(GDP-weighted) estimates show that a 1µg/m3 or 10% decrease in PM2.5 concentration would
increase Europe’s GDP by about 1%. Given that the European Union’s GDP is about e15 trillion
(in 2017), this translates into a short-run increase of e150 billion. This a very large number -
roughly the size of a small EU Member Country such as Hungary or Slovakia. On a per capita basis,
this represents around e300 per inhabitant per year. Another way to put things into perspective
is to note that pollution decreased by 0.7% per year on average across Europe between 2000 and
2015, so in a typical year, reduction in pollution boosts regional GDP by 0.07%. As a matter of
comparison, regional GDP (at constant prices) grew by 0.7% per year on average over the same
period, so reductions in air pollution explain about 10% of GDP growth, according to our results.

6.2 Comparison with existing studies

There are few studies that undertake to estimate the impact of air pollution on the overall level of
market economic activity, but our results are remarkably consistent with some of those reported in
this emerging literature. Fu et al. (2017) estimate that just a 2% increase in PM2.5 concentration
causes labour productivity to decrease by 1.1% in Chinese manufacturing plants. Our results are
much smaller in magnitude, suggesting that air pollution matters even at much lower concentration
levels than those observed in China but that the effect is clearly non-linear. Borgschulte et al.
(2020) focus on pollution peaks in the U.S. caused by forest fires. They estimate that spending
one day in a smoke plume causes a reduction in income of 10% across all workers. They estimate
that smoke increases PM2.5 concentration by 4µg/m3. Thus, a 1µg/m3(about 10%) increase in
pollution causes a 2.5% reduction in income, which is much higher than our baseline estimates.
Finally, Isen et al. (2017) estimate that a 10% increase in total particulate matter exposure during
childhood reduces income 30 years later by about 1%. There is clearly a different mechanism at
play in this latter study compared to the others described above and to ours, but the consistency in
the effect size in comparison to our study is notable.
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6.3 Implications for cost-benefit analyses of pollution control policies

These findings can inform ex-ante and ex-post cost-benefit evaluations of air pollution reduction
policies. They suggest that the direct economic benefits from air pollution control policies might
be much greater than previously thought, and are also much larger than abatement costs.

6.3.1 Comparison with market benefits attributed to pollution reductions

It is useful to compare the market benefits from air pollution reductions uncovered in this study
with market benefits estimated in existing cost-benefit analyses of air pollution control policies. A
first example is a recent assessment carried out by the European Commission when it proposed a
new Directive to further reduce emission of certain atmospheric pollutants in Europe by the year
2025 (European Commission, 2013). The scenarios analysed focus on reductions in PM2.5 emis-
sions by 17% to 45%. The estimated market benefits from reduced PM2.5 emissions included
benefits due to reductions in lost working days, damage to the built environment, crop value los-
ses, and healthcare costs (notably, possible changes in on-the-job productivity are not included in
these calculations). The direct market benefits from reducing PM2.5 emissions by 17% were esti-
mated to be e1 billion annually, and around e2 billion for a 25% reduction (see details in Table
25 in Appendix C). Therefore, the direct market benefits from a 10% reduction in emissions as es-
timated by the European Commission are less than e1 billion. In contrast, our empirical estimates
conclude that the market benefits from a 10% reduction in pollution are over e100 billion — or
two orders of magnitude larger. While we cannot identify the source of the disparity precisely, it
seems likely that omissions of on-the-job productivity benefits from reduced pollution in the EU
study is the source of at least part of the difference.

Another example is the assessment of the costs and benefits of the U.S. Clean Air Act Amend-
ments (CAAA) conducted by the U.S. Environment Protection Agency (EPA) (US EPA, 2011).
Here, the market benefits included minor restricted activity days, work loss days, reduced outdoor
worker productivity, and agricultural and forest productivity, and the US EPA estimates that the
combined benefits amount to $20.5 billion annually (see details in Table 26 in Appendix C). Since
the US CAAA led to a reduction in PM2.5 emissions by 11% in 2010 compared to a scenario wit-
hout CAAA (and -17% in 2020), the results in this paper suggest that the market benefits would in
fact be in the order of $100 billion annually (assuming similar causal effects of pollution on output
in the US).

Overall, the results from this study suggest that prior estimates of the market benefits of pollu-
tion abatement have been substantially underestimated in prior assessments.
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6.3.2 Comparison with non-market benefits attributed to pollution reductions

In typical cost-benefit analyses of public policies to reduce air pollution, benefits are dominated by
non-market benefits, and in particular by estimates of the value of reduced mortality. For example,
in the European Commission cost benefit study of air pollution reductions, non-market benefits (in
particular reduced mortality) are estimated to be 93-98% of total benefits from pollution reductions
(European Commission, 2013). In the US EPA study of the Clean Air Act Ammendments, non-
market benefits are estimated to be around 99% of total benefits from pollution reduction (US EPA,
2011).25

In contrast, this study finds that market benefits of pollution reductions are of comparable mag-
nitude to non-market benefits. The World Health Organisation estimates that outdoor air pollution
is responsible for over 400,000 annual deaths in the European Union. Let us make the reasonable
assumption that reducing PM2.5 concentration by 10% would reduce the number of deaths by 10%.
26 Using the base Value of Statistical Life of US$3 million for OECD countries (OECD, 2016),
the monetized benefits from avoided mortality caused by a 10% decrease in PM2.5 concentration
amount to US$ 120 billion annually, or e110 billion, a figure which is comparable in magnitude
to the market economic benefit found in this paper. We conclude from this back of the envelope
calculation that including the direct economic benefits of air pollution control into cost-benefit ana-
lyses of policies would lead to increase the expected benefits from policy action usually projected
by around 50%.

6.3.3 Comparison with abatement costs

How do our estimates of the market benefits of pollution reduction compare to the marginal aba-
tement costs of decreasing pollution? The European Commission has conducted an impact asses-
sment of a policy package aimed at further reducing emission of pollutants in Europe by the year
2025 (European Commission, 2013). Unfortunately, the scenarios analysed focus on emission re-
ductions rather than decrease in concentration, and it is not easy to translate emission reductions
into concentration. One cannot expect a perfectly linear relationship between the reductions in
emissions of primary PM2.5 and the reductions in ambient air concentrations, because in addition
to primary emissions of particles, PM2.5 can also be formed from the chemical reactions of gases
such as SO2 and NOX, and because wind can transport particles over long distances. However,
between 2006 and 2014, primary PM2.5 emissions decreased by 17% in the EU28 while in the
same period, PM2.5 concentrations declined by 20% on average (indicating a small reduction in

25See Tables 25 and 26 Appendix C for details.
26The European Commission’s 2013 impact assessment finds such a close to linear relationship. For example, Sce-

nario A leads to a 36% reduction in PM2.5emissions and a 42% reduction in premature deaths (European Commission,
2013).
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secondary PM also). Therefore, as a first approximation, it is not unreasonable to assume a linear
relationship between emissions and concentration, especially for a large region such as Europe.

Table 27 in Appendix C reports the results of the European Commission impact assessment
analysis. This cost-benefit study suggests the marginal cost of mitigating PM2.5 emissions by about
17% would be e221 million annually. Similarly, the marginal cost of a 25% reduction would be
about e1.2 billion. Thus it is reasonable to assume, based on this study, that the cost of a 10%
reduction in emissions would be less than e1 billion. In contrast, our estimates suggest that the
market benefit of a 10% reduction in emissions would be roughly two orders of magnitude larger.

The US EPA estimates are larger with the annual abatement costs associated with the CAAA
amounting to $65 billion annually (Table 28 Appendix C), but these numbers include abatement of
many pollutants other than PM2.5 (e.g. NOX, CO, SO2, PM10) and even then these numbers are
around twice as small as our estimated direct market benefits.

We conclude from this analysis that significant reductions in air pollution would easily pass a
cost-benefit test, even ignoring their large benefits in terms of avoided mortality. Therefore, more
stringent air quality regulations could be warranted based solely on economic grounds.

7 Conclusions

In this paper we have combined data on sub-national GDP and other economic outcomes, air
pollution, and weather conditions to estimate the causal effect of air pollution on economic activity
in Europe. We use data on local GDP for 1,342 NUTS-3 regions over 16 years (2000-2015) that
we match with air pollution and weather data . To circumvent the problem of reverse causality, our
identification strategy relies on quasi-random variation in thermal inversions and wind direction
as instruments for air pollution. Thermal inversions are upper-atmosphere phenomena that are
exogenous to economic activity but trap pollution over the earth surface. Wind blowing in different
directions causes pollution to be imported or exported from neighbouring regions. With this, we
provide the first causal evidence on the impact of air pollution on economic activity in Europe.

We find that increases in air pollution cause substantial reductions in economic activity. Our
baseline model shows that reducing the average concentration of fine particulate pollution by 10%
would cause economic activity to increase by 1.1%, or about e150 billion—roughly the size of
a small EU Member Country such as Hungary or Slovakia. On a per capita basis, this amounts
to around e300 per person per year. We disaggregate the effect into population and productivity
and find that 95% of the impact comes from reduced productivity and 5% to reduced population.
We explore the heterogeneity of this impact across economic sectors and find large impacts in
agriculture—consistent with the fact that workers in this sector operate mostly outdoors and that
crop production can be directly impacted by air pollution. However, we also find negative impacts
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of air pollution on high-skill sectors where workers are indoors, such as finance and manufacturing.
We view these results as of substantial importance to evaluations of the benefits of reducing

air pollution. Air pollution regulations are typically scrutinized by comparing costs to benefits. In
most evaluations, the benefits of air pollution regulations are dominated by impacts on mortality.
Economic benefits—such as absenteeism at work—are normally considered to be of second order
importance in these evaluations. Our results suggest instead that the economic impacts of air
pollution are substantial and of similar magnitude to benefits from reduced mortality. In other
words, air pollution might be much more costly than normally believed, and much stronger air
quality regulations could be warranted.
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Calderón-Garcidueñas, Lilian, Ricardo Torres-Jardón, Randy J Kulesza, Su-Bin Park, and
Amedeo DAngiulli, “Air pollution and detrimental effects on childrens brain. The need for a
multidisciplinary approach to the issue complexity and challenges,” Frontiers in human neuros-

cience, 2014, 8, 613.

Chameides, William L, H Yu, SC Liu, M Bergin, X Zhou, L Mearns, G Wang, CS Kiang,
RD Saylor, C Luo et al., “Case study of the effects of atmospheric aerosols and regional haze
on agriculture: an opportunity to enhance crop yields in China through emission controls?,”
Proceedings of the National Academy of Sciences, 1999, 96 (24), 13626–13633.

Chang, Tom, Joshua Graff Zivin, Tal Gross, and Matthew Neidell, “Particulate Pollution and
the Productivity of Pear Packers,” American Economic Journal: Economic Policy, 2016, 8 (3),
141–69.

Chang, Tom Y, Joshua Graff Zivin, Tal Gross, and Matthew Neidell, “The effect of pollution on
worker productivity: evidence from call center workers in China,” American Economic Journal:

Applied Economics, 2019, 11 (1), 151–72.

, Wei Huang, and Yongxiang Wang, “Something in the air: Pollution and the demand for
health insurance,” The Review of Economic Studies, 2018, 85 (3), 1609–1634.

46



Chay, Kenneth Y and Michael Greenstone, “The impact of air pollution on infant mortality:
evidence from geographic variation in pollution shocks induced by a recession,” The quarterly

journal of economics, 2003, 118 (3), 1121–1167.

Chen, Shuai, Paulina Oliva, and Peng Zhang, “The Effect of Air Pollution on Migration: Evi-
dence from China,” Technical Report 24036, National Bureau of Economic Research 2017.

Cohen, Aaron J, Michael Brauer, Richard Burnett, H Ross Anderson, Joseph Frostad, Kara
Estep, Kalpana Balakrishnan, Bert Brunekreef, Lalit Dandona, Rakhi Dandona et al., “Es-
timates and 25-year trends of the global burden of disease attributable to ambient air pollution:
an analysis of data from the Global Burden of Diseases Study 2015,” The Lancet, 2017, 389

(10082), 1907–1918.

Currie, Janet and Matthew Neidell, “Air pollution and infant health: what can we learn from
California’s recent experience?,” The Quarterly Journal of Economics, 2005, 120 (3), 1003–
1030.

, Eric A Hanushek, E Megan Kahn, Matthew Neidell, and Steven G Rivkin, “Does pollution
increase school absences?,” The Review of Economics and Statistics, 2009, 91 (4), 682–694.

Dell, Melissa, Benjamin F Jones, and Benjamin A Olken, “Temperature and income: reconci-
ling new cross-sectional and panel estimates,” American Economic Review, 2009, 99 (2), 198–
204.

, , and , “Temperature shocks and economic growth: Evidence from the last half century,”
American Economic Journal: Macroeconomics, 2012, 4 (3), 66–95.

Deryugina, Tatyana and Solomon Hsiang, “The Marginal Product of Climate,” Technical Report
24072, National Bureau of Economic Research 2017.

and Solomon M Hsiang, “Does the environment still matter? Daily temperature and income
in the United States,” Technical Report, National Bureau of Economic Research 2014.

, Garth Heutel, Nolan H Miller, David Molitor, and Julian Reif, “The mortality and medical
costs of air pollution: Evidence from changes in wind direction,” American Economic Review,
2019, 109 (12), 4178–4219.

Dingenen, Rita Van, Frank J Dentener, Frank Raes, Maarten C Krol, Lisa Emberson, and
Janusz Cofala, “The global impact of ozone on agricultural crop yields under current and future
air quality legislation,” Atmospheric Environment, 2009, 43 (3), 604–618.

47



Dockery, Douglas W, C Arden Pope, Xiping Xu, John D Spengler, James H Ware, Martha E
Fay, Benjamin G Ferris Jr, and Frank E Speizer, “An association between air pollution and
mortality in six US cities,” New England journal of medicine, 1993, 329 (24), 1753–1759.

Donkelaar, Aaron Van, Randall V Martin, Michael Brauer, N Christina Hsu, Ralph A Kahn,
Robert C Levy, Alexei Lyapustin, Andrew M Sayer, and David M Winker, “Global estimates
of fine particulate matter using a combined geophysical-statistical method with information from
satellites, models, and monitors,” Environmental science & technology, 2016, 50 (7), 3762–
3772.

Du, Yixing, Xiaohan Xu, Ming Chu, Yan Guo, and Junhong Wang, “Air particulate matter
and cardiovascular disease: the epidemiological, biomedical and clinical evidence,” Journal of

thoracic disease, 2016, 8 (1), E8.

Ebenstein, Avraham, Victor Lavy, and Sefi Roth, “The long-run economic consequences of
high-stakes examinations: evidence from transitory variation in pollution,” American Economic

Journal: Applied Economics, 2016, 8 (4), 36–65.

European Commission, “DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL of 21 May 2008 on ambient air quality and cleaner air for Europe,” Techni-
cal Report 2008.

, “Executive summary of the impact assessment,” Technical Report SWD(2013) 532 final 2013.

Fu, Shihe, V Brian Viard, and Peng Zhang, “Air quality and manufacturing firm productivity:
comprehensive evidence from China,” 2017.

Graff Zivin, Joshua and Matthew Neidell, “The impact of pollution on worker productivity,”
The American Economic Review, 2012, 102 (7), 3652–3673.

and , “Environment, health, and human capital,” Journal of Economic Literature, 2013, 51

(3), 689–730.

and , “Air pollution’s hidden impacts,” Science, 2018, 359 (6371), 39–40.

Gramsch, E., D. Cceres, P. Oyola, F. Reyes, Y. Vsquez, M.A. Rubio, and G. Snchez, “Influ-
ence of surface and subsidence thermal inversion on PM2.5 and black carbon concentration,”
Atmospheric Environment, 2014, 98, 290 – 298.

Hanna, Rema and Paulina Oliva, “The effect of pollution on labor supply: Evidence from a
natural experiment in Mexico City,” Journal of Public Economics, 2015, 122, 68–79.

48



Hansen, Anett C and Harald K Selte, “Air pollution and sick-leaves,” Environmental and Re-

source Economics, 2000, 16 (1), 31–50.

Haylock, MR, N Hofstra, AMG Klein Tank, EJ Klok, PD Jones, and M New, “A European
daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006,”
Journal of Geophysical Research: Atmospheres, 2008, 113 (D20).

He, Jiaxiu, Haoming Liu, and Alberto Salvo, “Severe air pollution and labor productivity: Evi-
dence from industrial towns in China,” American Economic Journal: Applied Economics, 2019,
11 (1), 173–201.

Herrnstadt, Evan and Erich Muehlegger, “Air pollution and criminal activity: Evidence from
Chicago microdata,” Technical Report 21787, National Bureau of Economic Research 2015.

Heyes, Anthony, Matthew Neidell, and Soodeh Saberian, “The Effect of Air Pollution on In-
vestor Behavior: Evidence from the S&P 500,” Technical Report 22753, National Bureau of
Economic Research 2016.

Hicks, Daniel, Patrick Marsh, and Paulina Oliva, “Air pollution and procyclical mortality: Cau-
sal evidence from thermal inversions,” Technical Report, working paper. Jacobson, M.(2002).
Atmospheric Pollution. History, Science, and Regulation, 1st ed. Cambridge, UK: Cambridge
University Press 2016.

Holub, Felix, Laura Hospido, and Ulrich J Wagner, “Air pollution and labor supply: Evidence
from social security data,” 2016.

III, C Arden Pope, Maureen Cropper, Jay Coggins, and Aaron Cohen, “Health benefits of air
pollution abatement policy: Role of the shape of the concentration–response function,” Journal

of the Air & Waste Management Association, 2015, 65 (5), 516–522.

Isen, Adam, Maya Rossin-Slater, and W. Reed Walker, “Every Breath You TakeEvery Dollar
Youll Make: The Long-Term Consequences of the Clean Air Act of 1970,” Journal of Political

Economy, 2017, 125 (3), 848–902.

Jayachandran, Seema, “Air quality and early-life mortality evidence from Indonesias wildfires,”
Journal of Human resources, 2009, 44 (4), 916–954.

Li, Xiaoyuan, Fabian Wagner, Wei Peng, Junnan Yang, and Denise L. Mauzerall, “Reduction
of solar photovoltaic resources due to air pollution in China,” Proceedings of the National Aca-

demy of Sciences, 2017, 114 (45), 11867–11872.

49



OECD, The Economic Consequences of Outdoor Air Pollution 2016.

Pope, C Arden III, Richard T Burnett, Michael J Thun, Eugenia E Calle, Daniel Krewski,
Kazuhiko Ito, and George D Thurston, “Lung cancer, cardiopulmonary mortality, and long-
term exposure to fine particulate air pollution,” Jama, 2002, 287 (9), 1132–1141.

Proctor, Jonathan, Solomon Hsiang, Jennifer Burney, Marshall Burke, and Wolfram Schlen-
ker, “Estimating global agricultural effects of geoengineering using volcanic eruptions,” Nature,
2018, 560 (7719), 480.

Ranft, Ulrich, Tamara Schikowski, Dorothee Sugiri, Jean Krutmann, and Ursula Krämer,
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For Online Publication

A Data details

A.1 Source of data

Additional details relating to the construction of all the variables used in the econometric analysis
are provided in the table below.

Variable Construction
Dependent variables
GDP Regional gross domestic product in current prices is obtai-

ned from the Eurostat data catalogue. We obtain annual data
for each NUTS3 region from 2000-2015 (Eurostat table:
nama 10r 3gdp). We calculate the real 2015 values using
the Harmonised Index of Consumer Prices (HICP) availa-
ble from Eurostat (Eurostat table: prc hicp aind; variable:
INX A AVG).

GVA Gross value added by sector is obtained from Eurostat (ta-
ble: nama 10r 3gva).

Population Population data is from Eurostat (table: demo r pjanaggr3).
Independent variables
PM2.5 We obtain daily mean PM2.5 concentration for each grid

cell covering the bounding box defined by the (longi-
tude,latitude) coordinates (-15,35) to (35,70) from the
M2T1NXAER MERRA2 reanalysis files, spanning the
range January 1, 1995 to December 31, 2015. We construct
a measure of PM2.5 from the five individual species of parti-
culate matter reported by MERRA following Buchard et al.
(2016) as described in the main text. We obtain a daily mea-
sure of PM2.5 in each NUTS3 region as the mean of all grid
cells overlapping the region. We obtain an annual average
concentration as the mean over all days of the year.

SO2 Construction of SO2 concentration follows the same proce-
dure and with the same data source as for PM2.5.
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Temperature We obtain daily mean temperature from the European Cli-
mate Assessment for grid cells spanning the bounding box
defined by the (longitude,latitude) coordinates (-15,35) to
(35,70). We obtain a daily measure of temperature in each
NUTS3 region as the mean of all grid cells overlapping the
region. We cut the continuous temperature into a number
of temperature bins that span the range of observed tem-
peratures. We count the number of days that mean daily
temperature falls into each of these bins in each year and
regions in the sample.

Precipitation Precipitation data is derived from the same source as tempe-
rature data, and variable construction generally follows an
identical procedure. We construct mean precipitation across
all days of the year.

Relative humidity We obtain relative humidity from the MERRA2
M2I3NPASM reanalysis files and follow the same
procedure as described above to arrive at an annual mean
relative humidity.

Surface pressure We obtain surface pressure from the European Climate As-
sessment files and follow the same procedure as described
above to arrive at an annual mean pressure.

Wind speed and direction We obtain daily mean easterly and northerly wind speeds at
surface from the MERRA2 M2I3NPASM reanalysis files.
We obtain a daily measure of wind speed and direction in
each NUTS3 region as the mean of all grid cells overlapping
the region. We count the number of days that wind speed
falls into bins defined by the Beaufort scale in each year
and NUTS3 region. We count the number of days that wind
originates from each of eight compass octants in each year
and NUTS3 region.
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A.2 Residual variation

Figures 8 and 9 show the identifying variation in two of the instrumental variables—thermal inver-

sions and wind direction. Both figures show a histogram of these variables after first differencing

and conditioning on year fixed effects. The figures indicate that even after removing these fixed

effects, there remains a substantial amount of variation in these variables. For example, it is normal

to observe 5% or 365×0.0=18 days more or less of thermal inversions than the average (i.e., the

standard deviation in the share of days with inversions is approximately 5%). A similar amount of

variation exists for the wind instrument. It is evident there exists considerable variation in these

instruments, which we leverage for identification in our regressions. Figures 10 to 13 also report

the distribution of geographic variance in the instrumental variables. The figures show that wind

direction is most variable throughout central Europe, such that these regions will contribute most

to the identification of the effect of the impact of pollution on GDP using this instrument. In con-

trast, Northern Europe and the Baltic region experience the most variation in winter inversions

from year to year, and the coastal areas experience the most variation in summer inversions. These

regions will contribute most to identification of the impact of pollution on GDP using the inversion

instrumental.
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Figure 8: Histogram of inversion residuals after first differencing and conditioning on year fixed
effects. The inversion variable is T IL as described above. The variable measures the share of days
in a year with thermal inversions, for both summer and winter.

Figure 9: Histogram of wind direction residuals after first differencing and conditioning on year
fixed effects. The variable measures the share of days in a year with winds originating from one of
the three dirtiest or three cleanest compass octants.
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Figure 10: Geographic variation in the low level summer inversions instrument (T IL). The figure is
produced by calculating the standard deviation of the first-differenced annual inversion frequency
separately in each NUTS3 region.
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Figure 11: Geographic variation in the low level winter inversions instrument (T IL). The figure is
produced by calculating the standard deviation of the first-differenced annual inversion frequency
separately in each NUTS3 region.
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Figure 12: Geographic variation in the polluting wind instrument (wind from three dirtiest compass
octants). The figure is produced by calculating the standard deviation of the first-differenced annual
wind direction frequency separately in each NUTS3 region.
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Figure 13: Geographic variation in the clean wind instrument (wind from three dirtiest compass
octants). The figure is produced by calculating the standard deviation of the first-differenced annual
wind direction frequency separately in each NUTS3 region.
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A.3 Summary statistics

Table 8: Summary statistics
Variable Mean Std. Dev. Min. Max. N

Real GDP 9660.491 15255.596 206.726 204152.375 18386
PM2.5 10.870 2.172 3.284 25.059 18386
Population 373894.927 423228.554 19744 6425522 18386
Inversions (low; summer) 0.05 0.038 0 0.348 18386
Inversions (low; winter) 0.118 0.064 0 0.419 18386
Clean winds 0.428 0.114 0.074 0.773 18386
Polluting winds 0.305 0.09 0.068 0.77 18386
Surface relative humidity 0.734 0.07 0.464 0.881 18386
Pressure 1015.922 2.103 1002.326 1030.665 18386
Temperature 10.289 2.594 -1.895 19.016 18386
Precipitation 2.119 0.772 0.251 7.485 18386
Wind speed 6.185 1.223 1.896 10.16 18386
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A.4 Correlation between instrumental variables

Table 9 provides a pair-wise correlation matrix for the inversion variables. Correlations are cal-

culated after first-differencing, and removing year fixed effects, for consistency with the empirical

approach.

Table 9: Correlation between main instrumental variables.
Summer inversions (low) Winter inversions (low) Clean winds

Winter inversions (low) 0.0589
Clean winds -0.1190 -0.1122
Polluting winds 0.1229 0.1572 -0.6528

Notes: Correlation coefficients are calculated after first-differencing and conditional on year fixed
effects.

61



A.5 Ground-based monitoring stations

We obtain ground-based pollution monitoring data from the European Environment Agency. At

the beginning of our sample period, only a handful of PM2.5 pollution monitors were active in

Europe. The network has since expanded to between 1,500 and 1,750 stations. We map pollution

monitors to NUTS-3 region. The number of NUTS-3 regions with at least one active pollution

monitor increased from almost none in 2000 to about 500 by 2015 (slightly over 1/3 of the total

number of NUTS-3 regions in Europe). See Figure 14.

Figure 14: Number of ground-based monitoring stations (left panel) and number of NUTS-3 regi-
ons containing at least one ground-based monitoring station (right panel) from 2000-2015. Note
that there is no data available for 2012 from the European ground based-monitoring network.

Figure 15 plots the relationship between the ground-based monitoring stations and the MERRA-

2 PM2.5 concentrations. Although the EEA stations—which are typically located in urban areas—

measure higher levels of pollution than the MERRA-2 reanalysis—which is not population-weighted—

the two measures are strongly correlated (the correlation between the two measures is about 0.56).
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Figure 15: Correlation between MERRA-2 and ground-based monitoring station PM2.5 concentra-
tions. The figure on the right removes the top 1% of outliers.
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B Robustness checks and additional results

B.1 Reduced-form results: The effect of wind direction and thermal inver-

sions on economic output

This section show reduced-form results. In this case, we estimate the effect of thermal inversions

and wind direction directly on economic output (conditional on weather and fixed effects). While

these results are of less policy relevance, they help to build the case for the relevance of our chosen

instrumental variables.

Table 10 presents the reduced-form results. In line with Table 2, column (1) uses thermal

inversions as the instrument, column (2) uses wind direction, and column (3) uses both sets of

instruments simultaneously. All specifications suggest that the atmospheric phenomena that we

employ as instrumental variables—and which we have shown cause increases in pollution—cause

negative impacts on economic activity. Specifically, increasing the share of summer inversion days

by 1 percentage point (i.e., an additional 365
100 = 3.65 summer inversion days per year) is estimated

to cause a 0.06% reduction in economic activity. Likewise, increasing the share of days in which

the prevailing wind originates from the most polluting directions by 1 percentage point is estimated

to cause a 0.04% reduction in economic activity.
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Table 10: Reduced form: instruments’ effect on the GDP.
(1) (2) (3)

ln(GDP) ln(GDP) ln(GDP)

Summer inversions (low) -0.0741 *** -0.0596 **
(0.0258) (0.0266)

Winter inversions (low) 0.0068 0.0013
(0.0172) (0.0172)

Clean winds 0.0143 0.0129
(0.0091) (0.0092)

Polluting winds -0.0389 *** -0.0372 ***
(0.0111) (0.0112)

Observations 17099 17099 17099

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on
NUTS3 level) are in parentheses. All estimations include year fixed ef-
fects, 12 wind speed bins, 20 temperature bins, 20 precipitation bins, se-
cond order polynomials of relative humidity and atmospheric pressure, and
interactions between temperature bins and humidity and humidity squared.
Regression coefficients weighted by each region’s population.
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B.2 Heterogeneity

B.2.1 Income

To understand the heterogeneity in the impacts of pollution on output with respect to per capita

income, we group each NUTS3 region i into quantile q based on its average per capita income

over 2000-2015 by defining a variable Dq
i that is equal to one if region i falls into quantile q. We

then interact this group variable with pollution to recover the heterogeneous impact of pollution on

output according to income quantile:

∆ log(Yit) = ∑
q

β
qDq

i ∆̂Pit +β2∆ f (Wit)+∆γt +νit . (7)

We use the same instrumental variables and weather controls as in the main text, and results are

reported in Figure 16.

B.2.2 Urban vs. rural

To understand the heterogeneity in the impacts of pollution on output with respect to the type

of region, we group each NUTS3 region i into three groups–urban, intermediate, or rural. The

classification is based on population density and proximity to urban centres and is produced by the

OECD.27 We then separately run our two-stage regression on each of these subgroups. We use the

same instrumental variables and weather controls as in the main text, and results are reported in

Table 11.

B.2.3 Economic structure

To understand the heterogeneity in the impacts of pollution on output with respect to economic

structure, we group each NUTS3 region i as service-intensive or industry-intensive based on its

27See https://www.oecd.org/regional/regional-statistics/OECD_regional_typology_Nov2012.

pdf.
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Figure 16: Heterogeneity in economic impact of pollution by income quintiles (GDP per capita).
Coefficients and 95% confidence intervals from a instrumental variables regression of output per
capita interacted with income quantiles on instrumented pollution. Clustered standard errors (on
NUTS3 level). All estimations are conducted in first differences and include year fixed effects, 12
wind speed bins, 20 temperature bins, 20 precipitation bins, second order polynomials of relative
humidity and atmospheric pressure, and interactions between temperature bins and humidity and
humidity squared. Regression coefficients weighted by each region’s population.

average sector output over 2000-2015.28 We then separately run our two-stage regression in each

of these subgroups. We use the same instrumental variables and weather controls as in the main

text, and results are reported in Table 12.

28To classify regions as industry- or service-intensive, we look at the gross value added of the industry sector
divided by total GDP, and the sum of gross value added of the Professional, Information/Communication, Real Estate,
and Finance sector divided by total GDP. We split each at the median. If it is above median in industry share, but
below in services we classify as industry intensive. If it is above median in service share, but below in industry share
we classify as service intensive. Note that this approach excludes certain regions that cannot be cleanly classified.
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Table 11: Economic of pollution by region type.
(1) (2) (3)

Urban Intermediate Rural

PM2.5 -0.009 ** -0.015 *** 0.003
(0.004) (0.003) (0.004)

Observations 4723 7055 5321
R2 0.088 -0.040 0.079
Weak id. stat. 36.07 43.34 24.78
Hansen J stat. p-value 0.0240 0.0108 0.0477

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard er-
rors (on NUTS3 level) are in parentheses. All estimations are
conducted in first differences and include year fixed effects, 12
wind speed bins, 20 temperature bins, 20 precipitation bins, se-
cond order polynomials of relative humidity and atmospheric
pressure, and interactions between temperature bins and humi-
dity and humidity squared. Regression coefficients weighted by
each region’s population.

Table 12: Economic of pollution by economic structure type.
(1) (2)

Industry intensive Service intensive

PM2.5 -0.008 * -0.014 ***
(0.005) (0.003)

Observations 2994 6518
R2 0.069 0.044
Weak id. stat. 23.41 47.80
Hansen J stat. p-value 0.0871 0.635

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on
NUTS3 level) are in parentheses. All estimations are conducted in
first differences and include year fixed effects, 12 wind speed bins,
20 temperature bins, 20 precipitation bins, second order polynomi-
als of relative humidity and atmospheric pressure, and interactions
between temperature bins and humidity and humidity squared. Re-
gression coefficients weighted by each region’s population.
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B.3 Robustness checks

We perform a series of robustness checks to determine how our main results are affected by al-

ternative assumptions. In all regression tables reported in this section, we report the results of the

second stage of a two-stage regression. Unless otherwise reported, instruments are identical to the

main text.

B.3.1 Weather controls

As emphasized above, our instrumental variables satisfy the exclusion restriction conditionally.

That is, conditional on ground-level weather, both thermal inversions and wind direction should

only affect economic outcomes via their effect on pollution. Because both of these variables are

likely correlated with weather, which can itself impact economic outcomes, it is important to care-

fully control for weather. We do this in the main results using a flexible approach to controlling for

temperature, precipitation, and wind speed, and including other weather variables using second-

degree polynomials, and with interactions between temperature and humidity variables. In Table

13, we show that our results are invariant to adopting an even more flexible approach to including

the effect of temperature (conditioning on 70 temperature bins, rather than 20 as in the baseline).

Moreover, we estimate the model without conditioning on any weather covariates and continue to

obtain very similar results as in the baseline specification, suggesting that our choice of weather

controls is unlikely to substantially affect the results.
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Table 13: Robustness with respect to weather controls.
(1) (2) (3) (4) (5)

20 temp. 20 temp. 70 temp. 70 temp. bins no weather
+hum. int. bins bins +hum. int. controls

PM2.5 -0.0116 *** -0.0134 *** -0.0132 *** -0.0106 *** -0.0082 ***
(0.0021) (0.0021) (0.0021) (0.0022) (0.0014)

Observations 17099 17099 17099 17099 18437
Weak id. stat. 107.0 120.5 131.6 108.0 194.9
Hansen J stat. p-value 0.242 0.0157 0.00169 0.130 0.000460

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on NUTS3 level) are in parentheses. All
estimations are conducted in first differences and include year fixed effects. Column (1) includes 12 wind
speed bins, 20 temperature bins, 20 precipitation bins, second order polynomials of relative humidity and
atmospheric pressure, and interactions between temperature bins and humidity and humidity squared.
Column (2) is the same except excluding the interaction between temperature and humidity. Column (3)
is the same as (2) except it includes 70 temperature bins, rather than 20. Column (4) is the same as (1)
except with 70 temperature bins instead of 20. Column (5) excludes all weather controls. Regression
coefficients weighted by each region’s population.
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B.3.2 Alternative instruments

In our main specification, we adopt (by necessity) particular definitions for the wind direction and

thermal inversion variables. Specifically, we use the share of days of thermal inversions at the

lowest atmospheric level in both winter and summer, and the share of days with winds from the

dirtiest and cleanest three wind directions (based on pre-sample data) as instruments, for a total

of four instruments. We re-run the analysis with different definitions for both of these sets of

instrumental variables. Results which vary the set of inversion instruments are shown in Table 14,

and results which vary the set of wind instruments are shown in Table 15.

Table 14 varies the variables used to define inversions, both based on whether and how we

distinguish the season at which atmospheric inversions take place, as well as the level at which

atmospheric level inversions are measured. In total, we define inversion seasonality in three alter-

native ways: by distinguishing winter vs. summer (as in the baseline, where we have two inversion

instrumental variables corresponding to these seasons), by distinguishing four seasons (with four

instrumental variables for inversions), or by not distinguishing between seasons. We also define

the level of measurement for inversions in three alternative ways, as described in Section 4: at

low levels (as in the baseline), at any level, or relative to surface. In total, this gives 9 possible

combinations of inversion instrumental variable combinations, and results using all combinations

except the baseline are provided in Table 14. Results are always negative, statistically significant,

and close to the baseline results, suggesting that the particular definition of inversion chosen in not

material to the results.

Table 15 varies the variables used to define wind directions. The baseline results used two wind

instrumental variables, based on the number of days the wind originates from the three dirtiest and

three cleanest compass octants, determined based on pre-sample data. Table 15 shows that results

are not substantially affected by alternative choices of wind instrumental variables. Using only

the number of days from only the cleanest directions or only the dirtiest directions, with only

one wind IV in each case, delivers qualitatively similar results. Using the two cleanest and two

dirtiest octants (rather than the three in the baseline) also delivers similar results, as does using
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seven IVs, with each capturing the share of days from one of the seven compass octants (and the

eighth dropped to avoid collinearity). The final column of 15 uses an alternative approach. In this

column, clean and dirty wind directions are not determined based on pre-sample data, but instead

based on the prior five years of daily wind and pollution measures, such that the ranking of wind

directions for each NUTS3 region is updated continually over time. This approach continues to

deliver a negative and statistically significant coefficient, but somewhat smaller than the baseline

results.

Overall, our results are robust to using a large set of different instrumental variables. The main

coefficient varies between -0.007 and -0.013 depending on the instrument, relative to a baseline

estimate of -0.011. In all cases, we find a substantial and precisely estimated impact of pollution

on economic output.
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B.3.3 Alternative specifications

We test the sensitivity of our results to the inclusion of alternative fixed effects and control va-

riables. Our main research design controls for persistent heterogeneity between regions using a

differencing approach, and controls for common shocks across Europe using year fixed effects.

Table 16 replicates the main results, but adding additional controls to account for heterogeneity

over time and between regions that is potentially correlated with economic activity and the instru-

ments. Column (1) adds linear NUTS3 time trends to capture potential common trends across re-

gions between economic activity and the instruments. Column (2) adds linear country time trends.

In both cases, the coefficient remains at a similar magnitude and retains statistical significance.

Column (3) adds quadratic country trends and again has little impact on results. Column (5) adds

country-year fixed effects. These control for any unobserved heterogeneity at a country-year level,

and identify the impact of air pollution only from within country-year variation across NUTS3

regions in (instrumented) pollution. Unfortunately, these fixed effects remove too much variation

in pollution, such that standard errors increase, and the effect of pollution on output can no longer

be identified precisely. As an alternative, column (4) uses country-2year fixed effects (results are

identical no matter whether we start the 2-year groupings on an odd or even year). From an iden-

tification perspective, country-2year fixed effects allow nearly as much flexibility as country-year

effects, but they do not soak up quite as much variation in air pollution, and the impact of air pollu-

tion on output again is precisely estimated, although only about half the magnitude as the baseline

results.

In Table 17 we test the impact of controlling for additional pollutants. We focus on SO2,

because this is estimated in the MERRA-2 dataset. We now have two endogenous pollutants,

which are highly correlated, in the second stage regression. To improve the predictive power of

the first stage regression, we choose sets of instruments with more individual instruments from the

sets of instruments we use in the main text. For example, we use four inversion instruments, which

capture the share of inversions across four different seasons, and seven wind instruments, which

capture wind from each of the eight compass octants. Table 17 shows the effect of both PM2.5 and
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Table 16: Regression models with alternative fixed effects.
(1) (2) (3) (4) (5)

Linear NUTS3-trends Country trends Country squared trends Country 2-year FE Country year FE

PM2.5 -0.0110 *** -0.0112 *** -0.0118 *** -0.0046 *** -0.0041
(0.0021) (0.0021) (0.0022) (0.0016) (0.0042)

Observations 17099 17099 17099 17097 17085
Weak id. stat. 104.2 106.0 100.0 125.7 22.56
Hansen J stat. p-value 0.423 0.438 0.695 0.0000307 0.0457

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on NUTS3 level) are in parentheses. All estimations are
conducted in first differences and include year fixed effects, 12 wind speed bins, 20 temperature bins, 20 precipitation
bins, second order polynomials of relative humidity and atmospheric pressure, and interactions between temperature bins
and humidity and humidity squared. Regression coefficients weighted by each region’s population.

SO2 on GDP using the two stage least squares approach, using different combinations of these

instruments. Despite choosing combinations of instruments with more individual instrumental

variables, our instruments are not strong at predicting both pollutants separately, and we find no

effect of SO2 on output. We continue to find a large impact of PM2.5 on output. Although the

coefficient in some specifications is larger than our baseline result, because of the large standard

error it is not statistically distinguishable from our baseline estimate. We choose column (3) as

our preferred co-pollutant regression as it has the largest F-statistic in the first stage (although still

suggestive that our instruments are not strong enough to disentangle the effects of two pollutants).
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Table 17: Regression models with controls for co-pollutants.
(1) (2) (3)

Instrument set 1 Instrument set 2 Instrument set 3

PM2.5 -0.0181 ** -0.0124 ** -0.0119 ***
(0.0078) (0.0051) (0.0045)

SO2 0.0150 0.0046 0.0040
(0.0167) (0.0089) (0.0084)

Observations 17099 17099 17099
Weak id. stat. 2.735 4.805 5.302
Hansen J stat. p-value 0.431 0.0177 0.0273

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on
NUTS3 level) are in parentheses. All estimations are conducted in first
differences and include year fixed effects, 12 wind speed bins, 20 tem-
perature bins, 20 precipitation bins, second order polynomials of relative
humidity and atmospheric pressure, and interactions between tempera-
ture bins and humidity and humidity squared. Regression coefficients
weighted by each region’s population. Instrument set 1 includes the
share of days with surface level inversions in each of four seasons as
well as the share of days with winds from the three cleanest and three
dirtiest compass octants. Instrument set 2 includes the share of days
with low level inversions in winter and summer as well as the share of
days with winds from all seven compass octants (the eighth is dropped to
avoid collinearity). Instrument set 3 includes the share of days with sur-
face level inversions in all four seasons as well as the share of days with
winds from all seven compass octants (the eighth is dropped to avoid
collinearity).
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Table 18: Placebo estimation with randomly assigned GDP.
(1)

Placebo ln(GDP)

PM2.5 0.002
(0.003)

Observations 14498
R2 0.011
Weak id. stat. 55.01
Hansen J stat. p-value 0.455

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clus-
tered standard errors (on NUTS3 level) are
in parentheses. All estimations are con-
ducted in first differences and include year
fixed effects, 12 wind speed bins, 20 tem-
perature bins, 20 precipitation bins, second
order polynomials of relative humidity and
atmospheric pressure, and interactions be-
tween temperature bins and humidity and
humidity squared. Regression coefficients
weighted by each region’s population.

B.3.4 Placebo test

We estimate a placebo model, or test of design, to ensure that our econometric specification is

not delivering the results we are obtaining. To implement our test of design, we randomly assign

pollution and meteorological variables across regions in our data set, and re-estimate the model

with these placebo treatment variables. Table 18 shows that the placebo regression delivers a

precisely estimated coefficient of zero on the instrumented pollution, suggesting that our results

are not driven by our empirical approach, but instead by the data.
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Table 19: Robustness with respect to database choice.
(1) (2) (3)

Van Donkelaar CAMS Monitoring stations

PM2.5 -0.008 *** -0.007 *** -0.008
(0.002) (0.002) (0.008)

Observations 17099 13482 2152
R2 -0.059 0.015 -0.310
Weak id. stat. 16.76 45.30 0.975
Hansen J stat. p-value 0.00142 0.0000583 0.458

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on NUTS3 le-
vel) are in parentheses. All estimations are conducted in first differences and in-
clude year fixed effects, 12 wind speed bins, 20 temperature bins, 20 precipitation
bins, second order polynomials of relative humidity and atmospheric pressure,
and interactions between temperature bins and humidity and humidity squared.
Regression coefficients weighted by each region’s population.

B.3.5 Alternative air pollution data

We re-estimate the model with different air pollution data (see section 4), based both on the

Van Donkelaar et al. (2016) and the CAMS models. Results are reported in Table 19. In both

cases, we continue to find a negative and statistically significant impact of pollution on GDP, alt-

hough the estimates are somewhat smaller than in our baseline (but not statistically significantly

so). Note that the data for CAMS includes fewer observations than for MERRA2 or Van Donkelaar

et al. (2016), because of incomplete temporal coverage as described in section 4. We also include

in column (3) a regression that uses data from the pollution monitoring network. Note that this

network has very sparse coverage, particularly in the early years in our data set. We trim 1% of

outlying observations because the distribution of monitoring station data contains some extreme

values. We report an imprecise finding using this data, but the point estimate is close to that with

other data sets.
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B.3.6 Weighting

Our baseline estimates are population-weighted, as described in the text. We re-estimate the model

without weighting, and weighting by GDP rather than population (Table 20). Unweighted estima-

tes are slightly larger (in absolute value) than population-weighted estimates, which are slightly

larger than GDP-weighted estimates. Neither of them are statistically different from the baseline,

but they do suggest that the impact of air pollution on economic activity is slightly larger in small

regions (as measured by GDP or population) than in larger ones.

Table 20: Economic effect of PM2.5 (weighted).
(1) (2)

Not weighted GDP weighted

PM2.5 -0.0129 *** -0.0101 ***
(0.0019) (0.0024)

Observations 17099 17099
Weak id. stat. 141.7 93.70
Hansen J stat. p-value 0.00000217 0.222

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard
errors (on NUTS3 level) are in parentheses. All estimati-
ons are conducted in first differences and include year fixed
effects, 12 wind speed bins, 20 temperature bins, 20 preci-
pitation bins, second order polynomials of relative humidity
and atmospheric pressure, and interactions between tempe-
rature bins and humidity and humidity squared.
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Table 21: Economic effect of PM2.5 (without extreme values).
(1) (2)

Outliers dropped at 1% Outliers dropped at 5%

PM2.5 -0.0123 *** -0.0174 ***
(0.0021) (0.0028)

Observations 16745 15396
R2 0.019 0.002
Weak id. stat. 153.3 105.1
Hansen J stat. p-value 0.125 0.0284

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on NUTS3 le-
vel) are in parentheses. All estimations are conducted in first differences and
include year fixed effects, 12 wind speed bins, 20 temperature bins, 20 preci-
pitation bins, second order polynomials of relative humidity and atmospheric
pressure, and interactions between temperature bins and humidity and humidity
squared. Regression coefficients weighted by each region’s population.

B.3.7 Dropping outliers

To ensure that our results are not driven by extreme values, we re-run the regression, but this time

dropping extreme values. Specifically, we remove the observations below the 1st (or 5th) and

above the 99th (or 95th) percentile of the ∆PM2.5 distribution. As shown in Table 21, we continue

to obtain similar results and the coefficient increases somewhat in absolute value. This shows that,

if anything, including outliers leads us to underestimate the impact of air pollution on economic

activity.
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B.3.8 Spatial autocorrelation

We test the sensitivity of our results to spatial autocorrelation and to the inclusion of spatial con-

trols. Air pollution travels across regional borders and there are external effects (spillovers) of

GDP between regions (e.g. through cross-region trade). Thus, our baseline estimation might be

biased if we dont control for the potential endogeneity arising from spatial properties of pollution

and economic growth.

In Table 22, columns (1) and (2) include spatial lags of pollution and GDP, where we include

inverse distance weighed average pollution and GDP in a 100km and 200km radius around each

regions centroid as an additional control variable. Results are not impacted by the addition of these

spatial controls.

For this estimation we construct five new variables: the spatial lags of GDP, PM2.5, and the

three instruments. We calculate the distance between the NUTS3 regions centroids (within radius

k) and use inverse distance weighing to construct an average value of the neighbours of the region.

Thus a spatial lag of variable x for region i is defined as:

xi,SL =
∑

x j
d(xi,x j)

∑1/d(xi,x j)
1(d(xi,x j)< k)

We choose two cut-off points (k values) for the indicator function (1[·]): 100 km and 200 km.

Neighbours outside of these radii are not counted in the spatial lag. This reduces the potential

influence of outliers.

Finally, columns (3) and (4) implement clustering on NUTS2 and NUTS1 regions, respectively.

These allow arbitrary correlation within these broader regions, over time. The coefficient remains

statistically significant at the 1% level as in the baseline regression.

B.3.9 Log-log results

Our main results are presented in log-linear form. Here we present our main results in log-log

form. Table 23 shows first stage results. Summer inversions cause a exp0.465−1 = 59% increase
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Table 22: Robustness with spatial controls.
(1) (2)

100 km spatial lag 200 km spatial lag

PM2.5 -0.005 ** -0.009 ***
(0.002) (0.002)

Spatial lag of PM2.5 -0.001 ** 0.000
(0.001) (0.000)

Spatial lag of ln(GDP) 0.003 *** 0.000
(0.001) (0.001)

Observations 15271 15791
R2 0.048 0.028
Weak id. stat. 47.87 59.61
Hansen J stat. p-value 0.0472 0.0259

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on
NUTS3 level) are in parentheses. All estimations are conducted in
first differences and include year fixed effects, 12 wind speed bins,
20 temperature bins, 20 precipitation bins, second order polynomials
of relative humidity and atmospheric pressure, and interactions bet-
ween temperature bins and humidity and humidity squared. Regres-
sion coefficients weighted by each region’s population.

in pollution concentration. This is comparable to the log-linear version in Table 2, which suggests

summer inversions cause a 5.9µg/m3 increase in pollution concentrations, relative to a mean of

11µg/m3, or 53%. Other coefficients are likewise similar in magnitude and significance.

Table 24 shows our main results in log-log form. Again, the magnitude and significance of

our results are largely preserved relative to the log-linear version in the text. The log-log results

indicate that a 1% increase in pollution causes a 0.12% reduction in GDP. Table 3 in the text shows

that a 1µg/m3 increase in pollution causes a 1.2% reduction in GDP. A 1µg/m3 increase reflects

a 9.1% increase from mean pollution levels in our sample, suggesting an elasticity of GDP to

pollution of -0.13, very similar to the log-log results.
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Table 23: First stage results in log-log form
(1) (2) (3)

ln(PM2.5) ln(PM2.5) ln(PM2.5)

Summer inversions (low) 0.584 *** 0.465 ***
(0.086) (0.085)

Winter inversions (low) 0.034 0.084 *
(0.043) (0.044)

Clean winds -0.252 *** -0.243 ***
(0.023) (0.024)

Polluting winds 0.169 *** 0.157 ***
(0.025) (0.023)

Observations 17099 17099 17099
Adjusted R2 0.224 0.262 0.274

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on
NUTS3 level) are in parentheses. All estimations are conducted in
first differences and include year fixed effects, 12 wind speed bins,
20 temperature bins, 20 precipitation bins, second order polynomials
of relative humidity and atmospheric pressure, and interactions bet-
ween temperature bins and humidity and humidity squared. Regres-
sion coefficients weighted by each region’s population.

Table 24: Main results in log-log form
(1) (2) (3)

ln(GDP) ln(GDP) ln(GDP)

ln(PM2.5) -0.1252 ** -0.1170 *** -0.1175 ***
(0.0515) (0.0212) (0.0199)

Observations 17099 17099 17099
Weak id. stat. 29.05 244.8 146.9
Hansen J stat. p-value 0.549 0.0514 0.248

Notes:∗ p<0.1,∗∗ p<0.05,∗∗∗ p<0.01. Clustered standard errors (on
NUTS3 level) are in parentheses. All estimations are conducted in
first differences and include year fixed effects, 12 wind speed bins,
20 temperature bins, 20 precipitation bins, second order polynomials
of relative humidity and atmospheric pressure, and interactions bet-
ween temperature bins and humidity and humidity squared. Regres-
sion coefficients weighted by each region’s population.
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C Implications for cost-benefit analyses of air pollution control

policies

Table 25: Annual market and non-market benefits from PM2.5 emission reduction scenarios in
Europe.

2025 scenario (EU28) 6A 6B 6C 6D
Reduction in emissions wrt baseline 17% 25% 34% 45%
Lost working days (Me) 726 1421 2137 2831
Damage to built environment 53 106 145 162
Crop value losses 61 101 278 630
Healthcare costs 219 437 657 886
Total market benefits 1,059 2,065 3,237 4,509
Total benefits (low valuation, Me) 14,997 29,767 44,686 59,642
Total benefits (high valuation, Me) 50,317 100,937 150,853 200,074

Notes: Scenario 6A: 25% gap closure between baseline and Maxi-
mum Technically Feasible Reduction (MTFR); Scenario 6B: 50% gap
closure between baseline and MTFR; Scenario 6C: 75% gap closure
between baseline and MTFR; Scenario 6D: 100% gap closure bet-
ween baseline and MTFR. Total benefits includes both market and
non-market benefits (e.g., mortality).
Source: European Commission (2013).

Table 26: Benefits from the US Clean Air Act Amendments
Endpoint Valuation (million 2006 US$)
Minor restricted activity days 6,700
Work loss days 2,700
Outdoor worker productivity 170
Agricultural and forest productivity 11,000
Mortality 1,800,000

Source: US EPA (2011).
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Table 27: Compliance costs for PM2.5 concentration reduction scenarios in Europe. 2008 Air
Quality Directive 2008/50/EC.

2025 scenario (EU25) Scenario A Scenario B
Reduction in average urban background concentration of PM2.5 -20% -25%
Marginal abatement cost (Me/year) 4974.4 8079.6
Marginal abatement cost (e/person/year) 10 16
GDP -0.03% -0.06%

Source: European Commission (2008)

Table 28: Annual compliance costs associated with the US Clean Air Act Amendments
Category Valuation (million 2006 US$)
Electric utilities 13,000
On-road vehicles and fuel 27,200
Local controls 13,500
Others 14,800
Total costs 68,500

Source: US EPA (2011)
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