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Abstract

We study relational contracting with an agent who has consumption-smoothing pref-
erences as well as the ability to save to defer consumption (or to borrow). Our focus is
the comparison of principal-optimal relational contracts in two settings. The first where
the agent’s consumption and savings decisions are private, and the second where these
decisions are publicly observed. In the first case, the agent smooths his consumption over
time, the agent’s effort and payments eventually decrease with time, and the balances on
his savings account eventually increase. In the second, the agent consumes earlier than he
would like, consumption and the balance on savings fall over time, and effort and payments
to the agent increase. There is convergence to efficiency in the long run. Our results sug-
gest a possible explanation for low savings rates in certain industries where compensation
often comes in the form of discretionary payments.
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1 Introduction

Work on repeated moral hazard with a risk-averse agent — for instance Rogerson (1985) and
Fudenberg et al. (1990) — highlighted the value of controlling the agent’s consumption through
formal contracts. Optimal dynamic contracts, as studied by Rogerson, force the agent to con-
sume more than he would like early in the relationship (the agent would gain by secretly saving
and deferring some consumption to a later date).1 Fudenberg et al. show that a sequence of
short-term contracts can often implement the outcome of a long-term contract if the short-term
contracts can stipulate agent consumption or savings. Yet, in modern employment relation-
ships, workers’ consumption expenditures are largely at their discretion and free from formal
agreements. This motivated a literature on “private savings” in dynamic contracting (see Abra-
ham et al., 2011, Edmans et al., 2012, He, 2012, and Di Tella and Sannikov, 2018), where the
agent’s consumption and savings are unobserved by the principal.

The assumption of private savings, however, fails to recognize that some of a worker’s
consumption and savings decisions are observable to the employer. For instance, an employer
might observe “conspicuous consumption” choices such as spending on clothes, cars, or leisure
activities.2 Some savings decisions (such as pension contributions) might be observed as direct
deductions from employee paychecks. It therefore seems important to consider an alternative
possibility to the literature above: consumption and saving decisions might be observed, but
incentives are only relational. By relational incentives, we mean those stemming from informal
agreements sustained by an implicit threat of punishments that the players carry out themselves
in equilibrium; see, for instance, Bull (1987), MacLeod and Malcomson (1989) and Levin (2003).
The aim of this paper is to study the role of consumption and savings and their observability in
a relational contracting setting. We do so by introducing savings and consumption-smoothing
preferences in a canonical relational contracting model.3

Setting. We study a simple relational contracting setting in which the agent exerts costly
effort and has concave utility from consumption, with concave utility implying a preference for
smooth consumption. We consider two polar opposite cases: one where consumption is perfectly
jointly observed, and the other where consumption is unobservable to the principal. Our setting

1Other papers where the principal controls the level of agent consumption include Lambert (1983), Spear
and Srivastava (1987), Rey and Salanie (1990), Phelan and Townsend (1991), Sannikov (2008) and Garrett and
Pavan (2015).

2The term “conspicuous consumption” was introduced by Veblen (1899). See Chanen (2008) for a discussion
of how US employers are increasingly monitoring employee behavior, including using this information to make
retention decisions. There has also been an increase in monitoring recently with work-at-home arrangements
due to Covid-19.

3The vast majority of relational contracting models specify quasi-linear preferences for money, so any role
for saving and the timing of consumption is assumed away. Bull (1987) is the only exception to our knowledge,
but his paper is restricted to the sustainability of first-best policies in an overlapping-generations model.
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is deterministic, with the output enjoyed by the principal equal to the agent’s effort. In each
period, first the agent chooses effort and consumption, then the principal makes a discretionary
payment to the agent. The initial balance on the agent’s savings account is common knowledge,
and the evolution of these savings are determined by pay and consumption. Neither party can
make any commitments, and a relational contract can be understood simply as an agreed stream
of effort, consumption and pay.

As with other papers on relational contracts, we focus on agreements that are “self-enforcing”.
We thus impose two key sets of constraints that ensure neither party wishes to publicly breach
the contract, given that any such breach results in termination of a productive relationship
(i.e., no further effort by the agent, and no further payments from the principal).4 One set
of constraints ensures willingness of the agent never to quit the relationship by deviating from
the agreed effort and consumption, if observed, and then continuing to optimally consume his
savings. The other ensures credibility of the principal’s payments to the agent. That is, it
ensures that the principal’s discounted future profits from continuing the relationship always
exceed the payments promised to the agent. We investigate self-enforcing agreements that
maximize the principal’s discounted profits.

Unobservable consumption. We begin by studying the problem with unobservable con-
sumption (or “private savings”). Dynamic contracting problems with hidden consumption have
often been viewed as challenging due to the difficulties associated with “double deviations” (see
for example Di Tella and Sannikov, 2018). For instance, an agent in such problems may find
it attractive to shirk on effort while saving more to mitigate anticipated punishment through
low pay. In our setting, an agent who plans on shirking on effort at a given date, smooths
consumption by choosing constant consumption from the beginning. This observation yields a
condition for the incentive compatibility of the prescribed effort. We show that, since lifetime
earnings accumulate the longer the agent obediently exerts effort, and since agent utility is
concave, the pay needed to keep the agent from deviating from a given level of effort increases
with time.

As regards the principal’s optimal contract, the agent’s effort is constant whenever the
principal and agent are sufficiently patient. For lower levels of patience, effort is eventually
decreasing with time. The reason is that the payment required to compensate a given level of
effort gradually increases, as explained above. This means that the contract becomes gradually
less profitable, making it more difficult to sustain agreement at later dates. We thus show that
the payments that the principal can credibly promise eventually decline, and so effort decreases
as well. These effects are novel to contracting settings with private savings, since they are borne
out of the principal’s inability to commit (while existing work assumes full commitment). Also,

4Termination of a productive relationship represents an optimal punishment in the sense that it is as severe
on both players as possible.
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full commitment models generally permit only weak predictions on the timing of payments,
since a principal who fully commits can “save for the agent” which implies indeterminacy on
this dimension.5

Observable consumption. The above dynamics stand in contrast to the case where con-
sumption is instead jointly observed. Note that the possibility for the informal agreement to
condition on consumption enlarges the set of sustainable outcomes for two reasons. One is that
non-constant consumption paths become possible, due to relational incentives on the level of
consumption. The other is that, if the agent plans to deviate from the specified effort at a given
date, he cannot lower his consumption at earlier dates without this being detected, triggering
premature termination of his pay. This effectively reduces the profitability of deviations from
the agreed effort (compared to what the agent could obtain were he able to reduce consumption
at earlier dates and continue being paid).

The dynamics of an optimal relational contract are then as follows. When the players are
sufficiently patient, effort is again constant. For lower discount factors, effort strictly increases
with time. The reason is that the optimal contract stipulates high consumption for the agent
early in the relationship, which drives down the balance on his account. Since the balance on
his savings decreases, the agent needs to be paid less at later dates to keep him willing to work.
Since the principal’s profits in the relationship grow with time, the pay she can credibly offer
increases, and so the contract can call for higher effort.

The key to understanding these dynamics lies in recognizing the value of increasing the
profitability of the relationship at later dates, which in turn relaxes the principal’s credibility
constraint and permits high pay early on. As noted, the channel for increasing future profits
is to induce high consumption by the agent, reducing the balance on his account and making
him more willing to work. We show that this process continues indefinitely, with all contractual
variables converging over time. The limiting contract is a first-best contract; i.e., there are no
distortions in the long run.

Possible interpretations. Our results suggest a possible theory of high conspicuous con-
sumption and low savings that favors the profits of the principal. The idea could be relevant in
industries such as banking, where high remuneration (often through discretionary bonuses) is
accompanied by a propensity for high spending.6 High spending would increase the willingness
of bankers to continue devoting long hours, which seems advantageous to firms and might even
be encouraged by them. For instance, aherence to norms surrounding consumption habits might

5The literature focuses, for convenience, on contracts where the agent consumes what he is paid.
6There are numerous reports of bankers under pressure to engage in high consumption spending. An article

in Huffpost Business notes that bankers appear “under constant social pressure to spend and spend some more”,
‘Bankers Explain How They Cannot Possibly Live On $1 Million Pay’ by Mark Gongloff, Huffpost Business, 1
May 2013, https://www.huffpost.com/entry/bankers-1-million-pay_n_3188177.
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be rewarded by promotion through the firm or perhaps protection from termination.7 In many
respects, this view is similar to Postlewaite (1998), who suggests that pressure to conform with
social norms could, in some circumstances, lead individuals to solve the labor-leisure trade-off
in favor of high consumption and long work hours. As explained by Postlewaite, this norms-
based view can be contrasted with the (perhaps more common) view that high conspicuous
consumption is often explained by signaling.8

Other literature. The literature on relational contracts has been reviewed in MacLeod (2007)
and Malcomson (2015). Notable examples include Levin (2003), Fuchs (2007), Chassang (2010),
Halac (2012), Li and Matouschek (2013), Yang (2013), Malcomson (2016) and Fong and Li
(2017). Unlike our paper, much of the interest in these works lies in the role of exogenous
uncertainty, which is often a source of private information for one of the parties.

As mentioned above, most relational contracting models specify payoffs quasi-linear in pay-
ments. Some papers, such as Pearce and Stacchetti (1998) and Thomas and Worrall (1990),
consider models with risk-averse agents, but do not permit the agent to save.9 Bull (1987)
specifies overlapping generations of agents with concave utility of consumption who can save.
However, this paper does not characterize the optimal contract when the first best is not achiev-
able.

An important driver of dynamics in our model is evolution of the agent’s outside option of
ceasing productive effort and “living off” the balance on his account. The role of the value of the
agent’s outside option in repeated relationships has been emphasized in work such as Baker et al.
(1994) and McAdams (2011). In Baker et al., the outside option is endogenously determined
by the possibility of contracting on objective performance measures, while in McAdams (2011)
it is endogenously determined by the opportunities of partners to a relationship to rematch. In
general, the higher the outside options of the parties to a relationship, the harder it is for a
productive relationship to be sustained. In some papers, as in ours, the outside option evolves
dynamically. An example is Garicano and Rayo (2017), where the agent is paid by increments
in productive knowledge which increases the value of his outside option.10

7In particular, incentives in reality may be less stark than in the equilibrium of our model. At the same
time, there may of course be reasons outside our model to view incentives for high consumption as undesirable.

8More recent theory on consumption as a form of signaling includes Hopkins and Kornienko (2004) and Moav
and Neeman (2012).

9See also Thomas and Worrall (1994), which considers separately cases where the agent can accumulate
capital (arguably akin to saving), and where the agent is risk averse.

10Also related is Fudenberg and Rayo (2019); the agent’s outside option improves over time also due to the
accumulation of knowledge, but the paper focuses on the case where the principal can commit to a long-term
contract.
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2 Setting

Environment and preferences. A principal and agent meet in discrete time at dates t =

1, 2, . . . . Letting r > 0 be the interest rate that will apply to the balance on the agent’s savings
account, we suppose the players have a common discount factor δ = 1

1+r
. In every period t,

first the agent exerts an effort et and consumes an amount ct. Then, the principal makes a
discretionary payment wt to the agent. These variables are all restricted to be non-negative.

The agent has initial savings balance b1 > 0 as well as access to a savings technology (with
the interest rate r as specified above). The initial balance will be common knowledge between
the principal and agent, including in our model of private savings in Section 4. The agent’s
balance at time t+ 1 > 1 then satisfies

bt+1 =
bt + wt − ct

δ
= b1δ

−t +
t∑

s=1

δs−t−1 (ws − cs) . (1)

Balances can, in principle, be negative (i.e., the agent can borrow). We say that the agent’s
intertemporal budget constraint is satisfied in case

∞∑
t=1

δt−1ct ≤ b1 +
∞∑
t=1

δt−1wt. (2)

The agent’s felicity from consumption ct in any period t is denoted v(ct), where v : R+ →
R ∪ {−∞}. We assume that v (c) is real-valued for c > 0, and takes value −∞ at c = 0. We
further assume that v, when evaluated on positive consumption values, is twice continuously
differentiable, strictly increasing and strictly concave. In addition, v is onto all of R, implying
limc↘0 v (c) = −∞.

The agent’s disutility of effort et is ψ(et). We assume that ψ is continuously differentiable,
strictly increasing, strictly convex, and such that ψ(0) = ψ′(0) = 0, and that lime→∞ ψ

′(e) =∞.
The agent’s period-t payoff will be v (ct)−ψ(et), while the principal’s will be et−wt; hence,

we interpret effort as equal to the output enjoyed by the principal.

Relational contracts. We focus for tractability on deterministic relational contracts.11 We
identify relational contracts with their outcomes; denote them (ẽt, w̃t, c̃t, b̃t)t≥1. We restrict
attention to contracts that satisfy the following feasibility constraints.

Definition 2.1. A feasible relational contract is a sequence (ẽt, w̃t, c̃t, b̃t)t≥1 satisfying the fol-
lowing conditions:

11This assumption is in common with some other work such as Ray (2002). In examining contracts that are
optimal for the principal, whether random contracts can improve on deterministic ones might be expected to
depend on the nature of risk aversion (e.g., whether v exhibits increasing or decreasing risk aversion). Our
results for deterministic contracts do not depend on these considerations.
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1. Positivity: ẽt, w̃t, c̃t ≥ 0 for all t.

2. Balance dynamics and constraint: Conditions (1) and (2) hold.

3. Bounded consumption: The sequences of consumption, pay and effort ((c̃t)t≥1, (w̃t)t≥1,
and (ẽt)t≥1) are bounded.

While the first and second conditions reflect features of the environment introduced above,
the third condition guarantees that the players’ payoffs are well-defined in a feasible contract.

3 First best and principal full commitment

Consider first the problem of maximizing the principal’s payoff by choice of a feasible relational
contract subject only to the constraint that the agent is initially willing to participate. If the
agent does not participate, a possibility we describe as “autarky”, we stipulate that he consumes
(1−δ)b1 per period. This is the optimal consumption for the agent among consumption streams
satisfying the intertemporal budget constraint in Equation (2) given that all payments are set to
zero. Therefore, we consider maximizing the principal’s payoff over feasible relational contracts
(ẽt, w̃t, c̃t, b̃t)t≥1 such that the payoff of the agent

∞∑
t=1

δt−1 (v(c̃t)− ψ (ẽt)) (3)

is no lower than his autarky value, 1
1−δv((1− δ)b1).

Proposition 3.1. Consider maximizing the principal’s discounted payoff by choice of feasi-
ble contracts (ẽt, w̃t, c̃t, b̃t)t≥1, subject to ensuring the agent a payoff at least his autarky value

1
1−δv((1 − δ)b1). In any optimal feasible contract, effort and consumption are constant at
eFB(b1) > 0 and cFB(b1) > (1− δ) b1, respectively, being the unique solutions to:

1. First order condition: ψ′(eFB(b1)) = v′(cFB(b1)), and

2. Agent’s indifference condition: v(cFB(b1))− ψ(eFB(b1)) = v((1− δ)b1).

Furthermore, the payoff of the principal is V FB(b1) ≡ 1
1−δ (e

FB(b1) − (cFB(b1) − (1 − δ)b1)),
which is a strictly decreasing function of b1.

The proof of this and other results are provided in the Appendix. Note that the first-best
policies depend on both b1 and δ, since they depend on the value of autarky consumption
(1− δ)b1 (see Condition 2). However, we reduce the notational burden by making dependence
only on b1 explicit. Note also that the proposition does not specify the timing of payments. The
only requirements on payments is that they are feasible and satisfy the agent’s budget constraint
(2) with equality. Payments may be constant, in which case they equal cFB(b1)− (1 − δ)b1 in
each period.
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4 Unobservable consumption

We now suppose the principal can observe the agent’s effort, but not the consumption choices
nor the agent’s balance. Given the absence of commitment, we are interested to determine
feasible relational contracts (ẽt, w̃t, c̃t, b̃t)t≥1 which coincide with outcomes of a perfect Bayesian
equilibrium (PBE) of a dynamic game. These represent the outcomes that are sustainable by
a relational contract, and among which we can consider optimizing the principal’s payoff.

We begin by defining the histories in our game. For t ≥ 0, a t-history for the agent is
hAt = (es, ws, cs)1≤s<t, which gives the observed effort, payments and consumption up until
time t − 1. The set of such histories at date t ≥ 1 is HA

t = R3(t−1)
+ (with the convention that

R0
+ = ∅). Note that, given hAt and the agent’s initial balance b1, we can completely determine

the evolution of the balance up to date t using Equation (1). We denote the date-t balance by
b(hAt ). A t-history for the principal is hPt = (es, ws)1≤s<t. The set of such histories at date t ≥ 1

is HP
t = R2(t−1)

+ .
A strategy for the agent is then a collection of functions

αt : HA
t → R2

+, t ≥ 1,

and a strategy for the principal is a collection of functions

σt : HP
t × R+ → R+, t ≥ 1.

Here, αt maps the t-history of the agent to a pair (et, ct) of effort and consumption. Also, σt
maps the t-history of the principal, together with the agent’s effort choice et, to a payment wt.

As noted above, we will restrict attention to equilibria whose outcomes coincide with a
feasible relational contract. However, we do not restrict the strategies that are available to the
players. Certain strategies imply, for instance, the violation of the agent’s intertemporal budget
constraint in Equation (2). To ensure that the agent finds it optimal to satisfy this constraint,
we make the following assumption on payoffs. While the principal’s payoff is as specified above
(and so given by

∑∞
t=1 δ

t−1 (et − wt)), the agent obtains the payoff
∑∞

t=1 δ
t−1 (v (ct)− ψ (et)) if

the constraint in Equation (2) is satisfied, and obtains payoff −∞ otherwise.12

To obtain the set of feasible relational contracts (ẽt, w̃t, c̃t, b̃t)t≥1 that are PBE outcomes, we
consider PBE where publicly observed deviations from the agreed outcomes are punished by
“autarky”. This means that, if the agent deviates from the agreed effort ẽt, or if the principal
deviates from the agreed payment w̃t, the principal makes no payments and the agent exerts no
effort from then on; the agent perfectly smoothing the balance of his account over the infinite

12Alternative assumptions can be made which yield the same results as documented below. For instance,
another possibility involves permitting negative consumption (assigning it a value −∞ in the agent’s payoff),
but limiting the extent the agent can draw down the balance on his account (i.e., imposing a hard lower bound
on bt − ct).
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future.13 If the agent’s balance is negative when autarky begins, the intertemporal budget
constraint in Equation (2) is necessarily violated (as the agent receives no further payments),
the agent must earn payoff −∞, and so we can specify for instance that the agent consumes zero
in every period. Note that deviations by the agent from the specified consumption, provided
they are not accompanied by any deviation in effort, go unpunished (i.e., the principal continues
to adhere to the payments specified by the agreement).

If the agent plans to always choose effort in accordance with the contract, he optimally
consumes

c̄∞ ≡ (1− δ)
(
b1 +

∞∑
s=1

δs−1w̃s

)
in every period. Clearly, any contract to which the agent is willing to adhere must then specify
c̃t = c̄∞ for all t. To conclude that the agent does not want to deviate from the contract, it is
then enough to show that he does not gain by planning to shirk on effort for the first time at
any given date t, while making all other choices optimally. Suppose then that the agent plans
to shirk for the first time at some date t, and so puts effort equal to ẽs for all s < t, and then
optimally sets it equal to zero at all later dates. Then the agent optimally sets consumption
equal to

c̄t−1 ≡ (1− δ)
(
b1 +

t−1∑
s=1

δs−1w̃s

)
(4)

at all dates, so as to completely smooth consumption and exhaust lifetime earnings.
Given the above, the maximum payoff the agent achieves when deviating in choice of effort

for the first time at date t is

1

1− δ
v(c̄t−1)−

t−1∑
s=1

δs−1ψ(ẽs).

Hence, the agent does not want to deviate from the agreement if and only if, for all t ≥ 1,

1

1− δ
v(c̄t−1)−

t−1∑
s=1

δs−1ψ(ẽs) ≤
1

1− δ
v(c̄∞)−

∞∑
s=1

δs−1ψ(ẽs). (ACun
t )

This is the incentive compatibility condition described in the Introduction.
The principal remains willing to continue abiding by the agreement if and only if, at each

time t, the payment w̃t that is due is less than her continuation payoff in the agreement. The
exact requirement is that, for all t ≥ 1,

w̃t ≤
∞∑

s=t+1

δs−t(ẽs − w̃s). (PCt)

13The reason we can consider autarky punishments is that they deliver the lowest possible individually rational
payoffs for the players.
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The following result states that the above constraints determine whether a feasible relational
contract is the outcome of a PBE.

Proposition 4.1. Fix a feasible contract (ẽt, w̃t, c̃t, b̃t)t≥1. It is the outcome of a PBE if and
only if, for all t ≥ 1, Conditions (ACun

t ) and (PCt) are satisfied, and c̃t = c̄∞.

Necessity of the conditions in the proposition follow for the reasons described above. To
obtain sufficiency, we completely specify PBE strategies and beliefs.

From now on we refer to a contract (ẽt, w̃t, c̃t, b̃t)t≥1 that satisfies the conditions of Proposi-
tion 4.1 as “self-enforceable”.14 Our task reduces to characterizing feasible contracts (ẽt, w̃t, c̃t, b̃t)t≥1

that maximize the principal’s payoff subject to the requirement of being self-enforceable. We
term such contracts “optimal”.

To determine the properties of optimal contracts, we first show that we can restrict attention
to contracts with a particular pattern of payments over time. This pattern involves paying the
agent as early as possible, subject to satisfying the agent’s incentive constraints. This requires
that the agent’s obedience constraints in Condition (ACun

t ) hold with equality for all t ≥ 1.
Inspired by the terminology of Board (2011), we refer to this condition as “fastest payments”.
We show the following.

Lemma 4.1. For any optimal contract, there is another optimal contract (ẽt, w̃t, c̃t, b̃t)t≥1 with
the same sequence of efforts and consumption such that, for all t ≥ 1,

v (c̄t−1)

1− δ
−

t−1∑
s=1

δs−1ψ(ẽs) =
v ((1− δ) b1)

1− δ
. (FPun

t )

An explanation for the result is as follows. First, note that it is optimal to hold the agent
to his outside option, and hence

v (c̄∞)

1− δ
−
∞∑
t=1

δt−1ψ(ẽt) =
v ((1− δ) b1)

1− δ
. (5)

If Condition (5) does not hold, ẽ1 can be slightly increased (keeping the rest of the contract
the same) so that the constraints (ACun

t ) and (PCt) continue to hold for all t. Second, when
(FPun

t ) holds for all t, the agent is paid as early as possible while preserving the constraints
(ACun

t ). The agent cannot be paid earlier, otherwise he will prefer to work obediently for a
certain number of periods, save his income at a higher rate than specified in the agreement,
and then quit by exerting no effort. It is easily seen that moving payments earlier in time only
relaxes the “principal’s constraints” (PCt).

Concerning “fastest payments”, we have the following result.
14We favor this term to “self-enforcing” because that latter would refer to a complete specification of strategies.

9



Lemma 4.2. Consider a feasible relational contract (ẽt, w̃t, c̃t, b̃t)t≥1 that satisfies Condition
(FPun

t ) at all dates. For any t, if ẽt > 0, then

w̃t ∈
(

ψ (ẽt)

v′ (c̄t−1)
,
ψ (ẽt)

v′ (c̄t)

)
. (6)

This lemma implies that (assuming effort remains strictly positive) the ratio w̃t

ψ(ẽt)
increases

with t. The implication is immediate after noticing that c̄t increases with t. One explanation
is as follows. The longer the agent obediently works, the more he is paid in total. Since he can
smooth his consumption of these payments over his entire lifetime, and since he has concave
utility of consumption, he values additional payments less. Therefore, the payments needed to
keep the agent obediently in the relationship, relative to the disutility of effort incurred, increase
with time. This observation will be useful for understanding the shape of optimal relational
contracts below.

Apart from the observation in Lemma 4.2, the usefulness of Lemma 4.1 is that it permits
the design of the relational contract to be reduced to the choice of an effort sequence (ẽt)t≥1.
From (ẽt)t≥1 we can obtain (c̄t)t≥1 using (FPun

t ) (so the corresponding consumption c̃t = c̄∞

is also pinned down). Then (w̃t)t≥1 is obtained from Equation (4), and (b̃t)t≥1 from Equation
(1). We next discuss the implementation of first-best contracts (Section 4.1), before moving to
consider optimal contracts when there is no first-best contract that is self-enforceable (Section
4.2).

4.1 Implementing the first-best outcome

Lemma 4.1 is also useful for understanding the conditions under which the principal obtains
the first-best payoff. For instance, we can observe that the first-best effort and consumption,
which are constant over time and equal to eFB(b1) and cFB(b1), can be implemented when
the principal can commit to the agreement, but the agent cannot commit. For this, we simply
suppose the principal agrees to payments satisfying the conditions in Equation (FPun

t ), provided
the agent chooses effort obediently. Any deviation by the agent from the required effort is met
with zero payments from then on.

Now consider whether the principal can attain the first-best payoff when neither the prin-
cipal nor agent can commit; i.e., whether there is a first-best contract that is self-enforceable.
According to Lemma 4.2, payments to the agent increase over time. In the long run, payments
approach

ψ
(
eFB(b1)

)
v′ (cFB(b1))

.

Because the principal’s constraints (PCt) tighten over time, verifying they are always satisfied
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amounts to verifying that

ψ
(
eFB(b1)

)
v′ (cFB(b1))

≤ δ

1− δ

(
eFB(b1)−

ψ
(
eFB(b1)

)
v′ (cFB(b1))

)
. (7)

The right-hand side is the limiting value of the principal’s future discounted profits in the
agreement, while the left-hand side is the limiting value of the payment to the agent. Because
there is no loss in restricting attention to “fastest payments” (due to Lemma 4.1), this condition
is also necessary, and so we have the following result.

Proposition 4.2. Suppose that neither the principal nor agent can commit to the terms of the
agreement and that consumption is unobservable. Then the principal attains the first-best payoff
in an optimal contract if and only if Condition (7) is satisfied.

While understanding the parameter range for which Condition (7) holds is clearly important
for understanding optimal contracts, this is complicated by the dependence of the first-best
policy on both b1 and δ. Nonetheless, if we vary δ while allowing b1 to adjust, holding b1 (1− δ)
constant, then the first-best consumption and effort remain constant. There is then a threshold
value of δ above which Condition (7) is satisfied, and below which it fails.

4.2 Main characterization for unobservable consumption

We now state our main result for the unobservable consumption case, which is a characterization
of optimal effort when the first-best effort cannot be sustained.

Proposition 4.3. An optimal relational contract exists. Suppose the principal cannot attain
the first-best payoff in a self-enforceable contract (i.e., Condition (7) is not satisfied). Then,
for any optimal contract, there is a date t̄ ≥ 1 such that effort is constant up to this date, and
is subsequently strictly decreasing. Effort converges to a value ẽ∞ > 0 in the long run. There
exist b1 and δ such that, for any optimal contract, the value t̄ is strictly greater than one; in
particular, effort can indeed be constant in the initial periods.15

The dynamics of optimal effort when the principal cannot attain the first-best payoff can be
explained as follows. There may be some initial periods when the effort is constant. This occurs
if the principal’s constraint (PCt) is initially slack. Given that we consider “fastest payments”,
the payments rise over these periods for the reasons discussed in relation to Lemma 4.2. Given
the principal cannot achieve the first-best payoff, it turns out that the principal’s constraint
eventually binds, and so payments must be reduced. This is only possible by reducing the level
of effort. Note that how much effort can be asked without violating the principal’s constraint

15The proof shows that effort is initially constant in an optimal contract for values of b1 and δ close to those
for which the principal can attain the first-best payoff.
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depends on the future profitability of the relationship. Profitability declines over time, both
because higher payments must be made relative to the agent’s disutility of effort (see Lemma
4.2), and because the effort that can be requested is less. The fact that profitability declines
contributes to the decline in effort, which creates a feedback loop.

Our approach to proving Proposition 4.3 relies on variational arguments. For contracts that
fail to exhibit the dynamics described in the proposition, we construct more profitable contracts
satisfying all the constraints in Proposition 4.1. We demonstrate some of these arguments below.

One useful result towards establishing Proposition 4.3 links the dynamics of effort to the
dates at which the principal’s constraint (PCt) is slack (rather than holding with equality).

Lemma 4.3. Suppose that (ẽt, c̃t, w̃t, b̃t)t≥1 is an optimal relational contract. Suppose that the
principal’s constraint is slack at t∗, i.e. w̃t∗ <

∑∞
s=t∗+1 δ

s−t∗ (ẽs − w̃s). Then, ẽt∗+1 ≤ ẽt∗; also,
if t∗ > 1, then ẽt∗−1 ≤ ẽt∗.

The proof (in the Appendix) proceeds by showing that, if the conclusion of the lemma fails,
then effort can be smoothed raising the principal’s profits. Such smoothing is profitable given
that the disutility of effort is strictly convex (so that differences in effort across periods are
inefficient). An immediate implication of the lemma is that effort is constant over any sequence
of periods for which the principal’s constraint is slack, explaining why effort may be constant
in the initial periods.

A further key part of the proof of Proposition 4.3 is to show that effort strictly decreases
from a finite date t̄ onwards. The main steps of this argument can be explained as follows.
Building on Lemma 4.3, we are able to show (in Lemma A.5 in the Appendix) that effort is
weakly decreasing with time. Lemma A.6 then establishes that, if the principal’s constraint
(PCt) holds with equality at some date t̂, then ẽt̂+1 < ẽt̂ and the constraint holds with equality
also at t̂+ 1. Hence effort strictly decreases from t̂ onwards.

The argument for Lemma A.6 can be summarized as follows. By assumption, the principal’s
constraint (PCt) at date t̂ holds as an equality, i.e.

w̃t̂ =
∞∑

s=t̂+1

δs−t̂ (ẽs − w̃s) .

We are able to show that ẽt̂+1 − w̃t̂+1 > ẽs − w̃s for all s > t̂ + 1. This follows because
ψ′ (ẽt) ≤ v′ (c̄∞) for all t (as established in Lemma A.1), because effort is weakly decreasing
over time (as noted above), and making use of Lemma 4.2 (which recall implies that the ratio
of payments to disutility of effort increases with time). Therefore,

w̃t̂ =
∞∑

s=t̂+1

δs−t̂ (ẽs − w̃s) >
∞∑

s=t̂+2

δs−t̂−1 (ẽs − w̃s) ≥ w̃t̂+1

12



where the second inequality is the principal’s constraint (PCt) at date t̂ + 1. Hence, (again
using Lemma 4.2) effort is strictly lower in period t̂+ 1 (i.e., ẽt̂+1 < ẽt̂). In turn, using Lemma
4.3, the principal’s constraint must hold again with equality at t̂+ 1. So we have shown that, if
the principal’s constraint holds with equality at a given date, it must hold with equality from
then on, and so effort strictly decreases with time.

The above argument assumes that the principal’s constraint (PCt) holds with equality at
some date. To show this must in fact be the case when the principal cannot attain the first-best
payoff, we assume the contrary. Then Lemma 4.3 implies that optimal effort is constant at all
dates, say at a value ẽ∞ (using the notation of the proposition). Letting the payments and the
equilibrium consumption c̄∞ be determined by Equation (FPun

t ), payments increase over time,
and converge to ψ(ẽ∞)

v′(c̄∞)
. The principal’s constraint (PCt) is then satisfied at all dates if and only

if
ψ (ẽ∞)

v′ (c̄∞)
≤ δ

1− δ

(
ẽ∞ −

ψ (ẽ∞)

v′ (c̄∞)

)
,

where the left-hand side can be read as the limiting payment to the agent, while the right-hand
side is the limiting NPV of future profits to the principal. For the most profitable choice of a
constant effort ẽ∗∞, this inequality holds as equality. The principal’s constraints (PCt) tighten
over time, but never hold with equality.

Because effort is below the first-best level, we have ψ′ (ẽ∗∞) < v′ (c̄∗∞), with c̄∗∞ the level of
agent consumption that corresponds to a contract with constant effort ẽ∗∞. It follows that any
sufficiently small adjustment to the effort policy that raises the NPV of effort, together with
a change in payments that leaves the agent’s payoff in the contract unchanged, raises profits.
We therefore suggest a perturbation to the constant-effort contract (see Lemma A.7 in the
Appendix) that increases the NPV of effort, but (assuming that payments continue to satisfy
(FPun

t )) leaves the principal’s constraints (PCt) intact. To be more precise, we consider increas-
ing effort by a little at date one and lowering it by a constant amount in future periods. If we
only raise effort at date one, leaving other effort values unchanged and assuming that payments
are adjusted to satisfy (FPun

t ) at all dates, the principal’s constraint (PCt) is eventually vio-
lated (since v is strictly concave and total pay increases, it becomes more costly to compensate
the agent for his effort; in particular, payments must increase in all periods). Therefore the
reduction in effort at future dates is a “correction” intended to relax the principal’s constraint
(PCt) when it is tightest.

We have established then that, when the first-best payoff is not attainable, the principal’s
constraint (PCt) holds with equality from some date onwards. At these dates, the principal is
indifferent between paying the agent and reneging. This feature is the same as in the optimal
contracts of Ray (2002) who provides, in a quite general (though distinct) relational contracting
environment, a sense in which agent payoffs are backloaded.

It remains to translate the findings of Proposition 4.3 into predictions for payments and the
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agent’s balance. Note however, that while Lemma 4.1 tells us it is optimal for Condition (FPun
t )

to hold at all dates, other contracts with a different timing for payments may be optimal. We
therefore provide a partial converse for Lemma 4.1.

Proposition 4.4. Suppose the principal cannot attain the first-best payoff in a self-enforceable
contract. Fix any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1 and let t̄ be the date from which effort is
strictly decreasing (see Proposition 4.3). Then, Condition (FPun

t ) holds for all t > t̄. Payments
to the agent strictly decrease from date t̄+1 onwards, while the agent’s balances strictly increase.

The reason payments satisfying Condition (FPun
t ) are strictly decreasing from date t̄+ 1 is

explained above. The fact that the agent’s balance increases over time then follows straight-
forwardly from Equation (1) and from Equation (2) taken to hold with equality. In particular,
note that

b̃t =
c̄∞

1− δ
−
∑
τ≥t

δτ−tw̃τ

which strictly increases with t when payments fall over time.
Note that, when t̄ > 1, the principal’s constraint (PCt) is initially slack. In this case,

Condition (FPun
t ) need not hold at t < t̄, and so payments before date t̄ are not uniquely

determined. When this “fastest payments” condition is nonetheless taken to hold, payments in
fact increase over time up to date t̄ (as was mentioned above).

5 Observed consumption

We now study the case where, at each time t, before making the payment wt, the principal can
observe the agent’s past and present-period effort choices (es)

t
s=1 as well as past and present-

period consumption choices (cs)
t
s=1. Since payments and consumption are commonly observed,

the balance bt at the beginning of each period t is also commonly known (as deduced from
Equation (1)).

The game is now one of complete information, and we consider sub-game perfect Nash
equilibrium (SPNE). Both players observe at date t the history ht = (es, ws, cs)1≤s<t. The set
of such histories at each date t is Ht = R3(t−1)

+ . Re-using notation from Section 4 introduces no
confusion, so we describe a strategy for the agent as a collection of functions

αt : Ht → R2
+, t ≥ 1,

and a strategy for the principal as a collection of functions

σt : Ht × R2
+ → R+, t ≥ 1.

Here, αt maps the public t-history to a pair (et, ct) of effort and consumption. Also, σt maps
the public t-history, together with the observed effort and consumption choices (et, ct) of the
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agent, to a payment wt. We assume that payoffs are as specified in Section 4 (i.e., the agent
earns a payoff −∞ in case his intertemporal budget constraint (2) is violated).

Again we identify a relational contract with the equilibrium outcomes, and we want to
characterize contracts that maximize the principal’s payoff. A first step is then to determine
equilibrium outcomes (ẽt, c̃t, w̃t, b̃t)t≥1 that are feasible relational contracts. Analogous to the
arguments made in the previous section, we begin supposing deviations from the agreed out-
comes are punished by “autarky”. That is, when either player deviates from the contract, all
future effort and payments cease, and the agent perfectly smooths his balance over time. In
autarky, the agent consumes bt (1− δ) when his balance is bt > 0, and we specify zero consump-
tion in case the balance is bt ≤ 0 (in the latter case, the agent can only obtain a payoff of −∞
since violating the intertemporal budget constraint in Equation (2) implies this payoff; hence
we might as well set consumption to zero). Now, autarky follows not only deviations in effort
and payments, but also in consumption.

Suppose that the agreed contract is (ẽt, c̃t, w̃t, b̃t)t≥1, and deviations are punished by autarky.
The agent’s payoff, if complying until date t−1 and optimally failing to comply from t onwards,
is now

t−1∑
s=1

δs−1(v(c̃s)− ψ(ẽs)) + δt−1v(max{0, (1− δ)b̃t})
1− δ

.

This takes into account that the agent who deviates at date t optimally exerts no effort from
then on, and consumes max{0, (1 − δ)b̃t} per period as explained above. Thus, the agent is
willing to follow the prescription of the contract if and only if, at all dates t,

v(max{0, (1− δ)b̃t})
1− δ

≤
∞∑
s=t

δs−t(v(c̃s)− ψ(ẽs)). (ACob
t )

The reason for the difference to Condition (ACun
t ) is that publicly honoring the agreement up

to date t− 1 ensures that the agent begins period t with the specified balance b̃t, which in turn
determines the wealth he has available to spend in autarky. Condition (ACun

t ), on the other
hand, takes into account that the agent who plans to publicly deviate at date t (by shirking on
effort) can save in advance for this event, because consumption is not observed.

We can characterize equilibrium outcomes as follows.

Proposition 5.1. Fix a feasible contract (ẽt, w̃t, c̃t, b̃t)t≥1. It is the outcome of an SPNE in the
environment where consumption is observed if and only if, for all t ≥ 1, Conditions (ACob

t ) and
(PCt) are satisfied.

Notice here that the principal’s constraint (PCt) is the one in Section 4. A feasible contract
(ẽt, w̃t, c̃t, b̃t)t≥1 satisfying the conditions in the proposition is again termed “self-enforceable”
and a self-enforceable contract that maximizes the principal’s payoff is “optimal”. We can now
state a result similar to Lemma 4.1.

15



Lemma 5.1. For any optimal contract, there exists another optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1

with the same effort and consumption, with b̃t > 0 for all t, and where the timing of payments
ensures that agent constraints hold with equality in all periods; that is, for all t ≥ 1,

v(b̃t(1− δ))
1− δ

=
∞∑
s=t

δs−t (v (c̃s)− ψ (ẽs)) . (8)

Lemma 5.1 implies that we can focus on relational contracts where, for all t ≥ 1,

1
1−δv((1− δ)b̃t) = v(c̃t)− ψ(ẽt) + δ

1−δv((1− δ)b̃t+1). (FPob
t )

This says that the agent is indifferent between quitting at date t (i.e., ceasing to exert effort)
and smoothing the balance b̃t optimally over the infinite future, and instead working one more
period, exerting effort ẽt and consuming c̃t, before quitting at date t + 1 and smoothing the
balance b̃t+1 over the infinite future.

5.1 Implementing the first-best outcome

Let us turn now to the question of when the principal can attain the first-best payoff in a self-
enforceable relational contract. By Lemma 5.1, we can focus on payments such that Equation
(8) is satisfied at all dates. Given effort and consumption constant at the first-best levels
eFB(b1) and cFB(b1), the agent’s balance is constant and equal to b1. Therefore, the payment
is constant over time and equal to wFB (b1) ≡ cFB(b1)− (1− δ)b1. The principal’s continuation
payoff in the contract is constant and equal to

V FB (b1) =
eFB(b1)− wFB (b1)

1− δ
.

Using these observations, we have the following result.

Proposition 5.2. Suppose that consumption is observable. Then the principal attains the first-
best payoff in an optimal relational contract if and only if

wFB (b1) ≤ δ

1− δ
(
eFB(b1)− wFB (b1)

)
. (9)

Condition (9) is more easily satisfied than Condition (7) (the condition for the unobservable
consumption case). This follows immediately from showing that

wFB (b1) <
ψ
(
eFB (b1)

)
v′ (cFB (b1))

. (10)
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t

w̃t

wFB(b1)

ψ(eFB(b1))
v′(cFB(b1))

Figure 1: Payments for optimal relational contracts satisfying fastest payments when Equation
(7) holds (and so the the principal obtains his first-best payoff), in the unobservable case
(crosses) and observable case (circles).

Here, wFB (b1) is the constant payment to the agent in the observed-consumption case, as

specified above. On the other hand,
ψ(eFB(b1))
v′(cFB(b1))

is the limiting payment for the unobserved-
consumption case (assuming that payments satisfy the “fastest payments” condition in Equation
(FPun

t )).
The key insight is that, in the observed-consumption case, the principal’s constraints (PCt)

are identical in every period, since payments remain constant. In contrast, in the unobserved-
consumption case, we saw that they tighten over time. After enough time, the payments in
the unobserved-consumption case exceed the constant payments in the observed-consumption
case (note that the NPV of payments in both cases is the same), which makes the principal’s
constraints more difficult to satisfy. Figure 1 illustrates the payments in optimal contracts
achieving the first-best payoff for the principal in the unobserved and observed consumption
cases.

The reason the fastest payments are later in the unobserved consumption case can be un-
derstood as the agent having available more attractive deviations: in particular, the agent can
plan to deviate in effort at a given date, reducing consumption from the initial date without this
being detected by the principal. In the observed-consumption case, deviations in consumption
instead trigger autarky immediately.

To derive the inequality (10) formally, observe that by concavity of v, and because cFB (b1) >

(1− δ) b1, we have

v
(
cFB(b1)

)
−v ((1−δ) b1) > v′

(
cFB(b1)

)(
cFB (b1)−(1−δ) b1

)
= v′

(
cFB(b1)

)
wFB(b1).

The result then follows because the first-best effort and consumption satisfy v
(
cFB (b1)

)
−

v ((1− δ) b1) = ψ
(
eFB

(
b1

))
by Condition 2 of Proposition 3.1.
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5.2 Optimal contract with observed consumption

Now consider the problem of characterizing an optimal contract when the principal’s first-best
payoff is not attainable. We can consider the “fastest payments” as given in Lemma 5.1. It
is convenient to write the principal’s problem recursively, with the balance b̃t a state variable
for the relationship, applying the principle of optimality. Indeed, suppose for some date t that
the continuation contract (ẽs, w̃s, c̃s, b̃s)s≥t does not maximize the continuation value of the
relationship to the principal

∑∞
s=t δ

s−t (es − ws), subject to it being self-enforceable; i.e., there
is some more profitable self-enforceable continuation contract (ẽ′s, w̃

′
s, c̃
′
s, b̃
′
s)s≥t with b̃′t = b̃t,

which can be taken to satisfy the agent’s indifference conditions (8) at all dates. Then this
contract can be substituted, increasing the continuation value

∑∞
s=t δ

s−t (es − ws) (and hence
the principal’s payoff in the contract overall), maintaining the agent indifference conditions (8)
at all dates, and continuing to satisfy the principal’s constraints (PCt).

Since an optimal contract maximizes the principal’s continuation profits, an optimal contract
(ẽt, w̃t, c̃t, b̃t)t≥1 must solve a sequence of sub-problems with value V (b̃t) given by

V (b̃t) = max
et,bt+1,ct∈R+

(
et − (δbt+1 − b̃t + ct) + δV (bt+1)

)
(11)

subject to the agent’s indifference condition

v(ct)− ψ(et) + δ
1−δv((1− δ)bt+1) = 1

1−δv((1− δ)b̃t). (12)

and to the principal’s constraint

δbt+1 − b̃t + ct ≤ δV (bt+1) . (13)

The left-hand side of (13) can be understood as the date-t payment wt, which is divided into
date-t consumption ct ∈ R+ and savings δbt+1 − bt ∈ R. Non-negativity of the payment
δbt+1− b̃t + ct is assured by the equality (12) and the concavity of v. The same equality ensures
that, given b̃t is strictly positive, optimal ct and bt+1 must be strictly positive also.

We show that any optimal policy for the principal can be characterized as follows.

Proposition 5.3. An optimal contract exists. Suppose that, given the balance b1, an optimal
contract (ẽt, w̃t, c̃t, b̃t)t≥1 fails to obtain the first-best payoff V FB (b1). Then the agent’s balance
b̃t and consumption c̃t decline strictly over time, with b̃t → b̃∞ for some b̃∞ > 0. Effort ẽt
and the payments w̃t determined by the Conditions (8) increase strictly over time. We have
V (b̃t) → V FB(b̃∞) as t → ∞, and effort and consumption converge to first-best levels for the
balance b̃∞.

A heuristic account of the forces behind this result is as follows. When the principal’s
constraint ((PCt) or equivalently (13)) binds, effort is suppressed. That is, if the principal could
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increase effort and credibly increase payments to keep the agent as well off, she would gain by
doing so. Also, the principal’s value function V (·) is strictly decreasing; intuitively, because a
lower balance makes the agent cheaper to compensate to keep him in the agreement. Therefore,
for any date t, reducing the balance bt+1 increases the principal’s continuation payoff V (bt+1)

and relaxes the principal’s date-t constraint (13). Therefore, the principal asks the agent to
consume earlier than he would like, driving the balance down over time. This continues to a
point where, given the revised balance, the contract is close to first best, and so the value of
continuing to distort consumption vanishes.

It is worth pointing out here that the dynamics of V (b̃t) are determinative of both the
dynamics of effort and payments. When there is no self-enforceable first-best contract, V (b̃t)

strictly increases with t, and moreover the principal’s constraint (13) binds. The latter implies
that, for all t, both w̃t = δV (b̃t+1) and V (b̃t) = ẽt − w̃t + δV (b̃t+1) = ẽt.16

A further part of our analysis worth highlighting is an Euler equation

1− v′((1− δ)b̃t+1)

v′ (c̃t)
=
v′ (c̃t+1)

ψ′ (ẽt+1)

(
1− v′((1− δ) b̃t+1)

v′ (c̃t+1)

)
(14)

which must hold for an optimal contract at all dates t, and which we use to derive several key
properties. This condition is derived (in Lemma A.11) by fixing the contract at and before
t− 1, and from date t+ 2 onwards, and then requiring the contractual variables at t and t+ 1

to be chosen optimally. The equation captures the relationship between a static distortion in
effort and a dynamic distortion in consumption. In particular, when the principal’s first-best
payoff cannot be attained, we are able to show that ψ′ (ẽt+1) < v′ (c̃t+1) for all t (reflecting
a static (downward) distortion in effort), and correspondingly (1− δ) b̃t+1 < c̃t+1 < c̃t (i.e.,
consumption strictly decreases over time, which is a dynamic distortion). A trade-off between
the static and dynamic distortions should be anticipated, since asking the agent to consume
excessively early in the relationship increases the agent’s marginal utility of consumption later
on, which makes him easier to motivate and permits higher effort and profits at later dates.
In turn, this relaxes the principal’s credibility constraint (PCt), permitting higher payments
and therefore effort also early in the relationship. As b̃t → b̃∞, consumption falls to its lower
bound, becoming almost constant, so v′(c̃t+1)

ψ′(ẽt+1)
→ 1, which accords with convergence of effort and

consumption to first-best levels.
Finally, analogous to Proposition 4.4, we provide a result on the uniqueness of the timing

of payments.

Proposition 5.4. Suppose the principal cannot attain the first-best payoff in a self-enforceable
16Note that the conclusion the the principal’s constraint (13) binds is obtained under the assumption that

Conditions (FPob
t ) hold at all dates; but we establish in Proposition 5.4 below that the satisfaction of Conditions

(FPob
t ) is necessary for optimality.
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relational contract. Then, in any contract that is optimal for the principal, Condition (FPob
t )

holds at all dates. Hence payments to the agent strictly increase over time.

The logic of this result is that, if the Condition (FPob
t ) fails, then payments can be made

earlier in time, while maintaining the agent constraints (ACob
t ). This induces slack in the

principal’s constraint (PCt), which can then be exploited by increasing payments, consumption
and effort, increasing profits. As noted for the case of unobservable consumption, such an
observation is related to arguments in Ray (2002).

6 Conclusions

This paper has studied optimal relational contracts in a simple deterministic setting where the
agent has consumption-smoothing preferences and can save. We contrasted the case where the
agent’s consumption is unobservable to the principal and where consumption is observed. In the
case where consumption is unobservable, we found that the relationship eventually becomes less
profitable with time, implying that the payments the principal can credibly offer must decline.
Hence effort eventually declines with time. When consumption is instead observable, the agent
consumes inefficiently early (i.e., saves too little), the balance on his savings account gradually
declines, the relationship becomes more profitable as the agent grows easier to incentivize,
payments to the agent gradually increase, and the agent’s effort increases. The contract when
the principal observes the agent’s consumption is a Pareto improvement on the one when it is
not observed. This is in spite the fact there is an additional source of distortion, namely in the
timing of consumption. This distortion is more than offset by an improvement in the provision
of incentives.
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A Appendix: Omitted proofs

Proof of Proposition 3.1. The proof is standard and so relegated to the Online Appendix.

A.1 Proofs of the results in Section 4.

Proof of Proposition 4.1. Necessity follows the arguments in the main text. Sufficiency is
obtained by explicitly constructing equilibria. See the Online Appendix.

Proof of Lemma 4.1

Proof. Fix an optimal relational contract (ẽt, c̃t, w̃t, b̃t)t≥1; that is, a feasible contract that max-
imizes the principal’s discounted payoff subject to the conditions of Proposition 4.1. Then
Condition (5) holds, as explained in the main text. Hence, if

v (c̄t−1)

1− δ
−

t−1∑
s=1

δs−1ψ(ẽs) (15)

exceeds v(b1(1−δ))
1−δ at any date t, then the inequality (ACun

t ) must not be satisfied; i.e., the
conditions of Proposition 4.1 are not satisfied.

Finally, suppose that the expression (15) is strictly less than v(b1(1−δ))
1−δ at some increasing

sequence of dates (tn)Nn=1, where N may be finite or infinite. For each n, there is εn > 0 such
that

1

1− δ
v(c̄tn−1 + δtn−2εn(1− δ))−

tn−1∑
s=1

δs−1ψ(ẽs) =
v (b1 (1− δ))

1− δ
.

Increase w̃tn−1 by εn, and reduce w̃tn by εn
δ
; note that this leads to a change in c̄tn−1, but does

not affect c̄t for t 6= tn. After this adjustment has been made for each n, we have a relational
contract for which the expression (15) is equal to v(b1(1−δ))

1−δ at all dates t. Also, because ψ is non-
negative, c̄t must be a non-decreasing sequence, and hence all payments w̃t in the new relational
contract are non-negative. Hence, the new contract is feasible, and we have observed that the
agent’s constraints (ACun

t ) are satisfied. Also, the principal’s constraints (PCt) are satisfied.
To see the latter, note that these constraints are affected by the adjustments to the original
contract only at dates satisfying t = tn for some n. At such dates the principal’s constraint is
slackened by the amount εn

δ
.
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Proof of Lemma 4.2

Proof. Observe from Condition (FPun
t ) evaluated at consecutive dates, we have

v (c̄t−1 + (1− δ) δt−1w̃t)− v (c̄t−1)

1− δ
= δt−1ψ (ẽt) .

By the Fundamental Theorem of Calculus, we have∫ w̃t

0

v′
(
c̄t−1 + (1− δ) δt−1x

)
dx = ψ (ẽt)

and hence
kw̃t = ψ (ẽt)

for k ∈ (v′ (c̄t) , v
′ (c̄t−1)), which proves the result.

Proof of Lemma 4.3

Proof. Proof that ẽt∗+1 ≤ ẽt∗. Suppose, for the sake of contradiction, that ẽt∗+1 > ẽt∗ . We
can choose a new contract with efforts (ẽ′t)t≥1, and payments (w̃′t)t≥1 chosen to satisfy Equation
(FPun

t ), such that they coincide with the original policy except in periods t∗ and t∗+1. In these
periods, ẽ′t∗ and ẽ′t∗+1 are such that ẽt∗ < ẽ′t∗ ≤ ẽ′t∗+1 < ẽt∗+1 and

ψ (ẽ′t∗) + δψ
(
ẽ′t∗+1

)
= ψ (ẽt∗) + δψ (ẽt∗+1) ,

which implies (by convexity of ψ) that ẽ′t∗ + δẽ′t∗+1 > ẽt∗ + δẽt∗+1. We then have also that
w̃t∗ < w̃′t∗ and w̃′t∗ + δw̃′t∗+1 = w̃t∗ + δw̃t∗+1 (since the NPV of payments does not change,
equilibrium consumption does not change in any period t; so the balance at date t∗+ 1 is larger
under the new contract). Provided the changes are small, the principal’s constraint (PCt) at t∗

remains satisfied. The above observations imply w̃′t∗+1 < w̃t∗+1, so the principal’s constraint is
relaxed at date t∗+1. Since the NPV of output goes up, the principal’s constraint is relaxed at
all periods before t∗.17 The contract after date t∗+1 is unaffected. The modified contract is thus
self-enforceable, and it is strictly more profitable than the original, establishing a contradiction.

Proof that ẽt∗−1 ≤ ẽt∗. Analogous and omitted.

Proof of Propositions 4.2 and 4.3

Proof. The remaining steps in the proof of Proposition 4.3 are divided into nine lemmas. The
proof of Proposition 4.2 is provided in the process, in Lemma A.7. Throughout, we restrict

17Note that, for the new contract, the principal’s constraint at any date t̂ may be written as
∑∞
t=t̂ δ

t−t̂w̃′t ≤∑∞
t=t̂+1 δ

t−t̂ẽ′t. For t̂ < t∗ this inequality is satisfied strictly since
∑∞
t=t̂ δ

t−t̂w̃′t =
∑∞
t=t̂ δ

t−t̂w̃t, while∑∞
t=t̂+1 δ

t−t̂ẽ′t >
∑∞
t=t̂+1 δ

t−t̂ẽt.
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attention to payments determined under the restriction to “fastest payments”, i.e. satisfying
Condition (FPun

t ). Proofs of Lemmas A.4-A.7 are provided in the main text, while the others
are in the Online Appendix.

The following result provides a bound on effort in an optimal contract.

Lemma A.1. In an optimal contract, ψ′ (ẽt) ≤ v′ (c̄∞) for all t.

This observation is used to prove existence of an optimal contract.

Lemma A.2. An optimal relational contract exists.

We then establish the following regarding the non-degeneracy of optimal contracts.

Lemma A.3. The principal obtains a strictly positive payoff in any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1.
Moreover, ẽt and w̃t are strictly positive at all dates t.

We now establish an important property of relational contracts: they become (approxi-
mately) stationary in the long run.

Lemma A.4. Suppose that (ẽt, c̃t, w̃t, b̃t)t≥1 is an optimal relational contract satisfying (FPun
t ).

Then, there exists an effort/payment pair (ẽ∞, w̃∞) such that limt→∞ (ẽt, w̃t) = (ẽ∞, w̃∞).

Proof. Step 0. In this step we observe that, for an optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1 satisfying
(FPun

t ),

lim
t→∞

(
w̃t −

ψ (ẽt)

v′ (c̄∞)

)
= 0.

This follows from Lemma 4.2, after noticing that (ẽt)t≥1 is bounded in an optimal contract.

Step 1. Define ē ≡ lim supt→∞ ẽt, which we know from Lemma A.1 is no greater than
z (v′ (c̄∞)), where z is the inverse of ψ′. We now show that, for any e ∈ [0, ē],

ψ (e)

v′ (c̄∞)
≤ δ

1− δ

(
e− ψ (e)

v′ (c̄∞)

)
. (16)

Note, by convexity of ψ, if the inequality (16) is satisfied at ē, then it is satisfied for all e ∈ [0, ē].
Assume now for the sake of contradiction that the inequality (16) is not satisfied for some
e ∈ [0, ē]. Then we must have

ψ (ē)

v′ (c̄∞)
>

δ

1− δ

(
ē− ψ (ē)

v′ (c̄∞)

)
. (17)
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Observe then that there is a sequence (εt)
∞
t=1 convergent to zero such that, for all t ≥ 1,

ẽt − w̃t ≤ ē− ψ (ē)

v′ (c̄∞)
+ εt.

This follows because w̃t− ψ(ẽt)
v′(c̄∞)

→ 0 as t→∞ (by Step 0), because e− ψ(e)
v′(c̄∞)

increases over effort
levels e in [0, ē] (since ψ′ (ē) ≤ v′ (c̄∞) by Lemma A.1), and by definition of ē as lim supt→∞ ẽt.
We therefore have that

lim sup
t→∞

∞∑
s=t+1

δs−t (ẽs − w̃s) ≤
δ

1− δ

(
ē− ψ (ē)

v′ (c̄∞)

)
<

ψ (ē)

v′ (c̄∞)
,

where the last inequality holds by Equation (17). However, Step 0 implies that the superior
limit of payments to the agent must be ψ(ē)

v′(c̄∞)
, which implies that the principal’s constraint

(PCt) is not satisfied at some time t. This contradicts the definition of ē as lim supt→∞ ẽt.

Step 2. We complete the proof by showing that lim inft→∞ ẽt = ē. This is immediate if ē = 0,
so assume ē > 0. Assume, for the sake of contradiction, that lim inft→∞ ẽt < ē. In this case,
there exists some t′ > 1 such that ẽt′ < min {ē, ẽt′+1}.

Step 2a. We have

w̃t′ ≤
δ

1− δ

(
ẽt′+1 −

ψ (ẽt′+1)

v′ (c̄∞)

)
. (18)

This follows because (i) w̃t′ ≤ ψ(ẽt′ )
v′(c̄∞)

by Lemma 4.2 and the assumption that payments satisfy

condition (FPun
t ); (ii) ψ(ẽt′ )

v′(c̄∞)
≤ δ

1−δ

(
ẽt′ − ψ(ẽt′ )

v′(c̄∞)

)
, by assumption that ẽt′ < ē and by Step 1;

and (iii) ẽt′ − ψ(ẽt′ )
v′(c̄∞)

≤ et′+1−
ψ(ẽt′+1)

v′(c̄∞)
because z (v′ (c̄∞)) ≥ ẽt′+1 > ẽt′ (recall that the inequality

z (v′ (c̄∞)) ≥ ẽt′+1 is established in Lemma A.1).

Step 2b. We now show that the principal’s constraint (PCt) is slack at t′. Note first that, for
any t ≥ 1, we have

w̃t+1 − w̃t =
c̄t+1 − c̄t
δt(1− δ)

− c̄t − c̄t−1

δt−1(1− δ)

≥ v(c̄t+1)− v(c̄t)

δt(1− δ)v′(c̄t)
− v(c̄t)− v(c̄t−1)

δt−1(1− δ)v′(c̄t)

=
ψ(ẽt+1)− ψ(ẽt)

v′(c̄t)
,

where we used that v is concave and Lemma 4.2. Hence, we have that ẽt+1 > ẽt implies
w̃t+1 > w̃t.
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Since t′ was chosen so that ẽt′+1 > ẽt′ , we have w̃t′+1 > w̃t′ . Hence,

w̃t′ < (1− δ) w̃t′ + δw̃t′+1

≤ δ

(
ẽt′+1 −

ψ (ẽt′+1)

v′ (c̄∞)

)
+ δ

∞∑
s=t′+2

δs−t
′−1 (ẽs − w̃s)

≤
∞∑

s=t′+1

δs−t
′
(ẽs − w̃s) ,

where the second inequality uses (i) Equation (18) from Step 2a, and (ii) the principal’s con-
straint (PCt) in period t′ + 1. The third inequality uses that w̃t′+1 ≤

ψ(ẽt′+1)

v′(c̄∞)
, which follows

from Lemma 4.2.

Step 2c. We finish the proof with the following observation. The fact the principal’s constraint
(PCt) is slack at time t′ (proven in Step 2b) contradicts Lemma 4.3, since effort is strictly higher
at t′ + 1 than at t′.

The following lemma determines that, in an optimal contract, effort is weakly decreasing
(as mentioned in the main text).

Lemma A.5. In an optimal contract, the effort policy (ẽt)t≥1 is a weakly decreasing sequence.
Therefore, for all t, ẽt ≥ ẽ∞ ≡ lims→∞ ẽs.

Proof. By Lemma A.4, (ẽt)
∞
t=1 is a convergent sequence, so using the notation in its proof, we

have ẽ∞ = ē. Step 2 in the proof of Lemma A.4 proves that there is no time t′ such that
ẽt′ < min {ē, ẽt′+1}. Hence, there is no t′ such that ẽt′ < ẽ∞.

Now suppose, for the sake of contradiction, that (ẽt)
∞
t=1 is not a weakly decreasing sequence.

Thus, there exists a date t′ where maxt>t′ ẽt > ẽt′ (the maximum exists by the first part of this
proof, and because limt→∞ ẽt = ẽ∞ by Lemma A.4). Let t∗ (t′) be the smallest value t > t′

where the maximum is attained, that is, ẽt∗(t′) = maxt>t′ ẽt.
For any s > t∗(t′),

ẽt∗(t′) − w̃t∗(t′) > ẽt∗(t′) −
ψ(ẽt∗(t′))

v′(c̄t∗(t′))
≥ ẽt∗(t′) −

ψ(ẽt∗(t′))

v′(c̄s−1)
≥ ẽs −

ψ(ẽs)

v′(c̄s−1)
> ẽs − w̃s. (19)

The first inequality follows from Lemma 4.2; the second inequality follows because c̄s−1 ≥ c̄t∗(t′).
The third inequality follows because e− ψ(e)

v′(c̄s−1)
is increasing in e over [0, z (v′ (c̄∞))], and because

ẽs ≤ ẽt∗(t′) for s > t∗ (t′) by definition of t∗ (t′). The fourth inequality follows because w̃s >
ψ(ẽs)
v′(c̄s−1)

by Lemma 4.2.

Equation (19) implies that

ẽt∗(t′) − w̃t∗(t′) > (1− δ)
∞∑

s=t∗(t′)+1

δs−t
∗(t′)−1 (ẽs − w̃s) ,
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so that
∞∑

s=t∗(t′)

δs−t
∗(t′) (ẽs − w̃s) = ẽt∗(t′) − w̃t∗(t′) + δ

∞∑
s=t∗(t′)+1

δs−t
∗(t′)−1 (ẽs − w̃s)

> (1− δ)
∞∑

s=t∗(t′)+1

δs−t
∗(t′)−1 (ẽs − w̃s) + δ

∞∑
s=t∗(t′)+1

δs−t
∗(t′)−1 (ẽs − w̃s)

=
∞∑

s=t∗(t′)+1

δs−t
∗(t′)−1 (ẽs − w̃s) . (20)

Recall from Lemma 4.3 that the principal’s constraint must hold with equality at t∗ (t′) − 1

(since ẽt∗(t′) > ẽt∗(t′)−1 by the definition of t∗ (t′)). The inequality (20), then implies (given
satisfaction of the principal’s constraint (PCt)) that w̃t∗(t′)−1 > w̃t∗(t′). But then, recalling
Lemma 4.2, we have

ψ
(
ẽt∗(t′)−1

)
v′
(
c̄t∗(t′)−1

) > w̃t∗(t′)−1 > w̃t∗(t′) >
ψ(ẽt∗(t′))

v′
(
c̄t∗(t′)−1

) .
Hence, ẽt∗(t′)−1 > ẽt∗(t′), contradicting the definition of t∗(t′).

Having shown that the effort is weakly decreasing in an optimal relational contract (Lemma
A.5) we now show that it is strictly decreasing when the principal’s constraint holds with
equality.

Lemma A.6. If the principal’s constraint (PCt) holds with equality at some date t∗, then
ẽt∗ > ẽt∗+1. Hence, by Lemma 4.3, the principal’s constraint also holds with equality at t∗ + 1.

Proof. The same arguments we used in Lemma A.5 to establish the inequalities in (19) imply
that ẽt∗+1 − w̃t∗+1 > ẽs − w̃s for all s > t∗ + 1. In turn, this means that, if the principal’s
constraint (PCt) holds with equality at t∗, then w̃t∗ > w̃t∗+1. Indeed, because the principal’s
constraint holds with equality at t∗,

w̃t∗ = δ

(
ẽt∗+1 − w̃t∗+1 + δ

∞∑
s=t∗+2

δs−t
∗−2(ẽs − w̃s)

)

> δ

(
(1− δ)

∞∑
s=t∗+2

δs−t
∗−2(ẽs − w̃s) + δ

∞∑
s=t∗+2

δs−t
∗−2(ẽs − w̃s)

)

=
∞∑

s=t∗+2

δs−t
∗−1(ẽs − w̃s)

≥ w̃t∗+1.

The final inequality follows from the principal’s constraint (PCt) at date t∗ + 1. Using Lemma
4.2, we have ẽt∗+1 < ẽt∗ .
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Lemma A.6 implies that, given payments satisfy condition (FPun
t ), if the principal’s con-

straint (PCt) holds with equality at some date, then effort is strictly decreasing forever after
(and the principal’s constraints (PCt) hold with equality forever after). Our next goal is there-
fore to establish the condition under which the principal attains the first-best payoff, and, when
this condition fails, establish that there is necessarily a date at which the principal’s constraint
is satisfied with equality.

Lemma A.7. An optimal contract achieves the first-best payoff of the principal if and only if
Condition (7) holds. If this condition is not satisfied, then there is a time t∗ ∈ N such that the
principal’s constraint is slack if and only if t < t∗. Hence, effort is constant up to date t∗ − 1

and strictly decreases from date t∗.

Proof. Consider payments satisfying (FPun
t ), for all t, and determined given the first-best effort

(this is eFB(b1) in Proposition 3.1). Lemma 4.2 shows that the payments increase over time
and tend to ψ(eFB(b1))

v′(cFB(b1))
. On the other hand, per-period profits fall over time towards eFB(b1)−

ψ(eFB(b1))
v′(cFB(b1))

. This establishes Condition (7) is both necessary and sufficent for implementation of
the first best.

Assume now that Condition (7) fails, and fix an optimal contract that is not first best.
Lemma A.6 established that there are two possibilities. First, we might have a finite date
t∗ ∈ N, with the principal’s constraint (PCt) holding with equality at t∗, and every subsequent
date, but slack at dates t∗ − 1 and earlier. In this case, effort is constant from the initial date
up to t∗ − 1 (by Lemma 4.3) and strictly decreases from date t∗. Second, we might have that
the principal’s constraint (PCt) is slack at all dates. Effort is then constant over all periods
(by Lemma 4.3), but not first-best. The result in the lemma is established if we can show
this second case does not occur; so assume for a contradiction that it does. Letting ẽ∞ be
the constant effort level and c̄∞ equilibrium consumption, Proposition 3.1 then implies that
v′ (c̄∞) 6= ψ′ (ẽ∞). By Lemma A.1, we have v′ (c̄∞) > ψ′ (ẽ∞). By Lemma A.3, we have ẽ∞ > 0.

Note that w̃t increases over time to ψ(ẽ∞)
v′(c̄∞)

(from Lemma 4.2). We claim then that

ψ (ẽ∞)

v′ (c̄∞)
=

δ

1− δ

(
ẽ∞ −

ψ (ẽ∞)

v′ (c̄∞)

)
. (21)

If instead ψ(ẽ∞)
v′(c̄∞)

> δ
1−δ

(
ẽ∞ − ψ(ẽ∞)

v′(c̄∞)

)
, then, for large enough t we must have

w̃t >
∞∑

s=t+1

δs−t (ẽ∞ − w̃t) ,

so the principal’s constraint is violated at t. If instead ψ(ẽ∞)
v′(c̄∞)

< δ
1−δ

(
ẽ∞ − ψ(ẽ∞)

v′(c̄∞)

)
, we have w̃t

remains bounded below
∑∞

s=t+1 δ
s−t (ẽ∞ − w̃t). Without violating (PCt), effort can be increased
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by a small constant amount across all periods (with payments adjusted to satisfy (FPun
t )). This

increases profits.
Note then that Condition (21) can be written as

ψ(ẽ∞)

v′(c̄∞)
= δẽ∞.

Because ψ is strictly convex, we have

ψ′ (ẽ∞)

v′ (c̄∞)
> δ.

We now consider an adjusted contract in which effort increases at date 1 by ε > 0, raising
the disutility of effort at date 1 by ψ(ẽ∞+ ε)−ψ(ẽ∞). Because payments to the agent increase
at all dates under condition (FPun

t ), the new policy will not satisfy the principal’s constraint
(PCt) if this is the only adjustment (as explained in the main text). We therefore simultaneously
reduce effort from some fixed date 2 onwards by κ (ε) > 0 to be determined (i.e., effort is given
by et = ẽ∞ − κ (ε) for t ≥ 2).

We let c̄∞(ε, κ(ε)) denote equilibrium consumption under the new plan (naturally, c̄∞ (0, 0)

is consumption under the original plan). The new consumption satisfies

v (c̄∞ (ε, κ (ε)))

1− δ
− v (c̄∞ (0, 0))

1− δ
=ψ (ẽ∞ + ε)− ψ (ẽ∞)

− δ

1− δ
(ψ (ẽ∞)− ψ (ẽ∞ − κ (ε)))

or

c̄∞(ε, κ(ε)) = v−1

(
(1− δ)(ψ(ẽ∞ + ε)− ψ(ẽ∞))

−δ(ψ(ẽ∞)− ψ(ẽ∞ − κ(ε))) + v(c̄∞(0, 0))

)
To determine the value for κ(ε), define the following function

f(ε, k) ≡ ψ (ẽ∞ − k)

v′(c̄∞(ε, k))
− δ (ẽ∞ − k) . (22)

We then define κ(ε) by f(ε, κ(ε)) = 0 for positive ε in a neighborhood of 0. We will use the
implicit function theorem to show that such a local solution κ(ε) exists.

To apply the implicit function theorem, note that f (ε, k) is continuously differentiable in
a neighborhood of (ε, k) = (0, 0). The derivative of f(ε, k) with respect to k, evaluated at
(ε, k) = (0, 0), is

f2 (0, 0) =δ − ψ′ (ẽ∞)

v′ (c̄∞ (0, 0))
+ v′′ (c̄∞ (0, 0))

(
δψ′ (ẽ∞)

v′ (c̄∞ (0, 0))3

)
ψ (ẽ∞) .
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This is strictly negative, using that ψ′(ẽ∞)
v′(c̄∞(0,0))

> δ. The derivative f(ε, k) instead with respect
to ε, evaluated at (ε, k) = (0, 0), is

f1 (0, 0) = −v′′ (c̄∞ (0, 0))

(
(1− δ)ψ′ (ẽ∞)

v′ (c̄∞ (0, 0))3

)
ψ (ẽ∞) .

The implicit function theorem then gives us that κ is locally well-defined by f(ε, κ(ε)) = 0 on
some interval around 0, unique, and continuously differentiable, with derivative approaching

κ′ (0) = −f1 (0, 0)

f2 (0, 0)

=
v′′ (c̄∞ (0, 0))

(
(1−δ)ψ′(ẽ∞)

v′(c̄∞(0,0))3

)
ψ (ẽ∞)

δ − ψ′(ẽ∞)
v′(c̄∞(0,0))

+ v′′ (c̄∞ (0, 0))
(

δψ′(ẽ∞)

v′(c̄∞(0,0))3

)
ψ (ẽ∞)

<
1− δ
δ

(23)

as ε→ 0 (the strict inequality follows because ψ′(ẽ∞)
v′(c̄∞(0,0))

> δ).
For small enough ε, the new effort policy and payments defined by condition (FPun

t ) satisfy
the principal’s constraints (PCt). This follows by observing that, when ε is small, the constraint
(PCt) remains slack at date t = 1. For all other dates, the satisfaction of the constraint (PCt)
follows from f (ε, κ (ε)) = 0, and by Lemma 4.2.

It remains to show that, for small enough positive ε, the principal’s profits strictly increase.
The NPV of effort increases by

ε− δ

1− δ
κ (ε) =

(
1− δ

1− δ
κ′ (0)

)
ε+ o (ε)

(where o(ε) represents terms that vanish faster than ε as ε→ 0). From the inequality (23) we
have 1− δ

1−δκ
′ (0) > 0, and so the increase in effort is strictly positive for ε small enough. Using

that payments continue to satisfy Condition (FPun
t ), a marginal increase in the NPV of effort

is compensated by an increase in the NPV of payments to the agent by ψ′(ẽ∞)
v′(c̄∞(0,0))

. Therefore,
the principal’s payoff under the new policy increases by(

1− ψ′ (ẽ∞)

v′ (c̄∞ (0, 0))

)(
1− δ

1− δ
κ′ (0)

)
ε+ o (ε)

which is strictly positive for small enough ε, recalling that v′(c̄∞(0, 0)) > ψ′(ẽ∞).

We have established that, for any optimal contract that does not attain the first-best pay-
off of the principal, there is a date t̄ ≥ 1 such that effort is constant up to this date, and
subsequently strictly decreasing to a value ẽ∞, as stated in the proposition. Our next result
establishes that ẽ∞ > 0, which requires only ruling out ẽ∞ = 0.
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Lemma A.8. Suppose the principal cannot attain the first-best payoff. In any optimal contract,
the limiting value of effort ẽ∞ ≡ limt→∞ ẽt is strictly positive.

Our final lemma states that, for some configurations of the problem, t̄ > 1. In this case
effort is constant in the initial periods, before strictly decreasing.

Lemma A.9. For any v and ψ admitted in the model set-up, there exists a discount factor δ
and initial balance b1 such that (i) the principal’s payoff in an optimal contract is less than the
first-best payoff, and (ii) for any optimal contract, the principal’s constraint (PCt) is slack for
at least t = 1, 2.

(End of the proof of Proposition 4.3.)

Proof of Proposition 4.4. See the Online Appendix.

A.2 Proofs of the results in Section 5

Proof of Proposition 5.1. The proof follows standard arguments. See the Online Appendix.

Proof of Lemma 5.1. The proof is similar in spirit to that for Lemma 4.1. See the Online
Appendix.

Proof of Proposition 5.2

Proof. Follows from the arguments in the main text.

Proof of Proposition 5.3

Proof. It will be useful to write the recursive problem in the main text by substituting out
agent effort. To this end, define a function ê by

ê(ct, bt, bt+1) ≡ ψ−1
(
v(ct) + δ

1−δv ((1− δ) bt+1)− 1
1−δv((1− δ)bt)

)
(24)

for ct, bt, bt+1 > 0 and v(ct)+ δ
1−δv ((1− δ) bt+1)− 1

1−δv((1−δ)bt) ≥ 0. We will focus throughout
on relational contracts that satisfy the “fastest payments” condition (FPob

t ). Hence, given
contractual variables c̃t, b̃t and b̃t+1, the date-t effort must be given by ẽt = ê(c̃t, b̃t, b̃t+1).
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We can then write the principal’s optimal payoff given balance b̃t > 0 (which we establish
below can be attained by a self-enforceable contract) as follows:

V (b̃t) = max
ct,bt+1>0

(
ê(ct, b̃t, bt+1)− (δbt+1 − b̃t + ct) + δV (bt+1)

)
(25)

subject to the principal’s constraint

δbt+1 − b̃t + ct ≤ δV (bt+1) (26)

and to the requirement that the implied effort is non-negative, i.e.

v(ct) + δ
1−δv ((1− δ) bt+1)− 1

1−δv((1− δ)b̃t) ≥ 0. (27)

The proof of Proposition 5.3 will now consist of eight lemmas. The proofs of Lemmas A.10
and A.16 are provided in the Online Appendix. Proofs of the other lemmas are given below.

We begin by observing that no trivial contract can be optimal. Also, in an optimal con-
tract, effort is (weakly) distorted downwards within each period: a marginal increase in effort,
compensated by pay that keeps the agent equally well off, would (weakly) raise profits. A strict
distortion occurs only if the principal’s constraint is binding (since otherwise raising effort and
compensating the agent is possible).

Lemma A.10. In any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1, V (b̃t) ∈ (0, V FB(b̃t)] for all t. Also,
ẽt, c̃t, w̃t, b̃t > 0 for all t. In addition, ψ′(ẽt) ≤ v′(c̃t) for all t, and ψ′(ẽt) < v′(c̃t) only if
w̃t = δV (b̃t+1).

We now establish the Euler equation given in the main text as well as the monotonicity of
the consumption plan.

Lemma A.11. Any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1 satisfies the Euler equation (14) in all
periods. Furthermore, c̃t ≥ c̃t+1 > (1− δ)b̃t+1 for all t.

Proof. We divide the proof in three steps:

Step 1: Fix an optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1. Consider a contract (ět, čt, w̌t, b̌t)t≥1, coincid-
ing with the original contract in all periods except for periods t and t+ 1 (so, also, b̌t = b̃t). We
specify that the new contract keeps the agent indifferent between being obedient and optimally
deviating in all periods. This requires

v(čt)− ψ(ět) + δ
1−δv

(
1−δ
δ

(b̃t + w̌t − čt)
)

= 1
1−δv((1− δ)b̃t), (28)

v
(

1
δ
(b̃t+w̌t−čt)+w̌t+1−δb̃t+2

)
−ψ(ět+1) + δ

1−δv((1−δ)b̃t+2) = 1
1−δv

(
1−δ
δ

(b̃t+w̌t−čt)
)
, (29)
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which uses that consumption in period t+ 1 under the new contract is čt+1 = 1
δ
(b̃t + w̌t − čt) +

w̌t+1 − δb̃t+2 (guaranteeing the agent has savings b̃t+2 at date t+ 2).
Fix ět = ẽt and w̌t+1 = w̃t+1. Equations (28) and (29) implicitly define ět+1 and w̌t as

functions of čt. Let these functions be denoted êt+1(·) and ŵt(·), respectively. We can use the
implicit function theorem to compute the derivatives at čt = c̃t:

ê′t+1(c̃t) =
v′(c̃t)

(
v′((1− δ)b̃t+1)− v′(c̃t+1)

)
δψ′ (êt+1(c̃t)) v′((1− δ)b̃t+1)

and ŵ′t(c̃t) = 1− v′(c̃t)

v′((1− δ)b̃t+1)
.

Note that the original contract is obtained by setting čt = c̃t. If čt is changed from c̃t to c̃t+ε, for
some (positive or negative) ε small, the total effect on the continuation payoff of the principal
at time t is (−ŵ′t(c̃t) + δê′t+1(c̃t))ε + o(ε). Hence, a necessary condition for optimality is that
−ŵ′t(c̃t) + δê′t+1(c̃t) = 0, which is equivalent the Euler equation (14).

The Euler equation implies that if v′(c̃t+1) = ψ′(ẽt+1) we have c̃t = c̃t+1. From Lemma A.10
we have that, if instead v′(c̃t+1) 6= ψ′(ẽt+1), then v′(c̃t+1) > ψ′(ẽt+1). In this second case, there
are three possibilities:

1. If both sides of the Euler equation are strictly positive, then c̃t < c̃t+1 < (1− δ)b̃t+1.

2. If both sides of the Euler equation are zero, then c̃t = c̃t+1 = (1− δ)b̃t+1.

3. If both sides of the Euler equation are strictly negative, then c̃t > c̃t+1 > (1− δ)b̃t+1.

Step 2: We now prove that if c̃t ≤ (1− δ)b̃t then c̃s ≤ c̃s+1 < (1− δ)b̃s+1 for all s ≥ t. Assume
first that there is a period t such that c̃t ≤ (1− δ)b̃t. Hence, since ẽt = ê(c̃t, b̃t, b̃t+1) > 0 (recall
Lemma A.10) we have b̃t+1 > b̃t. This shows that each side of the Euler equation is strictly
positive, i.e.

1− v′((1− δ) b̃t+1)

v′ (c̃t)
=
v′ (c̃t+1)

ψ′ (ẽt+1)

(
1− v′((1− δ) b̃t+1)

v′ (c̃t+1)

)
> 0.

Since v′ (c̃t+1) /ψ′ (ẽt+1) ≥ 1 (from Lemma A.10), (1 − δ)b̃t+1 > c̃t+1 ≥ c̃t. The result then
follows by induction.

Step 3: We prove that c̃t > (1 − δ)b̃t for all t > 1; it then follows immediately from Step 1
that consumption is (weakly) decreasing in t. Assume then, for the sake of contradiction, that
there is a t′ > 1 such that c̃t′ ≤ (1− δ)b̃t′ . We will construct a self-enforceable contract that is
strictly more profitable than the original, contradicting the optimality of the original.

We first make some preliminary observations. From Step 2, we have that c̃s ≤ c̃s+1 <

(1− δ)b̃s+1 for all s ≥ t′. Also, since effort is strictly positive at all times (from Lemma A.10),
we have

∞∑
s=t′

δs−t
′
v(c̃s) >

1
1−δv((1− δ)b̃t′).
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Hence, there must be a period s ≥ t′ where c̃s+1 > c̃t′ . Let t′′ be the earliest such period, and
note that it satisfies c̃t′′+1 > c̃t′′ . Additionally, we can observe that, for all t,

b̃t +
∞∑
τ=t

δτ−tw̃τ =
∞∑
τ=t

δτ−tc̃τ . (30)

If this is not the case (the right-hand side is strictly smaller), then, applying Equation (1)
repeatedly, we have b̃t → ∞ and so the agent’s constraint (ACob

t ) must be violated for large t
(given that (c̃t)

∞
t=1 is bounded, as the contract is feasible).

Now let us construct the more profitable contract for the principal, given our assumption
that c̃t′ ≤ (1− δ)b̃t′ . We first construct a self-enforceable contract

(
ẽnewt , c̃newt , w̃newt , b̃newt

)
t≥1

in
which the agent obtains a strictly higher payoff than in the original, while the principal obtains
the same payoff. We then show how that contract can be further adjusted to obtain one which
is strictly better for the principal. In the new contract that is better for the agent, we maintain
w̃newt = w̃t and ẽnewt = ẽt for all t, but specify a different agreed consumption sequence c̃newt

(and hence different balances b̃newt ).
The change in agent consumption is to specify constant consumption c̄ in each period from

t′′ onwards, where

c̄ = (1− δ)
∞∑
τ=t′′

δτ−t
′′
c̃τ . (31)

That is, c̃newt = c̄ for all t ≥ t′′, while c̃newt = c̃t for t < t′′. Notice that, c̄ < (1− δ)
∑∞

τ=t δ
τ−tc̃τ

for all t > t′′.
Balances are determined recursively by Equation (1). That is, they are given by b̃newt = b̃t

for t ≤ t′′, and by

b̃newt = δt
′′−tb̃t′′ +

t−1∑
τ=t′′

δτ−t (w̃τ − c̄)

for all t > t′′. Observe then that

b̃newt +
∞∑
τ=t

δτ−tw̃τ = δt
′′−tb̃t′′ +

∞∑
τ=t′′

δτ−tw̃τ −
t−1∑
τ=t′′

δτ−tc̄

=
∞∑
τ=t′′

δτ−tc̃τ −
t−1∑
τ=t′′

δτ−tc̄

=
c̄

1− δ
,

where the second equality uses Equation (30) and the third equality uses Equation (31). There-
fore, for all t > t′′,

b̃newt +
∞∑
τ=t

δτ−tw̃τ =
c̄

1− δ
<

∞∑
τ=t

δτ−tc̃τ = b̃t +
∞∑
τ=t

δτ−tw̃τ ,
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where the second equality follows from Equation (30). This implies that b̃newt < b̃t for all t > t′′.
Now, we want to show that the contract

(
ẽnewt , c̃newt , w̃newt , b̃newt

)
t≥1

is self-enforceable. Be-
cause effort and payments are unchanged relative to the original contract, the principal’s con-
straints (PCt) remain intact. Consider then the agent’s constraint (ACob

t ) for each period t ≥ 1.
For all t ≤ t′′, the agent anticipates a strictly higher continuation payoff under the new contract,
i.e.

∞∑
τ=t

δτ−t (v (c̃newτ )− ψ (ẽnewτ )) >
∞∑
τ=t

δs−t (v (c̃τ )− ψ (ẽτ )) .

The strict inequality is immediate from the strict concavity of v, and because consumption from
date t′′ onwards is constant in the new contract, but the NPV of this consumption is the same
as in the original. Since, in addition, v(b̃newt (1− δ)) = v(b̃t (1− δ)), the agent’s constraints
(ACob

t ) are satisfied at dates t ≤ t′′ as strict inequalities.
To understand how the agent’s constraints change at each t > t′′, define

c̄(t) ≡ (1− δ)
∞∑
τ=t

δτ−tc̃τ .

Consider the original contract, and suppose that the agent’s consumption is changed from date
t onwards, being set equal to c̄(t) in all such periods. The agent’s payoff increases from the
smoothing of consumption, and so

∞∑
τ=t

δτ−t(v(c̄(t))− ψ(ẽτ )) ≥
∞∑
τ=t

δτ−t (v (c̃τ )− ψ (ẽτ )) ≥
v(b̃t (1− δ))

1− δ
, (32)

where the second inequality follows because the agent’s constraints (ACob
t ) are satisfied in the

original contract.
Because ψ is non-negative, the inequalities in Equation (32) imply c̄(t) ≥ b̃t (1− δ). There-

fore, since v is concave, we have

v(c̄(t))− v(c̄(t) − (1− δ)(b̃t − b̃newt )) ≤ v(b̃t(1− δ))− v(b̃t(1− δ)− (1− δ)(b̃t − b̃newt )). (33)

Note that c̄ = c̄(t) − (1− δ) (b̃t − b̃newt ). Combining Equations (32) and (33), we therefore have
that, for all t > t′′,

∞∑
τ=t

δτ−t (v (c̄)− ψ (ẽτ )) ≥
v(b̃newt (1− δ))

1− δ
.

This shows that, for the contract
(
ẽnewt , c̃newt ,w̃newt , b̃newt

)
t≥1

, the agent’s constraints (ACob
t ) are

satisfied also at dates t > t′′.
We have thus shown that

(
ẽnewt , c̃newt , w̃newt , b̃newt

)
t≥1

is a self-enforceable contract (in partic-
ular, it satisfies all the constraints (ACob

t ) and (PCt). Moreover, we saw that the constraints
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(ACob
t ) are satisfied strictly at all t ≤ t′′. We can therefore further adjust the contract by raising

effort at date t′′ by a small amount ε > 0 such that, without any other changes to the contract,
all the agent’s constraints (ACob

t ) remain intact. The adjusted contract then satisfies all the
constraints (ACob

t ) and (PCt), and the principal obtains a strictly higher payoff than in the
original contract, contradicting the optimality of the original.

We can then provide the key result that balances decrease over time towards a limit point
b̃∞.

Lemma A.12. In any optimal contract, (b̃t)t≥1 is a weakly decreasing sequence. It is constant
if it attains the first-best payoff, and strictly decreasing towards some b̃∞ > 0 otherwise. Also,
V (b̃∞) = V FB(b̃∞).

Proof. Step 0. If the first-best payoff is achievable at b1, then equilibrium consumption and
effort is uniquely determined by the conditions in Proposition 3.1. Because we restrict attention
to payments timed to satisfy Equation (8), the balance is constant as claimed in the statement
of this lemma (and explained in the main text). Suppose from now on that V (b1) < V FB(b1).

Step 1. Proof that (b̃t)t≥1 is weakly decreasing. Consider an optimal contract
(
ẽt, c̃t,

w̃t, b̃t
)
t≥1

. To show that the balance b̃t is weakly decreasing, we suppose for a contradiction
that b̃t̂+1 > b̃t̂ for some date t̂. We construct a self-enforceable contract that achieves strictly
higher profits for the principal.

Step 1a. First, denote a new contract by (ẽ′t, c̃
′
t, w̃

′
t, b̃
′
t)t≥1, which we will choose to coincide

with the original contract until t̂− 1, and with ẽ′
t̂

= ẽt̂. For dates t ≥ t̂, let

c̃′t = c̄ ≡ (1− δ)
∑
τ≥t̂

δτ−t̂w̃τ + (1− δ)b̃t̂

= (1− δ)
∑
τ≥t̂

δτ−t̂c̃τ

where the last equality is for the same reason as Equation (30). For dates t ≥ t̂+ 1, let ẽ′t = ē,
where ē is defined by

ψ(ē) = (1− δ)
∑
τ≥t̂+1

δτ−t̂−1ψ(ẽτ ).

Let also, for all t ≥ t̂, w̃′t = w̄, where w̄ = (1− δ)
∑

τ≥t̂ δ
τ−t̂w̃τ . Thus, we must have b̃′t = b̄ ≡ b̃t̂

for all t ≥ t̂.

Step 1b. We now want to show that, for the new contract, the agent’s constraint (ACob
t ) is

satisfied at all dates. Note that the new contract is stationary from date t̂ + 1 onwards. Let’s
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then consider the agent’s constraint for these dates. Note first that, by the previous lemma, we
must have c̃t̂ ≥ c̄. Therefore, ∑

τ≥t̂+1

δτ−t̂−1c̄ ≥
∑
τ≥t̂+1

δτ−t̂−1c̃τ .

Also, the NPV of disutility of effort from date t̂ + 1 onwards is the same for both the original
contract and the new contract. The fact that the original contract satisfies the agent’s constraint
(ACob

t ) at date t̂+ 1, plus the observation that b̄ < bt̂+1, then implies

∑
τ≥t̂+1

δτ−t̂−1v(c̄)−
∑
τ≥t̂+1

δτ−t̂−1ψ(ē) >
v
(
(1− δ) b̄

)
1− δ

, (34)

which means that the agent’s constraint is satisfied as a strict inequality from t̂+ 1 onwards.
Note then that ∑

τ≥t̂

δτ−t̂v(c̄) ≥
∑
τ≥t̂

δτ−t̂v(c̃τ )

(with a strict inequality if the consumption levels c̃τ for τ ≥ t̂ are non-constant). Also, the
NPV of the disutility of effort is the same from t̂ onwards under both policies. Therefore, the
agent’s constraint continues to be satisfied at t̂, and by the same logic all earlier periods.

Step 1c. Now we show that the principal’s constraint (PCt) is satisfied in all periods. Because
the NPV of disutility of effort from date t̂ + 1 onwards is the same under both contracts; and
because ψ is convex, we have ē ≥ (1−δ)

∑
τ≥t̂+1 δ

τ−t̂−1ẽτ . Therefore,∑
τ≥t̂+1

δτ−t̂ẽ′τ −
∑
τ≥t̂

δτ−t̂w̃′τ =
δē

1− δ
−
∑
τ≥t̂

δτ−t̂w̃τ

≥
∑
τ≥t̂+1

δτ−t̂ẽτ −
∑
τ≥t̂

δτ−t̂w̃τ

≥ 0 (35)

where the second inequality holds because the principal’s constraint is satisfied at date t̂ under
the original contract. Hence the principal’s constraint is satisfied under the new contract at date
t̂. Because ẽ′t is constant for t ≥ t̂+ 1, and because w̃′t is constant for t ≥ t̂, the same inequality
implies the satisfaction of the principal’s constraint also from t̂+ 1 onwards. Checking that the
principal’s constraint is satisfied also at dates before t̂ follows the same logic. For t < t̂, the
principal’s constraint is

t̂∑
τ=t+1

δτ−tẽ′τ −
t̂−1∑
τ=t

δτ−tw̃′τ + δt̂−t
( ∑
τ≥t̂+1

δτ−t̂ẽ′τ −
∑
τ≥t̂

δτ−t̂w̃′τ

)
≥ 0,
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which is satisfied because (i) ẽ′τ = ẽτ for τ ≤ t̂, and w̃′τ = w̃τ for τ < t̂, (ii) the first inequality in
Equation (35) holds, and (iii) the principal’s constraint is satisfied at date t under the original
policy.

Step 1d. Finally, we show that the contract can be further (slightly) adjusted to a self-
enforceable contract with a strictly higher payoff for the principal. The original contract was
taken to satisfy

v (c̃t̂)− ψ (ẽt̂) =
v((1− δ) b̄)− δv((1− δ) b̃t̂+1)

1− δ
< v

(
(1− δ) b̄

)
.

Hence,
ψ (ẽt̂) > v (c̃t̂)− v

(
(1− δ) b̄

)
≥ v (c̄)− v

(
(1− δ) b̄

)
> ψ (ē)

where the final inequality follows from (34). Hence ẽt̂ > ē. Recall that ẽ′
t̂

= ẽt̂, and ẽ′τ = ē for
τ > t̂; so we have ẽ′

t̂
> ẽ′τ for all τ > t̂.

Now, pick ẽ′′
t̂
and ẽ′′

t̂+1
, with

ẽ′t̂+1 < ẽ′′t̂+1 < ẽ′′t̂ < ẽ′t̂

and such that

ψ
(
ẽ′′t̂
)

+
δ

1− δ
ψ
(
ẽ′′t̂+1

)
= ψ

(
ẽ′t̂
)

+
δ

1− δ
ψ
(
ẽ′t̂+1

)
.

Substitute ẽ′′
t̂
for ẽ′

t̂
and ẽ′′

t̂+1
for ẽ′τ , for all τ ≥ t̂ + 1, in the contract defined in Step 1a. The

agent’s value from remaining in the contract from t̂ onwards remains unchanged, so the agent’s
constraint (ACob

t ) remains satisfied at t̂, and at all earlier dates. Note that, due to (34), the
agent’s constraints (ACob

t ) at dates t̂+1 onwards are slack under the contract defined in Step 1a,
and hence continue to be satisfied under the contract with the further modification, provided
the adjustment in effort is small. Moreover, because ψ is strictly convex, the NPV of effort
from date t̂ onwards increases; so the principal’s payoff strictly increases. Also, the principal’s
constraints (PCt) clearly continue to be satisfied. Thus, we have constructed a self-enforceable
contract that is strictly more profitable for the principal than the original, which completes
Step 1.

Step 2. Proof that if V (b̃1) < V FB(b̃1) then (b̃t)t≥1 is a strictly decreasing sequence.

Step 2a. Consider an optimal contract. We first prove that if b̃t̂ = b̃t̂+1 for some t̂ ≥ 1, then
V (b̃t̂) = V FB(b̃t̂). To do this, note that if b̃t̂ = b̃t̂+1 for some t̂, then it is optimal to specify
c̃τ = c̃t̂, w̃τ = w̃t̂, and ẽτ = ẽt̂ for all τ > t̂; that is, it must be optimal for the contract to be
stationary from period t̂ onwards. The Euler equation (14) then requires that ψ′(ẽτ ) = v′(c̃τ )

for all τ ≥ t̂+ 1,18 and by stationarity also ψ′(ẽt̂) = v′(c̃t̂). Then, ẽτ and c̃τ satisfy, for all τ ≥ t̂,

18To see this, recall from Lemma A.11 that c̃τ > b̃τ .

39



the first-order and agent’s indifference conditions in Proposition 3.1, given initial balance b̃t̂.
Therefore they are the first-best effort and consumption given balance b̃t̂. This shows that
V (b̃t̂) = V FB(b̃t̂), as desired.

Step 2b. Now we consider any optimal contract, and show the following. If V (b̃1) < V FB(b̃1),
then V (b̃t) < V FB(b̃t) for all t ≥ 1, and in addition, (b̃t)t≥1 is strictly decreasing.

Suppose that, for some t̂, V (b̃t̂) < V FB(b̃t̂), which by Step 1 and Step 2a implies b̃t̂+1 < b̃t̂.
The result will follow by induction if we can show that V (b̃t̂+1) < V FB(b̃t̂+1). Hence, suppose
for a contradiction that the contract achieves the first-best continuation payoff for the principal
at date t̂ + 1, given the balance is b̃t̂+1 (that is, suppose V (b̃t̂+1) = V FB(b̃t̂+1)). This implies
that ẽτ = eFB(b̃t̂+1) and c̃τ = cFB(b̃t̂+1) for all τ > t̂. By assumption that Equation (8) holds
in all periods, we then have b̃τ = b̃t̂+1 for all τ > t̂ + 1. Hence, the contract is stationary from
t̂+ 1 onwards; in particular, the payment is constant at w̃τ = w̄ for τ ≥ t̂+ 1, for some value w̄.

From the Euler equation (14) and the fact that v′(c̃t̂+1) = ψ′(ẽt̂+1), we have c̃t̂ = c̃t̂+1.
Hence, using b̃t̂+2 = b̃t̂+1 < b̃t̂, we have (using (FPob

t ))

ψ(ẽt̂) = v(c̃t̂) + δ
1−δv((1− δ)b̃t̂+1)− 1

1−δv((1− δ)b̃t̂)
< v(c̃t̂+1) + δ

1−δv((1− δ)b̃t̂+2)− 1
1−δv((1− δ)b̃t̂+1) = ψ(ẽt̂+1).

Consequently, ẽt̂ < ẽt̂+1, and so ψ′(ẽt̂)

v′(c̃t̂)
<

ψ′(ẽt̂+1)

v′(c̃t̂+1)
= 1. We then know (from Lemma A.10) that

the principal’s constraint (PCt) binds at t̂, and so

∞∑
s=t̂+1

δs−t̂ẽs =
∞∑
s=t̂

δs−t̂w̃s =
∞∑
s=t̂

δs−t̂c̃s − b̃t̂,

where the second equality follows for the same reason as for Equation (30). Using that ẽτ =

eFB(b̃t̂+1) for all τ ≥ t̂+ 1, and c̃τ = cFB(b̃t̂+1) for all τ ≥ t̂, we have

δeFB(b̃t̂+1) = cFB(b̃t̂+1)− (1− δ)b̃t̂ < cFB(b̃t̂+1)− (1− δ)b̃t̂+1 = w̄ = w̃t̂+1.

That δeFB(b̃t̂+1) < w̃t̂+1 means the principal’s constraint (PCt) in period t̂ + 1 (as well as at
future dates) is violated, so we reach our contradiction. This completes Step 2.

Step 3. Proof that b̃∞ > 0 and V (b̃∞) = V FB(b̃∞).

Consider an optimal contract, and suppose that V (b̃1) < V FB(b̃1). Then (b̃t)t≥1 is a strictly
decreasing sequence, as we saw in the previous step. By Lemma 5.1, b̃t > 0 for all t, so the limit
limt→∞ b̃t exists and is non-negative. We want to show this limit, call it b̃∞, is strictly positive
and V (b̃∞) = V FB(b̃∞).

Step 3a. We first show that the function V is continuous at any b > 0. Suppose, for the
sake of contradiction, that there is a point of discontinuity b̌ > 0. Then there is ε > 0 and a
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sequence (bn)∞n=1 convergent to b̌ with |V (bn)−V
(
b̌
)
| ≥ ε for all n. Denote č and b̌′ the optimal

consumption and next-period balance when the balance is b̌. Then (given our restriction to
“fastest payments”), present-period effort is given by ê(č, b̌, b̌′). The present-period payment is
w̌ = č+ δb̌′ − b̌.

Suppose now there is a subsequence (bnk
) along which V (bnk

) ≤ V
(
b̌
)
− ε for all k. If

there is no such subsequence, then there is a subsequence (bnk
) for which V

(
b̌
)
≤ V (bnk

)− ε;
the argument will then be symmetric, and hence is omitted. Consider then a balance bnk

, and
choose present-period consumption equal to cnk

≡ č + bnk
− b̌, and next-period balance equal

to b′nk
≡ b̌′. Note this implies present-period effort is enk

≡ ê(cnk
, bnk

, b′nk
), and the payment is

wnk
≡ cnk

+δb̌′−bnk
= w̌. Because the principal’s next-period continuation payoff is V

(
b̌′
)
, the

same as in an optimal contract following balance b̌, and because the payment is the same (i.e.,
w̌), the principal’s constraint in Equation (26) is satisfied. By continuity of ê (·, ·, ·), for large
enough k, we have V (bnk

) > V
(
b̌
)
−ε. This contradicts the assumption that V (bnk

) ≤ V
(
b̌
)
−ε.

Step 3b. We now prove that b̃∞ > 0. For this, we first show limb↘0
cFB(b)−(1−δ)b

eFB(b)
= 0 and so, by

Proposition 5.2, there exists some b̄ > 0 such that an optimal contract achieves the first-best
payoff of the principal for all b ≤ b̄. This follows after noting that v(cFB(b)) − v((1 − δ)b) =

ψ(eFB(b)) > 0, so we have that either limb↘0 c
FB(b) = 0 or limb↘0 e

FB(b) = +∞. Since
ψ′(eFB(b)) = v′(cFB(b)) we have, in fact, that both limb↘0 c

FB(b) = 0 and limb↘0 e
FB(b) = +∞,

which establishes the result. Next, recall from Step 2 that, given V (b1) < V FB (b1), the sequence
(b̃t)t≥1 of balances in the optimal contract is strictly decreasing and such that V (b̃t) < V FB(b̃t)

for all t. That is, b̃t remains above b̄, and so converges to some value b̃∞ ≥ b̄.

Step 3c. Finally, we prove that V (b̃∞) = V FB(b̃∞). Recall we assumed that V (b1) < V FB (b1).
By the continuity of V established in Step 3a, we have that limt→∞ V (b̃t) = V (b̃∞). Because the
principal’s constraint (PCt) binds for all t, we have V (b̃t) = ê(c̃t, b̃t, b̃t+1) for all t. By continuity
of ê(·, ·, ·), we have limt→∞ ê(c̃t, b̃t, b̃t+1) = ê(c̃∞, b̃∞, b̃∞), where c̃∞ ≡ limt→∞ c̃t, which exists
because c̃t is decreasing and remains above b̃∞ by Lemma A.11. Therefore,

V (b̃∞) = ê(c̃∞, b̃∞, b̃∞) = ψ−1(v(c̃∞)− v((1− δ)b̃∞)).

Since V (b̃∞) > 0 (recall Lemma A.10), c̃∞ > (1 − δ)b̃∞. Therefore, the Euler equation (14)
implies that, necessarily, limt→∞

v′(c̃t+1)
ψ′(ẽt+1)

= 1, and therefore ẽ∞ ≡ limt→∞ ẽt exists. It is then
clear that both Conditions 1 and 2 of Proposition 3.1 hold for ẽ∞, c̃∞, and b̃∞ (instead of
eFB(b1), cFB(b1), and b1). This establishes the result.

We now translate the above result into implications for the dynamics of the principal’s
continuation payoff.
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Lemma A.13. Assume V (b1) < V FB(b1). Then (V (b̃t))t≥1 is a strictly increasing sequence.

Proof. Recall from Lemma A.12 we have that, if V (b1) < V FB(b1), then (b̃t)t≥1 is strictly
decreasing. Therefore, the result will follow if we can show V (·) is strictly decreasing.

Step 1. We show that if V (·) fails to be strictly decreasing, then there exists a value b∗ > 0

such that, for every ε > 0, there is a b̌ ∈ (b∗ − ε, b∗) satisfying V (b̌) ≤ V (b∗).
First, by Step 3a of the proof of the previous lemma, V (·) is continuous on strictly positive

values. Suppose V (·) fails to be strictly decreasing, which means that there are values b′, b′′

with 0 < b′ < b′′, and with V (b′) ≤ V (b′′). Consider maximizing V on [b′, b′′], and note that a
maximum exists by continuity of V . Because V (b′) ≤ V (b′′), there is at least one maximizer
in (b′, b′′]. We can take any such value to be b∗.

Step 2. Consider an optimal continuation contract when b̃t = b∗, and consider a change to
b̃t = b∗ − ν for ν > 0 small enough such that V (b∗ − ν) ≤ V (b∗). Then we can reduce c̃t by the
same amount ν, holding b̃t+1 and w̃t, as well as all other variables, constant. Note then that,
provided ν is small enough,

v(c̃t − ν)− 1
1−δv((1− δ)(b̃t − ν)) > v(c̃t)− 1

1−δv((1− δ)b̃t),

which follows again because c̃t > (1− δ) b̃t (by Lemma A.11) and by concavity of v. Hence, we
have

ê(c̃t − ν, b̃t − ν, b̃t+1) > ẽ(c̃t, b̃t, b̃t+1).

By construction, the agent remains indifferent to continuing in the contract at all dates (we
have that (ACob

t ) holds as an equality at all dates). The continuation of the relationship from
t+ 1 onwards is precisely as before, and therefore the principal’s constraint at date t is satisfied
(since w̃t is unchanged). Hence,

V (b̃t) = ẽt − w̃t + δV (b̃t+1) < ê(c̃t − ν, b̃t − ν, b̃t+1)− w̃t + δV (b̃t+1) ≤ V (b̃t − ν).

However, this contradicts V (b∗ − ν) ≤ V (b∗).

We now show that, if the first-best outcome is not attainable in a self-enforceable relational
contract, effort is always downward distorted.

Lemma A.14. Assume V (b1) < V FB(b1). Then, in any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1,
v′ (c̃t) > ψ′ (ẽt) for all t.

Proof. We first show that, if there is a date ť with v′ (c̃ť) = ψ′ (ẽť), then v′ (c̃ť+1) = ψ′ (ẽť+1). To
do so, assume for a contradiction that v′ (c̃ť) = ψ′ (ẽť) and v′ (c̃ť+1) 6= ψ′ (ẽť+1) for some date ť.
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Then, by Lemma A.10, we have v′ (c̃ť+1) > ψ′ (ẽť+1), and therefore w̃ť+1 = δV (b̃ť+2). In turn,
this implies

ẽť+1 = ẽť+1−w̃ť+1 + δV (b̃ť+2) = V (b̃ť+1) > V (b̃ť) = ẽť−w̃ť+δV (b̃ť+1) ≥ ẽť

where the strict inequality follows by the previous lemma, and the weak inequality follows
because the principal’s constraint is satisfied in an optimal contract at ť.

There are two cases: either w̃ť <
∑∞

s=ť+1 δ
s−ť (ẽs − w̃s) or w̃ť =

∑∞
s=ť+1 δ

s−ť (ẽs − w̃s). Con-
sider the first. Define a new contract (ẽ′t, c̃

′
t, w̃

′
t, b̃
′
t)t≥1, which is identical to the original, except

that ẽ′
ť

= ẽť + ε and ẽ′
ť+1

= ẽť+1 − ν (ε), with ν (ε) defined by

ψ (ẽť + ε) + δψ (ẽť+1 − ν (ε)) = ψ (ẽť) + δψ (ẽť+1) .

Thus
ν ′ (0) =

ψ′ (ẽť)

δψ′ (ẽť+1)

and so the change in the NPV of effort is

ε− δν (ε) =

(
1− ψ′ (ẽť)

ψ′ (ẽť+1)

)
ε+ o (ε)

which is strictly positive for ε sufficiently small. It is easy to see that the agent’s constraint
(ACob

t ) is unchanged at all dates except ť + 1, when the constraint is relaxed. The principal’s
constraint (PCt) is unchanged from date ť+1 onwards, relaxed at date ť−1 and earlier (because
the NPV of effort increases), but is tightened at date ť. Provided ε is small enough, the date-ť
constraint remains intact. Profits increase, contradicting the optimality of the original contract.

Now suppose that w̃ť =
∑∞

s=ť+1 δ
s−ť (ẽs − w̃s), and note the above adjustment now leads

to a violation of the principal’s constraint (PCt) at date ť. In this case, we reduce slightly
the payment, effort and consumption at date ť, keeping the agent’s payoff unchanged, but
ensuring the principal’s constraint (PCt) is satisfied. This has a negligible effect on profits since
v′ (c̃ť) = ψ′ (ẽť). Hence, we again contradict the optimality of the original contract.

Now let us demonstrate precisely an adjustment that yields a self-enforceable contract.
We further adjust the modified contract (ẽ′t, c̃

′
t, w̃

′
t, b̃
′
t)t≥1 by reducing the date-ť payment and

consumption by an amount γ (ε), and reducing date-ť effort by an amount η (ε) to leave agent
payoffs unchanged. The date-ť principal constraint (PCt) will then hold as equality by setting
γ (ε) = δν (ε). The requirement on η (ε), that the agent’s payoff is unaffected by the adjustment,
is

v (c̃ť − γ (ε))− ψ (ẽť + ε− η (ε)) = v (c̃ť)− ψ (ẽť + ε) .

We then have
v′ (c̃ť) γ

′ (0) = ψ′ (ẽť) η
′ (0) .
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Therefore, the overall increase in date-ť profits from all changes to the contract (ẽt, c̃t, w̃t, b̃t)t≥1

is

ε− δν (ε)− (η (ε)− γ (ε)) =

(
1− ψ′ (ẽť)

ψ′ (ẽť+1)

)
ε− δν ′ (0)

(
v′ (c̃ť)

ψ′ (ẽť)
− 1

)
ε+ o (ε)

=

(
1− ψ′ (ẽť)

ψ′ (ẽť+1)

)
ε+ o (ε)

which is strictly positive for ε sufficiently small.
Hence, for small enough ε, the overall effect on profits of all changes to the original contract

(ẽt, c̃t, w̃t, b̃t)t≥1 is positive, with the continuation profits from date ť increasing. The principal’s
constraint (PCt) is relaxed at dates ť− 1 and earlier, it is satisfied by construction at ť, and it
is unchanged from date ť + 1 onwards. Again, the fact profits strictly increase contradicts the
optimality of (ẽt, c̃t, w̃t, b̃t)t≥1.

From the above, and by induction, we have that v′ (c̃ť) = ψ′ (ẽť) at some ť implies v′ (c̃t) =

ψ′ (ẽt) for all t ≥ ť. By the Euler equation (14), consumption and effort remain constant from
ť onwards. Moreover, the agent’s indifference condition in Equation (8) is presumed to hold at
all dates. This shows that the agent’s balances b̃t remains constant from date ť onwards, which
given the assumption V (b1) < V FB (b1), contradicts the finding of Lemma A.12 that balances
strictly decrease. Hence, we cannot have v′ (c̃ť) = ψ′ (ẽť) at any ť.

Lemma A.14 implies by Lemma A.10 that, if V (b1) < V FB(b1), the principal’s constraint
(PCt) holds with equality in every period. We use this to show the following.

Lemma A.15. If V (b1) < V FB(b1), then, in any optimal contract (ẽt, c̃t, w̃t, b̃t)t≥1, effort ẽt
and payments w̃t strictly increase over time, while consumption c̃t strictly declines over time.

Proof. The fact that the principal’s constraint binds at every date, as argued above, can be
stated as w̃t = δV (b̃t+1) for all t; hence payments are strictly increasing in t by Lemma A.13.
We also have V (b̃t) = ẽt for all t, so effort is strictly increasing as well.

Now consider consumption. By Lemma A.11, we know that c̃t−1 ≥ c̃t for all t ≥ 2. Hence,
if consumption fails to be strictly decreasing, we must have c̃t−1 = c̃t for some t. We then have,
by Equation (14) (and noting that c̃t > (1− δ) b̃t, also by Lemma A.11), that ψ′ (ẽt) = v′ (c̃t).
However, this contradicts Lemma A.14.

Lemma A.16. An optimal contract exists.

(End of the proof of Proposition 5.3.)

Proof of Proposition 5.4. See Online Appendix.
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