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Abstract

Central banks are often reluctant to take immediate or forceful actions in the face of new information

on the economic outlook. To rationalize this cautious approach, Brainard’s attenuation principle is often

invoked: when a policy-maker is unsure of the effects of his policies, he should react less than he would

under certainty. We show that the Brainard principle, while a wise recommendation for policy-making

in general, runs into a pitfall when it is applied to a central bank setting monetary policy. For a central

bank, concerns over uncertainty create a cautiousness bias: acting less is justified when taking as given

the private sector’s expectations of inflation, but acting less shifts these inflation expectations away from

the central bank’s inflation target. In response to the de-anchoring of expectations, the central bank can

easily end up acting as much as it is initially reluctant to do, but without succeeding in putting inflation

back on target. This pattern is a feature of policy under discretion: the central bank would often be

better off tying its hands not to listen to its concerns about uncertainty.

Keywords: Brainard Uncertainty, Inflation Expectations, Discretion vs. Commitment.

JEL Classification: E31, E52, E58.

∗We thank Gadi Barlevy, Mario Pietrunti, Ricardo Reis, and Ulf Söderström for useful discussions, and participants at

the CEPR-Bank of Finland conference, CEBRA conference, and Banca d’Italia seminar for valuable comments. The views

expressed herein are those of the authors and do not necessarily reflect those of the Banque de France or the Eurosystem.

1



1 Introduction

Central banks must set monetary policy under substantial uncertainty on the economic outlook, as well as

the effects of their own policies. Faced with this uncertainty they often react by attenuating their policy

response, or by changing it only gradually. To justify this cautious approach to policy-making, they often

refer to Brainard (1967), who formally derived what came to be known as the Brainard principle: although

a policy-maker who is uncertain of the economic outlook should act as if his best expectation were a sure

outcome (Theil, 1957), a policy-maker who is uncertain of the effects of his own policies should act less than

he would under certainty.

The logic of Brainard’s attenuation principle is not limited to monetary policy, but it became well

known by central bankers in the 1990’s thanks to Alan Blinder’s book on his experience as a central banker

(Blinder, 1999).1 Blinder himself declared that the Brainard principle “was never far from [his] mind when

[he] occupied the Vice Chairman’s office at the Federal Reserve”. More recently, and in the context of an

increased reliance of central banks on unconventional policies, Powell (2018) nicely summed up the Brainard

logic through the following formula: “when unsure of the potency of a medicine, start with a somewhat

smaller dose”. On the other side of the Atlantic, in March 2019 Mario Draghi (2019) explained the decision

of the ECB Governing Council in the following terms: “You just do what you think is right and you temper

[with] a consideration [that] there is uncertainty. In other words, in a dark room you move with tiny steps.”

Bernanke (2007) and Carney (2017) make similar references to the Brainard principle.2 Other influential

policymakers, such as Williams (2013) and Praet (2018), provide more extended analysis of the Brainard

principle.3

The attention central bankers declare paying to the Brainard principle suggests it affects their monetary

policy decisions, and can therefore contribute to explaining the dynamics of inflation. In recent years however,

the issue has received little attention in the academic literature. Motivated by the prolonged undershooting

of the inflation target in the euro area over the past decade, we make a new contribution to the theory of

monetary policy under uncertainty.

We show that the Brainard principle, while a wise recommendation for policy-making in general, runs

into a pitfall when it is applied to a central bank setting monetary policy. For concreteness, we focus on

interest-rate policies. When a dis-inflationary shock hits, the central bank can push inflation up by cutting

interest rates. The Brainard principle would recommend that, if the central bank is uncertain of the precise
1Blinder was not only instrumental in popularizing Brainard’s principle, but also in giving it its current interpretation of a

rationale for “doing less”. Blinder himself refers to the Brainard principle as the conservatism principle. We follows Reinhart
(2003) in using the more neutral terminology of attenuation principle.

2See also Villeroy de Galhau (2018): “In the face of uncertainty, one often hears reference to the celebrated Brainard
“conservatism principle” [...] But we should go beyond a static view of Brainard’s principle (which focuses on one single
small step): a dynamic view would include the time dimension and consider how to manage and communicate a sequence of
incremental steps.”

3“In these conditions, the Brainard rationale for gradualism applies with great force: do it as carefully and prudently as
possible, at least when you have good reason to believe that the degree of uncertainty as to the direction and size of market
reactions is atypically large. Present times, where policy is defined by a multiplicity of instruments that interact in ways that
are very imperfectly known, are characterized by an abnormal amount of uncertainty.”(Praet, 2018).
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effect of an interest-rate cut on inflation, it should cut interest rates by less, even if this means letting

inflation fall somewhat below target. This recommendation, however, abstracts from the fact that inflation

also depends on the private sector’s expectations of inflation, a dimension that Brainard’s original set-up does

not incorporate. The central bank takes these inflation expectations as given when it acts under discretion,

but if the private sector foresees that the central bank will attenuate its policy response, it forms lower

inflation expectations. This pushes inflation further down, and forces the central bank to decrease rates

further. The central bank easily ends up decreasing rates by as much as it is initially reluctant to do, but

with an inflation rate further below target than if it had not been concerned about uncertainty.

We give the name cautiousness bias to this perverse incentive that turns the central bank’s concerns over

uncertainty against its own interests. The terminology is in direct reference to the inflation bias expounded

by Kydland and Prescott (1977) and Barro and Gordon (1983a,b). Like the inflation bias, the cautiousness

bias is a feature of policy under discretion: it arises because the central bank fails to internalize the effect of

its policy on inflation expectations. Contrary to the inflation bias however, it does not arise from a desire by

the central bank to set output above its natural level. It does not even require the central bank to care about

stabilizing output, and applies equally to a central bank that has a single mandate to stabilize inflation only.

To show the robustness of the cautiousness bias, we study it under various specifications of the Phillips

curve relationship between output and inflation. In section 2, we start by explaining its logic with the

New-Classical Phillips curve. We show that in response to shocks foreseen by the private sector, a cautious

central bank ends up moving real rates by exactly as much as a central bank that disregards concerns over

uncertainty would. However, despite ending up moving real rates by the same amount as a central bank that

disregards concerns over uncertainty (which is also the optimal policy under commitment), a cautious central

banker suffers greater departures of inflation from its target. In the spirit of Rogoff (1985)’s solution to the

inflation bias, we show that society would be better-off appointing a central banker who discounts concerns

over uncertainty relative to society, even if this means responding to unforeseen shocks too aggressively.

Although the case of the New-Classical Phillips curve provides a simple exposition of the cautiousness

bias, its absence of dynamics prevents an analysis of the dynamics in the interplay between interest rate

decisions and the response of inflation expectations. In section 3, we study the dynamics induced by the

cautiousness bias under the Sticky-Information Phillips curve of Mankiw and Reis (2002). With the Sticky-

Information Phillips curve, the private sector only gradually incorporates new information into its inflation

expectations. As a result, when a negative shock hits inflation expectations move little at first, and the

central bank is able to attenuate the decrease in interest rates. But as the private sector gradually realizes

the resulting fall in inflation, inflation is pushed down further, forcing the central back to decrease rates

further, ultimately by as much as if it had not been willing to attenuate policy.

In section 4 we show that the cautiousness bias does not depend on the backward-looking nature of

expectations in the New-Classical Phillips curve and Sticky-Information Phillips curve. It applies equally to

the forward-looking New-Keynesian Phillips curve (NKPC), which remains the most commonly used Phillips
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curve in economic modeling. The timing in the manifestation of the bias is however different in this case,

due to the front-loaded dynamics the NKPC is known to generate (Ball, 1994; Mankiw and Reis, 2002). In

response to a persistent fall in the natural rate, agents immediately expect that the central bank will let

inflation fall below target in the future. As a result, the central bank is forced to decrease interest rates

more as early as on impact. In this, the dynamics of the cautiousness bias under the NKPC resembles the

one under the New-Classical Phillips curve.

The cautiousness bias we focus on in most of the paper consists of an overreaction of inflation to shocks.

Although the resulting undershooting or overshooting of the inflation target can be very persistent in the

face of very persistent shocks, it does not create an incentive for a discretionary central bank to let average

inflation depart form the inflation target π∗, in contrast to the inflation bias of Kydland and Prescott. In

section 5, we show that this is only due to an implicit assumption of the frameworks used in previous sections.

By generalizing the set-up, we show that the conflict between the desire to stabilize inflation and the desire

to minimize inflation uncertainty can also lead to an average bias, just as the conflict between the desire to

stabilize inflation and the desire to stabilize output can lead to both an inflation bias and a stabilization

bias (Svensson, 1997).

Our analysis of the cautiousness bias is motivated by the inflation dynamics of the euro area in recent

years. Over the past decade, the ECB monetary policy decisions have tended to oscillate between a cautious

gradual approach in the face of uncertainty (as examplified by Draghi’s recommendation to “move with tiny

step in a dark room”, cited above) and bold decisive actions when inflation expectations started to risk

disanchoring (such as the decision to start quantitative easing in January 2015). This dual strategy seems

in line with the discussion of the Brainard principle given by Peter Praet in 2018. Praet (2018) argues that

“a case for gradualism can be made in the context of the uncertainty inherent in economic data, models

and parameters, notably in times of unconventional monetary policy”, but that “a more aggressive monetary

policy response, however, is warranted when there is clear evidence of heightened risks to price stability”. Our

analysis does not object to this distinction but warns against taking the risks to price stability as exogenous:

the disanchoring of inflation expectations that calls for an aggressive policy response can be precisely caused

by a desire to attenuate the policy response earlier on.

For concreteness we analyze the cautiousness bias in the context of conventional interest-rate policies,

but its logic applies equally to unconventional policies such as forward guidance and balance-sheet policies—

at least when these are intended as alternative ways to stimulate aggregate demand. What is key to the

cautiousness bias is not the way monetary policy affects aggregate demand, but the way aggregate demand

affects inflation through the Phillips curve. Because unconventional policies are precisely the ones whose

effects are likely to be deemed most uncertain (see, e.g., Williams, 2013), the importance for a central bank

to be aware of a bias toward excessive caution is all the more important when the effective lower-bond (ELB)

on nominal interest rates only leaves unconventional policies available.

The cautiousness bias has another implication for unconventional policies. Although in our framework
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real interest rates never move more than if the central bank had not tried to attenuate policy, nominal

interest rates can. In the presence of the ELB, this implies that a central bank can find itself up against

the ELB and forced to turn to unconventional policies even though it would not have, had it not tried to

attenuate policy.

A number of papers have considered the implications of model uncertainty for the conduct of monetary

policy. Svensson (1999); Clarida, Gali, and Gertler (1999); Estrella and Mishkin (1999); Sack (2000); Sack and

Wieland (2000); Rudebusch (2001), and more recently Williams (2013), recover Brainard’s recommendation

for policy attenuation in the context of monetary policy. Subsequent literature has emphasized situations

in which Brainard’s attenuation principle is overturned and uncertainty calls instead for a more aggressive

response.4 Söderström (2002), Kimura and Kirozumi (2007), and Ferrero, Pietrunti, and Tiseno (2019)

consider such situations while still modeling the central bank’s uncertainty in a Bayesian way, as in Brainard’s

original set-up (and ours). Söderström (2002) shows policy aggressiveness can be called for when uncertainty

bears on the persistence of inflation, in a model with adaptive expectations. Kimura and Kirozumi (2007)

show it is called for when uncertainty bears on the fraction of firms that form expectations in a rule-of-thumb,

adaptive, fashion. Closer to this paper, Ferrero, Pietrunti, and Tiseno (2019) show that uncertainty on the

slope of the New-Keynesian Phillips curve can lead the central bank to move nominal interest rates by more

than under certainty in response to cost-push shocks, if shocks are persistent enough. We interpret the result

through the lens of the cautiousness bias: the optimal discretionary policy is to attenuate the policy response

for given inflation expectations, but the adverse reaction of inflation expectations forces the central bank to

ultimately act more.

Other papers consider the consequences of modeling the central bank’s uncertainty through the minmax

approach of robust control instead of the Bayesian approach. They usually find that uncertainty calls for

more aggressive policy, in opposition to the Brainard principle. Giannoni (2002) finds that the fear that

the worst will happen to output and inflation if the central bank does not track the natural rate provides

an incentive to track it more closely—i.e. to move interest rates more aggressively (see also Stock (1999);

Onatski and Stock (2002); Tetlow and von zur Muehlen (2001); Söderström and Leitemo (2008)). Sargent

(1999) finds that uncertainty on the persistence of shocks calls for a more aggressive response of monetary

policy. Barlevy (2011) argues that what is conducive to more aggressive policy under robust control is less

the minmax approach per se than its application to specific situations.5 He gives examples where the minmax

approach calls for policy attenuation, for the same reason as under the Bayesian approach, and shows that

uncertainty on the persistence of shocks calls for policy aggressiveness in the Bayesian set-up as well.6

Other arguments for attenuation or gradualism have been put forward, which do not rely on the pres-
4Brainard (1967)’s original paper already contains situations in which uncertainty calls for more aggressive policy, as we

discuss in section 2. See also Chow (1973), Craine (1979) and Walsh (2003).
5See also Onatski and Williams (2003) and Tillmann (2009).
6Using as well the minmax approach of robust control, Woodford (2010)and Adam and Woodford (2012) consider the design

of monetary policy rules that are robust to the possibility that the private sector forms expectations using a wrong model, even
though the central bank is itself sure of the model of the economy.
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ence of uncertainty.7 Woodford (2003c) shows that the optimal, history-dependent, monetary policy under

commitment features inertia, and can be approximated by a discretionary central bank that puts a cost on

too abrupt a change in interest rates. Since Woodford’s argument for gradualism does not rely on concerns

over uncertainty however, it is not a rationale for attenuating or delaying the policy response more when

uncertainty is higher. In particular, it is no rationale for being more reluctant to act when the only avail-

able instruments are unconventional instruments with more uncertain effects. As far as Odyssean forward

guidance is concerned, it is precisely Woodford’s argument in favor of inertia in interest rates that makes

committing to keeping rates lower for longer recommendable (Eggertsson and Woodford, 2003).

A third argument for gradualism is based on concerns about the stability of the financial system. As

argued by Cukierman (1991), interest-rate smoothing can be desirable because it mitigates sudden changes in

banks’ short-term funding cost or long-term asset returns, and therefore in banks’ profits and balance-sheets.

Interestingly, in a recent paper Stein and Sunderam (2018) show that this distinct motive for gradualism can

also lead to a time-inconsistency problem: If the central bank dislikes volatile long-term rates for financial

stability reasons, it has an incentive to track the natural interest rate only gradually, in order not to reveal

information on long-term natural rates that would make long-term rates react too abruptly. But this is

taking markets’ expectations as given: in equilibrium markets understand that the central bank is moving

gradually and adjust their expectations of long-term natural rates accordingly, partly undoing the central

bank’s efforts. We show that time-inconsistency is equally at play when gradualism is driven by uncertainty

concerns. The time-inconsistency problem is different between the two models however: in our model the

cautiousness bias arises from a failure to internalize inflation expectations, while in Stein and Sunderam’s

model time-inconsistency arises from a failure to internalize expectations of future interest rates—there are

no inflation expectations in their model.8

Finally, other costs of delaying policy action have been put forward. Acharya, Bengui, Dogra, and Wee

(2019) show that under skill-loss hysteresis—when a prolonged period of unemployment depletes a worker’s

human capital—not acting promptly can push the economy into a recession from which it can then only

slowly recover, and even not at all.

2 A Simple Model of the Cautiousness Bias

In this section, we expose the cautiousness bias in a simple model where the supply side is captured by

the New Classical Phillips curve (Lucas, 1972). Using the New Classical Phillips curve has two advantages.

First, it is the Phillips curve for which the bias appears most transparently. Second, it follows the classic
7Still other arguments have been put forward to explain gradualism positively, without defending it normatively. For instance,

Riboni and Ruge-Murcia (2010) argue that gradualism in monetary policy is partly due to the consensus-building approach
taken by many monetary policy committees, a decision-making procedure that favors the status quo. See also Favaretto and
Masciandaro (2016).

8As a consequence, the cautiousness bias is at play in our model even though we make the New-Keynesian assumption that
aggregate demand and inflation depend on the long-term—not short-term—interest rate. In Stein and Sunderam’s model, for
the time-inconsistency problem to be at play it is necessary that the central bank’s interest-rate target bears on the short-term
rate only.
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accounts of the inflation bias by Kydland and Prescott (1977) and Barro and Gordon (1983a,b).

2.1 The Problem of the Central Bank

The problem of the central bank is to pick an allocation for inflation πt, the output gap xt and the nominal

interest rate it that best fits its objective, subject to the constraints imposed by the behavior of the private

sector. These constraints are captured by a simple two-equation model. The aggregate-demand side of the

economy is represented by the Euler equation:

xt = −σ(it − Et(πt+1)) + Et(xt+1) + vt, (1)

where σ is the intertemporal elasticity of substitution, and vt is a possibly autocorrelated exogenous shock

with mean zero, observable at period t. The shock vt captures variations in natural output ynt , or equivalently

in the natural rate of interest rnt . Specifically, vt is the function vt = −(ynt −Et(ynt+1)) of natural output, and

connects to the natural rate through vt = σrnt . Appendix A derives and discusses the connection between

these alternative representations of the fundamental shocks to the Euler equation. As in the literature on

the inflation bias which distinguishes between anticipated inflation and surprise inflation (e.g. Barro and

Gordon, 1983a,b), we allow for the shock vt to be partly anticipated by the private sector. Accordingly, we

refer to Et−1(vt) as the foreseen shocks and to vt − Et−1(vt) as the unforeseen shocks. 9

The aggregate supply side of the economy is captured by the New Classical Phillips curve:

πt = κxt + Et−1(πt), (2)

where κ is the slope of the Phillips curve. The private sector’s past expectations of present inflation, formed

at t − 1, shift the Phillips curve. The New Classical Phillips curve can be derived for instance under the

assumption that a fraction of firms set their prices at t with outdated information from t − 1 (Woodford,

2003b; Mankiw and Reis, 2010).

Crucially, the central bank faces model uncertainty. It is uncertain of the values of the structural pa-

rameter σ, and entertains several possible values for it. Like Brainard (1967), we follow Savage (1954) in

modeling model uncertainty in a Bayesian way. The central bank assigns probabilities to every possible value

of σ and treats it as a random variable. We note σ̄ and Vσ the mean and variance of the central bank’s

subjective beliefs over σ.10 We assume the central bank is certain of the value of κ. We do so because

assuming uncertainty bears only on σ is the case most favorable to Brainard’s attenuation principle, as will
9We take “anticipated”, “foreseen” and “expected” as synonyms, but reserve “foreseen” to the private sector’s anticipations

of the exogenous shocks, and “expected” to the private sector’s anticipations of inflation.
10We implicitly assume that Vσ is constant over time. This abstracts from the fact that the central bank could gradually

gather information on the model of the economy through experience, effectively lowering its uncertainty Vσ over time. Even
with learning however, uncertainty over σ would only be decreasing over time if the central bank can learn the structure of
the economy faster than the structure of the economy changes. We implicitly assume that the structure of the economy is
fast-changing so that we can take Vσ to be constant.
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become clear below.

Although the central bank is uncertain of the model of the economy, we assume that the models it

entertains are not too far from the actual one, in the spirit of rational expectations. We assume that the true

value of σ is σ̄, the mean of the values considered by the central bank. The true dynamics of the economy

is therefore given by the Euler equation (1) and Phillips curve (2) with σ = σ̄. Note that we implicitly

assume that the private sector is not subject to model uncertainty, since we assume that the Euler equation

(1) and Phillips curve (2) hold, both of which are derived under the assumption of no model uncertainty.

As a consequence, the central bank and the private sector have different information sets at t. To avoid any

confusion, we denote by E∗t (.) the expectations of the central bank at t, which are formed without knowing

σ. We reserve the notation Et(.) for the expectations of the private sector, which knows that σ = σ̄. We

assume that the private sector’s expectations are part of the central bank’s information set. This is meant

to capture the fact that central banks have access to—and heavily monitor—measures of the private sector’s

inflation expectations before taking monetary policy decisions, such as market-based expectations or surveys

of professional forecasters. 11

We assume that the mandate of the central bank is to stabilize inflation only. Its objective is to set

inflation πt to a target π∗ at all periods.12 It has the quadratic loss function:

L∞ = E∗t

( ∞∑
k=0

βk(πt+k − π∗)2

)
. (3)

The assumption of a single inflation mandate is not necessary for our results. Appendix D shows that they

hold equally well in the more general case in which the central bank has a dual objective to stabilize both

inflation and the output gap. We focus on the case of a single mandate in the body of the paper for two

reasons. First, it emphasizes that the cautiousness bias does not arise from a desire to stabilize output at

the expense of stabilizing inflation, unlike the inflation bias. Therefore, it applies equally to central banks

with a single primary mandate, like the ECB. In the appendix, we allow for the central bank to be willing

to set output above potential and therefore be subject to the inflation bias, and show that the cautiousness

bias and inflation bias arise from distinct perverse incentives. Second, the assumption of a single objective

corresponds to the original framework of Brainard (1967).
11Note that since the private sector’s expectations depend on the parameter σ, the central bank could in theory solve for the

dependence of expectations on σ and infer the value of σ from expectations. Such an inference is possible in our model because
of the simplicity of its stylized two-equation set-up and the simplicity of its information structure. The mapping between σ
and expectations could be made arbitrary noisy by adding noise to the model, making the inference arbitrarily uninformative.
Alternatively, we could assume that the private sector faces the same model-ambiguity as the central bank so that the central
bank has nothing to learn from the private sector, but at the cost of less standard forms for the Euler equation and Phillips
curve. Since the issue is peripheral to our focus, we simply assume away this inference from endogenous signals, as is common
in the literature on incomplete perfect knowledge (e.g. Woodford (2003a) or Angeletos and La’O (2009)).

12With the New Classical Phillips curve (2) (and other information-based Phillips curves), the loss function that can be
microfounded from the costs of relative price dispersion contains unexpected inflation, not inflation. However, since in practice
the mandate of central banks bears on inflation, we assume so here. We consider any arbitrary inflation target (not necessarily
zero) for the same reason. Considering other costs of inflation could justify caring about expected inflation (and various values
for the inflation target) even when the Phillips curve is based on information frictions.
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2.2 Reductio ad Brainard

We now show that this simple monetary model exactly fits into the framework considered by Brainard

(1967), up to one key difference: the presence of the expectations of the private sector. In its canonical form,

Brainard’s model considers a policy-maker who seeks to set a single variable on a target through the use of a

single instrument. In our case, the single objective is inflation. We pick the single instrument of the central

bank to be the real interest rate rt ≡ it − Et(πt+1).13

By taking expectations at t − 1 of the New-Classical Phillips curve (2), it must be that the expected

output gap next period is zero, Et(xt+1) = 0. Plugging in the expression for the output gap from the Euler

equation (1) into the Phillips curve (2), we get:

πt = −φrt + εt + Et−1(πt), (4)

where we define φ ≡ σκ and εt ≡ κvt. We denote φ̄ = κσ̄ the mean of φ and Vφ = κ2Vσ its variance.

Since the relationship (4) only contains period-t variables, the objective of the central bank reduces to

setting the interest rate rt to minimize the present-period loss:

Lt(εt) = E∗t (πt − π∗)2, (5)

at all periods t and for all realizations of εt, subject to constraint (4). Since there is no ambiguity we drop

the time subscripts. The following lemma takes stock and draws the parallel to Brainard’s framework.

Lemma 1 (Reductio ad Brainard) The program of the central bank is, for any realization of the shock

ε, to pick the interest rate r that minimizes

L(ε) = E∗((π − π∗)2), (6)

subject to:

π = −φr + ε+ E−1(π), (7)

where the central bank observes ε and E−1(π), and φ is a random variable with mean φ̄ and variance Vφ.

Up to the expectations of the private sector E−1(π), this is exactly the framework considered by Brainard

(1967).

The random variable φ captures the policy-maker’s uncertainty on how its own action r affects its objective

π—in our case, the central bank’s uncertainty over the interest-rate channel. As Brainard emphasized,
13To be sure, in practice the central bank sets a path for the nominal interest rate, but the implementation of the optimal

policy is an issue distinct from the choice of the optimal policy, which is the one we consider here. The latter is a path for all three
variables it, πt and xt, subject to the constraints imposed by the Euler equation (1) and Phillips curve (2). Parameterizing
the equilibrium through the three variables rt, πt and xt is simply a convenient change of variables, and one that fits into
Brainard’s framework.
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this is the type of uncertainty that can justify policy attenuation. Uncertainty over ε only—in our case,

uncertainty over the natural rate—would result in Theil’s certainty equivalence: it would leave the optimal

policy unchanged, up to replacing ε by its expected value (Theil, 1957). Our assumption that the central

bank perfectly observes ε abstracts from this irrelevant form of uncertainty.

We have restricted the uncertainty over the interest-rate channel to arise from uncertainty over σ, the

elasticity of demand to changes in the real interest rate. It could also arise from uncertainty over κ, the

elasticity of inflation to changes in demand. We focus on σ because uncertainty over κ would create correlation

between ε = κv and φ = κσ. As Brainard notes, such correlation can turn the recommendation for policy

attenuation into a recommendation for policy aggressiveness. Our qualification of the Brainard principle is

distinct and does not rely on correlated shocks. Therefore, we restrict uncertainty to σ to restrict to the

standard case of uncorrelated shocks, which is the one most favorable to policy attenuation.

Our main point is that the presence of the private sector’s expectations in the Brainard model (7)

makes important changes to its policy recommendations. When the outcome of the policy depends on the

expectations of the private sector, we need to distinguish between policy under discretion and policy under

commitment. The cautiousness bias is a feature of policy under discretion, when the central bank takes the

inflation expectations of the private sector as given. We start with this case.

2.3 Brainard’s Attenuation Principle

We first show that if we fix the inflation expectations of the private sector, Brainard’s attenuation principle

holds unchallenged. To take explicit note of the fact that the central bank does not internalize its impact

on expectations, we temporarily denote expectations e(π) instead of E−1(π). For the moment they do not

have to bear any resemblance to equilibrium outcomes.

To understand the trade-off at the heart of Brainard’s attenuation principle, it is helpful to decompose

the mean squared error in its loss function (6) into the square of the distance of average inflation from its

target, and the variance of inflation:

L(ε) = (E∗(π)− π∗)2 + V ar∗(π), (8)

where (E∗(π)− π∗)2 = (−φ̄r + ε+ e(π)− π∗)2, (9)

and V ar∗(π) = Vφr
2. (10)

This expression makes apparent the two—possibly conflicting—objectives of the central bank. It wants to

bring its expectation of inflation (conditional on ε) to target, and it wants to minimize the (conditional)

variance of inflation. Note that through both objectives—including the one of bringing expected inflation

on target given the realization of ε—the goal of the central bank is to minimize the overall variance of

inflation. By setting the conditional expectation of inflation on target for every realization of ε it minimizes

the between variance of inflation. By minimizing the conditional variance of inflation is minimizes the within
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variance of inflation.14.

Denote rs the interest rate that the central bank sets when it faces no model uncertainty, Vφ = 0. In this

case the central bank can focus on minimizing the first term (9) in its loss function, and can fully stabilize

inflation on target by setting:

rs = r̄n + e(π)− π∗

φ̄
, (11)

where r̄n denotes the natural rate in the average model:

r̄n ≡ ε

φ̄
= v

σ̄
. (12)

According to equation (11), without concerns for model uncertainty, the optimal discretionary policy is to

track the natural rate, plus a corrective term if inflation expectations are not on target. In this case, it is

by responding fully to variations in the natural rate that the central bank reduces inflation volatility and

stabilizes the economy.

When the central bank is uncertain of the impact of its rate decision on inflation, Vφ > 0, the policy rate

r affects not only the expected value of inflation (9) but also its variance (10). This new dependence captures

the fact that, if the central bank is unsure of the consequences of departing from the steady-state rate r = 0,

its uncertainty is all the greater the larger the departure away from the steady-state rate. Because the policy

rate now affects both terms, there is now a trade-off between reaching the inflation target on average (and

minimizing the between variance of inflation), and minimizing the within variance of inflation. The central

bank solves this trade-off by choosing a midpoint r between the optimal interest-rate policy without model

uncertainty rs which minimizes the first term, and the steady-state interest rate r = 0 which minimizes the

second term. This is Brainard’s attenuation principle.

Lemma 2 (Brainard’s Attenuation Principle) Under discretion, the central bank sets the real interest

rate as:

r = αrs, (13)

where α ≡ φ̄2

φ̄2 + Vφ
. (14)

Policy becomes biased toward the steady-state interest rate r = 0 because the central bank understand the

effects of this policy better. Crucially, because α is less than one, the central bank no longer fully reacts to

shocks to the natural rate. Uncertainty over the effects of the policy response calls for attenuating the policy

response.
14The unconditional loss function is equal to L = E(L(ε)) = (E(π) − π̃)2 + V ar(E(π|ε)) + E(V ar(π|ε)), where the second

term is the between variance of inflation and the third term is the within variance of inflation. They sum to the total variance
of inflation by the law of total variance.
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Note that under its optimal discretionary policy the central bank does not expect inflation to be on

target. Plugging the chosen policy rate (13) into (7), the central bank expects inflation to be:

E∗(π) = π∗ + (1− α)(φ̄r̄n + e(π)− π∗) 6= 0. (15)

But the central bank is fine with this. It sees it as a cost worth paying to avoid the risks of uncertain policy

outcomes.

2.4 The Reaction of Inflation Expectations

The conclusion that the central central bank reacts less to shocks is premature however. The optimal

discretionary policy (13) depends on the private sector’s expectations of inflation, which are still to be solved

for. Crucially, inflation expectations depend on what policy the private sector expects the central bank to

implement. If a central bank concerned with model uncertainty fights inflation less aggressively, private

agents are likely to take it into account in forming inflation expectations.

We solve for the rational expectations of the private sector. Injecting policy (13) into equation (7), taking

expectations E−1, and imposing rational expectations e(π) = E−1(π) yields:

E−1(π) = π∗ +
(

1
α
− 1
)
φ̄E−1(r̄n). (16)

When the central bank faces no model uncertainty α = 1, inflation expectations are on target E−1(π) = π∗,

since the private sector rightly anticipates that the central bank will set the policy rate so that inflation is

on target under all circumstances. With model uncertainty α < 1 however, expectations of a natural rate

above average leads the private sector to expect above-target inflation. The private sector rightly expects

that in this case the cautious central bank will set the real interest rate below the natural rate, creating a

positive output gap, and thus above-target inflation.

By plugging the private sector’s expectations of inflation in equilibrium (16) into the expression for the

policy rate chosen by the central bank (13), we obtain the value of the real interest rate in equilibrium.

Proposition 1 (Brainard Principle Unraveled) Under the optimal discretionary policy, the real inter-

est rate is in equilibrium:

r = E−1(r̄n) + α(r̄n − E−1(r̄n)). (17)

In equilibrium, a central bank with concerns over uncertainty (α < 1) attenuates its response only to unfore-

seen changes in the natural rate. To foreseen changes it reacts exactly as much as if it had no concerns over

uncertainty.

A cautious central bank ends up reacting just as much to foreseen shocks because its reluctance to act
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pushes inflation to the point at which it is forced to act by the same extent anyway. Assume a shock hits

that pushes the natural rate below its average level. Concerned with uncertainty if it decreases its policy

rate too low, the central bank decides not to fully track the decrease in the natural rate, even if it means

letting inflation fall somewhat below target. But if the shock is foreseen by the private sector, this willingness

of the central bank to tolerate below-target inflation is, too. Accordingly, the private sector expects lower

inflation. Lower inflation expectations put further downward pressure on inflation. In response, the central

bank decides to decrease its rate a little more but still in an attenuated manner, which justifies even lower

inflation expectations, and so on. Ultimately, inflation expectations fall up to the point where they are low

enough to convince the central bank to fully match the decrease in the natural rate, as it would have chosen

in the absence of concerns for uncertainty.

2.5 The Cautiousness Bias

In reaction to foreseen shocks, the central bank ends up moving its policy rate as much as if it had no

concerns over uncertainty, but inflation ends up further away from target. Formally, the overall departure

from target—in response to both unforeseen shocks r̄n − E−1(r̄n) and foreseen shocks E−1(r̄n)—is:

E∗(π)− π∗ = (1− α)φ̄
(

(r̄n − E−1(r̄n)) + 1
α
E−1(r̄n)

)
. (18)

In response to unforeseen shocks r̄n − E−1(r̄n), inflation ends up away from target, by (1− α)φ̄ percentage

points for every percentage-point change in the natural rate. This is the amount of inflation the central

bank was willing to tolerate. But in response to foreseen shocks E−1(r̄n) inflation ends up further away from

target, by an additional factor 1/α. The outcome in terms of stabilizing inflation is worse than if the central

bank ignored policy uncertainty. Since the policy rate is forced into the uncharted territory the central bank

was seeking to avoid, the outcome is as bad in terms of avoiding uncertain outcomes. Overall, in response

to foreseen shocks the central bank reaches a worse outcome than if it had not sought to act cautiously.

The result that the central bank is behaving against its own interest is a feature of policy under discretion.

It would not be if policy were chosen under commitment, because this would allow the central bank to

internalize the effect of its policy on expectations. Indeed, appendix B shows the following result.

Proposition 2 (The Cautiousness Bias) In the optimal allocation under commitment, the policy rate

takes the exact same value as under discretion (17), but inflation departs from target by only:

E∗(π)− π∗ = (1− α)φ̄
(
r̄n − E−1(r̄n)

)
. (19)

Concerns over uncertainty make the discretionary policy depart from the optimal commitment policy.

Inflation takes the same value as under discretion in response to unforeseen shocks, but it remains on target in

response to foreseen shocks. Under commitment the central bank understands that when shocks are foreseen
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by the private sector, the policy rate can only be equal to the natural rate in equilibrium. It understands

that a desire to vary the policy rate by less than the natural rate will only increase inflation expectations up

to the point where inflation is enough off-target to convince the central bank to vary the policy rate by the

full extent of the change in the natural rate. As a consequence, it does not attempt to attenuate the policy

response to foreseen shocks and inflation remains on target. It does attenuate the response to unforeseen

shocks, however, because these do not risk de-anchoring inflation expectations.

We give the name cautiousness bias to the perverse incentive that turns the central bank’s cautiousness

into a policy that is no less aggressive, but yields worse stabilization outcomes. Like the inflation bias

expounded by Kydland and Prescott (1977) and Barro and Gordon (1983a,b), the cautiousness bias arises

because policy chosen under discretion abstracts from the effect of policy on expectations. It differs from

the inflation bias however, in that it does not rely on the desire of the central bank to set output above its

natural level. As our assumption of a single inflation mandate highlights, it does not even require the central

bank to care about stabilizing output. It arises instead because of the distorted perception of the trade-off

between stabilization inflation, and stabilizing the policy rate at values where its effects are better known.

2.6 Guarding Oneself Against Being Cautious

Short of shifting to deciding policy under commitment, what can a central bank—or the society that ap-

points it—do to guard itself against the cautiousness bias? Rogoff (1985) proposed a solution to realign

the incentives of a discretionary policy-maker with the preferences of society under commitment: appoint a

policy-maker whose preferences differ from society’s.

We show that society would be better off appointing a central banker who is less cautious than society

is. We capture different degrees of cautiousness through different weightings δ of the variance term in the

loss function (8):15

L(ε) = (E∗(π)− π∗)2 + δV ar∗(π). (20)

A discretionary central bank with such preferences still sets policy according to (13), up to a new value

for the attenuation coefficient α:

α(δ) = φ̄2

φ̄2 + δVφ
. (21)

We assume that society’s true preferences are still captured by the loss function (8), i.e. the loss function

(20) with δ = 1, and evaluate the outcome delivered by the various central bankers—different values of
15The weighting parameter δ allows to encompass several reasons for different degrees of cautiousness. A central banker

who perceives less uncertainty on the model parameter φ will be akin to one who has a lower δ, since V ar∗(π) = Vφr
2. But

differences in the degree of cautiousness can reflect pure differences in preferences: the weighting parameter δ can also be seen
as capturing different degrees of risk-aversion within a class of (squared) mean-variance preferences. Finally, discounting the
variance term can be a conscious decision to discount uncertainty concerns in order to counterbalance the cautiousness bias. In
this last case, it resembles a form of limited commitment.
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δ—according to society’s true social preferences. Appendix C shows the following result.

Proposition 3 (Optimal Discounting of Uncertainty Concerns)

• Unless all shocks are unforeseen by the private sector, it is always desirable to have a central bank that

discounts concerns over uncertainty, δ < 1.

• The optimal value of δ decreases with the proportion of shocks that are foreseen by the private sector.

A central bank that discounts uncertainty more reacts to shocks more. The benefit is that such a central bank

reacts more to foreseen shocks, reducing the cautiousness bias. The cost is that it overreacts to unforeseen

shocks. The optimal δ strikes a balance between costs and benefits.

3 The Cautiousness Bias with the Sticky-Information Phillips Curve

We now consider the cautiousness bias in a less stylized model of the economy’s supply side: the Sticky-

Information Phillips curve of Mankiw and Reis (2002). While the New-Classical Phillips curve is useful to

illustrate the logic of the cautiousness bias, its absence of dynamics misses an analysis of the chronology in

the policy decisions and their consequences. With the New-Classical Phillips curve, the entire dynamics is

subsumed into a one-period simultaneous equilibrium: because the private-sector anticipates that the central

bank will fight deflationary shocks less aggressively at t, inflation expectations are lower at t, and the central

bank is forced to act at t. More realistically, this sequence of events happens sequentially: A negative shock

to the natural rate hits; the central bank does not fully track the fall in the natural rate; inflation falls

below target; the private sector gradually realizes that inflation is below target and forms lower inflation

expectations; lower inflation expectations push inflation down; the central bank is forced to decrease rates

further. The Sticky-Information Phillips curve allows us to capture this sequence of events.

3.1 The Problem of the Central Bank

We assume the supply-side of the economy is captured by the Sticky-Information Phillips curve:

πt = κxt + Ēt−1(πt + ζ∆xt). (22)

where ζ is the slope of the Short-Run Aggregate-Supply (SRAS), ∆xt = xt − xt−1 is the growth rate of

the output gap, and Ēt−1 is notation for the following weighted average of expectations formed at different

periods in the infinite past:

Ēt−1(πt + ζ∆xt) =
∞∑
j=0

λ(1− λ)jEt−1−j(πt + ζ∆xt). (23)

15



Like the New-Classical Phillips curve, the Sticky-Information Phillips curve models monetary non-neutrality

as arising from price-setters’ imperfect information. Contrary to the New-Classical Phillips curve, which

assumes all information is incorporated by everyone after one period, the Sticky-Information Phillips curve

assumes that the private sector only gradually learns about the shocks that hit the economy.16

We only replace the Phillips curve and keep the Euler equation (1) unchanged on the aggregate-demand

side. However, when the central bank is uncertain of the value of the intertemporal elasticity of substitution

σ, considering the Euler equation in its recursive or iterated forms matters. Each form makes different

assumptions on the uncertainty of the central bank.17 The recursive form of the Euler equation is:

xt = −σrt + Et(xt+1) + vt. (24)

Its iterated form is:

xt = −σRt + Et

( ∞∑
k=0

vt+k

)
, (25)

where Rt is the long-term real interest rate:

Rt ≡ Et

( ∞∑
k=0

rt+k

)
= rt + Et(Rt+1). (26)

With the recursive Euler equation (24), the uncertainty of the central bank over the output gap—and

therefore over inflation—is:

V ar∗t (xt) = Vσr
2
t . (27)

It is the lowest when the short-term rate is equal to its steady-state value rt = 0. It captures that the

central bank understands the effect of interest rates on demand best when the short-term rate is close to

its steady-state value. With the iterated Euler equation (25), the uncertainty of the central bank over the

output gap—and therefore over inflation—is:

V ar∗t (xt) = VσR
2
t + V ar∗t

(
Et

( ∞∑
k=0

vt+k

))
. (28)

It is the lowest when the long-term rate is equal to its steady-state value Rt = 0. It captures that the

central bank understands the effect of interest rates on demand best when the long-term rate is close to its
16Specifically, it can be derived under the assumptions that a fraction λ of firms updates their information sets every period,

and that the probability of updating information in a given period is independent of how long it has been since the firm last
updated its information. The slope of the Sticky-Information Phillips curve is a function of the probability λ of renewing one’s
information set in a given period, κ = ζλ/(1− λ).

17The issue does not arise with the New-Classical Phillips curve because with the New-Classical Phillips curve the expected
output gap next period is zero Et(xt+1) = 0.
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steady-state value. But if the central bank wants to keep the long-term rate nears its steady-state value,

then it want to keep the short-term rate near rt = −Et(Rt+1), not near zero.

Both assumptions are meaningful. However, because what the output gap depends on, with an uncertain

elasticity σ, is the whole long-term interest rate, the case when the central bank worries about departures of

the long-run interest rate from steady-state is more natural. We consider this case in what follows, using the

iterated Euler equation (25). The case when the central bank worries about departures of the short-term

interest rate from steady-state is qualitatively similar.18

Plugging in the iterated Euler equation (25) into the Sticky-Information Phillips curve (23) gives the

relationship between the short-term interest rate rt chosen at t and inflation πt at t:

πt = −φ (rt + Et(Rt+1)) + κEt

( ∞∑
k=0

vt+k

)
+ Ēt−1(πt + ζ∆xt), (29)

where φ = κσ. The problem of the central bank under discretion at t is to pick the short-term interest

rate rt that minimizes the loss Lt = E∗t ((πt − π∗)2) subject to this constraint (29). Because it acts under

discretion, it takes future policies Et(Rt+1) as given.

3.2 The Attenuation Principle in a Dynamic Set-Up

The central bank still faces the same trade-off as under the New-Classical Phillips curve, between bringing

its best expectations of inflation on target, and minimizing the (conditional) variance of inflation. Its loss

function can be written Lt = (E∗t (πt)− π∗)2 + V ar∗t (πt), where:

(E∗t (πt)− π∗)2 = −φ̄ (rt + Et(Rt+1)) + κEt

( ∞∑
k=0

vt+k

)
+ Ēt−1(πt − π∗ + ζ∆xt), (30)

V ar∗t (πt) = Vφ (rt + Et(Rt+1))2
. (31)

The interest rate that sets inflation on target—the one the central bank would set absent concerns over

uncertainty—is:

rst = rnt + Et

( ∞∑
k=1

(rnt+k − rt+k)
)

+ Ēt−1(πt − π∗ + ζ∆xt)
φ̄

, (32)

where we defined again the natural rate in the average model rnt = vt/σ̄. Without concerns over model

uncertainty, the optimal discretionary policy is to track the natural rate, plus a corrective term if inflation

expectations are not on target, and if monetary policy is expected not to track the natural rate tomorrow.
18An additional mechanism appears in this case, which tends to make the policy response more front-loaded. In response to a

fall in the natural rate, the central bank can expect it will attenuate the decrease in the short-term policy rate tomorrow. As a
result, the output gap today becomes more negative and inflation today falls more below target. The central bank is therefore
more willing to decrease the short-term interest rate today in order to stabilize inflation today. It is forced into action even
earlier on.
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In doing so, it has the long-term rate track the long-term natural rate, plus a corrective term if inflation

expectations are not on target:

Rst = Rnt + Ēt−1(πt − π∗ + ζ∆xt)
φ̄

, (33)

where Rnt ≡ Et

( ∞∑
k=0

rnt+k

)
. (34)

When the central bank is uncertain of the impact of interest rates on inflation, it sets the policy rate rt
to a midpoint between the interest rate rst that puts inflation on target on average, and the interest rate

rt = −Et(Rt+1) that minimizes the within variance of inflation (31):

rt = αrst + (1− α)(−Et(Rt+1)), (35)

where α is still given by (14). This solution for the short-term rate sets the long-term interest rate to:

Rt = α

(
Rnt + Ēt−1(πt − π∗ + ζ∆xt)

φ̄

)
. (36)

Brainard’s attenuation principle materializes once again as a bias toward the policy whose effects the central

bank understands best: in our case, keeping long-term interest rates toward their steady-state value.

3.3 Acting Tomorrow Out of Not Acting Today

To assess whether—and for how long—the central bank can indeed attenuate its policy response, we need to

solve for the private sector’s expectations on which the policy rate (36) depends. In order to do so, appendix

E solves for the dynamics induced by this very policy.

Proposition 4 (Dynamics under the Sticky-Information Phillips Curve) The dynamics of inflation

and the output gap (in the average model) is determined by the system:

xt = σ̄Rnt −
α

(1− α)κ (πt − π∗), (37)

πt = κxt + Ēt−1(πt + ζ∆xt). (38)

We consider the response of the economy (37)-(38) to a persistent fall in the natural rate. We assume

the shocks to the natural rate follow an AR(1):

rnt = ρrnt−1 + ηt, (39)

in which case the long-term natural rate Rnt = rnt /(1− ρ) also does. We calibrate the model at a quarterly

frequency, as follows. Following Mankiw and Reis (2002), we set the slope of the SRAS to ζ = 0.1, and the
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frequency of renewing one’s information to once a year, λ = 0.25. This gives a slope of the Phillips curve

equal to κ = ζλ/(1 − λ) = 0.033. We set the intertemporal elasticity of substitution to σ̄ = 1. We assume

that the uncertainty of the central bank is such that it attenuates its response by a quarter, α = 0.75. We

set the persistence of the shocks to ρ = 0.95.

We consider a fall of the natural rate by one percentage point on impact. We solve for the Impulse-

Response Function (IRF) using the method of undetermined coefficients, as detailed in appendix E. Figure

1 gives the responses of inflation, the output gap and interest rates. As can be seen through the dotted line

of the upper-left panel, on impact inflation expectations stay closed to target because most private agents

do not notice the shock. As a result, the central bank is able not to decrease the long-term real interest

rate R by as much as the fall in the natural long-term interest rate Rn, as shown on the middle-left panel.

Because the long-term interest-rate rate is below its natural level, inflation falls below target, as can be seen

through the plain line of the upper-left panel. As the private sector gradually realizes the fall in inflation,

inflation is pushed down further, forcing the central back to decrease rates further. Ultimately, the real

long-term interest rate ends up tracking the fall in the natural long-term rate as much as if the central

bank had not been willing to attenuate policy. Even as the real rate converges to the natural rate however,

inflation remains further below target than it would have if the central bank had not been concerned with

uncertainty.19

On figure 1, although the fall in the real rate never exceeds the fall in the natural rate, because of the fall

in inflation expectations the nominal rate ends up falling by more that it would have absent concerns over

uncertainty. Taking into account the effective lower bound (ELB) on interest-rate policies, a central bank

subject to the cautiousness bias can therefore find itself up against the ELB even though it would not have

if it had not try to attenuate policy early on.

4 The Cautiousness Bias with the New-Keynesian Phillips Curve

Both the New-Classical Phillips curve and the Sticky-Information Phillips curve make past expectations

of present inflation the relevant inflation expectations. Does the cautiousness bias depend on this form of

backward-lookingness in the Phillips curve? We show it does not: The cautiousness bias applies similarly to

the forward-looking New-Keynesian Phillips curve (NKPC). The dynamics of events under the NKPC differs

from the one under the Stick-Information Phillips curve. Because the NKPC is not based on the assumption

that it takes time for agents to incorporate new information, inflation expectations are not sluggish. Monetary

policy is not progressively forced into action as inflation expectations progressively adjust. Instead, inflation

expectations respond strongly on impact, and monetary policy is forced into action on impact.
19Notice that the decrease in the short-term real interest rate r is initially even more attenuated than if inflation expectations

stayed anchored, as can be seen on the middle-right panel. This is because, as financial markets anticipate that the central
bank will be forced to decrease rates further in the future, initially the central bank faces a lower yield curve. As anticipations
of future short-term rates are low, the central bank has less of an incentive to decrease present short-term rates. Ultimately
however, the short-term real interest rate ends up tracking the natural short-term rate as well.
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Figure 1: IRF to a Fall in the Natural Rate under the Sticky-Information Phillips Curve
Note: The figure gives the Impulse-Response Functions (IRF) of inflation π, the output gap x, the long-term real
interest rate R, the short-term real interest rate r, and the short-term nominal interest rate i to a 1pp decrease in the
real natural rate of interest. The dotted lines give the IRF in the counterfactual case where expectations of inflation
and output gap growth Ēt−1(πt+ζ∆xt) would remain constant to π∗. The horizon is expressed in quarters. The IRF
are plotted under the following calibration. The intertemporal elasticity of substitution is σ̄ = 1; the probability of
renewing one’s information set in the quarter is λ = 0.25; the slope of the Short-Run Aggregate Supply relationship is
ζ = 0.1. It implies a slope of the Phillips curve κ = ζ×λ/(1−λ) ' 0.033. The uncertainty Vφ is such that the central
bank attenuates its action by a quarter, α = 0.75. The auto-regressive root of the AR(1) shock process is ρ = 0.95.

4.1 The Problem of the Central Bank

We assume the supply-side of the economy is captured by the New-Keynesian Phillips curve, where inflation

expectations enter as present expectations of future inflation:

πt = κxt + βEt(πt+1), (40)
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where β ∈ (0, 1) is firms’ discount factor. We keep the Euler equation unchanged, again in its iterated form

(25). Because the New-Keynesian Phillips curve is slightly non-vertical in the long-run β < 1, we focus on

the case of a zero-inflation target π∗ = 0 in order to abstract from a desire to exploit a long-run trade-off

between inflation and output. Plugging in the iterated Euler equation (25) into the New-Keynesian Phillips

curve (40) gives the relationship between the short-term interest rate rt chosen at t and inflation πt at t:

πt = −φ (rt + Et(Rt+1)) + κEt

( ∞∑
k=0

vt+k

)
+ βEt(πt+1), (41)

where φ = κσ. The problem of the central bank under discretion at t is to pick the short-term interest rate

rt that minimizes the loss Lt = E∗t (π2
t ) subject to this constraint (41). Because it acts under discretion, it

takes future policies Et(Rt+1) as given.

4.2 The Cautiousness Bias with Forward-Looking Inflation Expectations

The derivation of the discretionary policy is similar to the case of the Sticky-Information Phillips curve.

Appendix F shows that the Brainard principle still applies: the optimal discretionary policy is to attenuate

the response of the long-term interest rate to changes in the long-term natural rate by the factor α,

Rt = α

(
Rnt + βEt(πt+1)

φ̄

)
. (42)

Once again however, the central bank acts less only for given inflation expectations, and acting less

shifts inflation expectations adversely. Appendix F solves for inflation expectations and shows that the

cautiousness bias applies similarly to the New-Keynesian Phillips curve.

Proposition 5 (The Cautiousness Bias under the New-Keynesian Phillips Curve)

Assume that the natural rate follows an AR(1) process (39). In equilibrium the long-term rate is:

Rt = α

(
1

1− β(1− α)ρ

)
Rnt . (43)

While Brainard’s attenuation principle leads the central bank to move rates less by a factor α < 1, the reaction

of inflation expectations forces the central bank to move rates more by a factor 1/(1− β(1− α)ρ) > 1.

The timing in the manifestation of the cautiousness bias is specific to the New-Keynesian Phillips curve

however. A well-known property of the NKPC is that it produces front-loaded dynamics, where shocks have

their maximal effect on impact (Ball, 1994; Mankiw and Reis, 2002). This applies to the dynamics of the

cautiousness bias. When a persistent negative shock to the natural rate hits, agents immediately factor

in that the central bank will under-react to the fall in the natural rate, letting inflation fall below target.

As a result, their present expectations of future inflation—the ones that enter the New-Keynesian Phillips

curve—immediately fall. In reaction, the central bank is immediately forced to decrease interest rates further
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in order to counteract the fall in inflation expectations. The central bank is forced into action as early as on

impact, and from then on the change to the real interest rate fades away in proportion to the change in the

natural rate.

Inflation expectations react all the more that the shock is more persistent. They do not react at all if the

shock is fully transitory ρ = 0, and react most when ρ tends to one. As a result, the central bank acts all the

more that the shock is more persistent. In our model, the central bank always act less than it would have

absent concerns over uncertainty, if acting more is defined in terms of the real interest rate. Even for very

persistent shocks, the overall multiplier α/(1− β(1− α)ρ) always remains below one.20 Appendix G shows

that the same is true when the relevant Euler equation is the recursive Euler equation (24). Under either

assumption on the Euler equation however, for persistent enough shocks, the central bank moves nominal

interest rates by more than it would have absent concerns over uncertainty, as shown in appendices F and

G.

That the persistence of shocks mitigates the policy attenuation called for by the Brainard principle is

emphasized by Ferrero, Pietrunti, and Tiseno (2019). They consider a model where parameter uncertainty

applies to the slope of the New-Keynesian Phillips curve κ and show that the response of the central bank’s

nominal interest rate to cost-push shocks can move from attenuated to accentuated if shocks are persistent

enough. We interpret their result through the lens of the cautiousness bias: a central bank concerned with

Brainard uncertainty always wants to act less, but under discretion the adverse reaction of the private sector’s

expectations can force it to act more.

5 A Cautiousness Bias on Average Inflation

In all the analysis so far, the cautiousness bias has manifested itself as an overreaction of inflation to shocks.

Because shocks are symmetric, the cautiousness bias has not challenged the ability of the central bank to set

average inflation on target, in contrast to the inflation bias. In this section, we show that this is only due to

an implicit assumption of the framework used so far. By generalizing the set-up, we show that the conflict

between the desire to stabilize inflation and the desire to minimize inflation uncertainty can lead not only to

an overreaction bias but also to an average bias, just as the conflict between the desire to stabilize inflation

and the desire to stabilize output can lead to both an inflation bias and a stabilization bias (Svensson, 1997).

5.1 Allowing for any Policy to be the Least Uncertain

We consider again the framework of section 2, where the economy’s supply-side is captured by the New-

Classical Phillips curve (2). In the set-up of section 2, the unconditional average inflation rate ends up equal

to the inflation target, E(π) = π∗. This can be seen by taking the unconditional average of the expression

for expected inflation (16), and using the fact that the natural rate is at its steady-state value on average,
20Since the short-term rate is rt = α

(
1

1−β(1−α)ρ

)
rnt , the same is true of the short-term interest rate.
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E(r̄n) = 0. While the cautiousness bias makes inflation depart from target more, departures from target are

symmetric above and below the target. Average inflation remains on target.21

The absence of an average bias is however only due to an implicit assumption embedded in equation (7).

The rationale for Brainard’s attenuation principle is that, if the central bank is uncertain of the effects of its

own action on inflation, uncertainty on inflation is all the greater the more it acts. Acting more however, is

only defined relative to a reference point. In Brainard’s framework, this reference point is the policy whose

effects on inflation are best understood, in the sense of minimizing the conditional variance of inflation (10).

Equation (7) de facto assumes that the policy whose effects are best understood is keeping the interest

rate around the steady-state value of the natural interest rate, r̄n = 0. This can be a justifiable assumption.

Because the steady-state natural rate is the interest rate that has been most often implemented, it can be

argued it the interest rate on which most experience has been acquired. But this is an assumption, and

alternative ones are also defensible. For instance, it can be argued that the policy whose effects are best

understood is keeping the interest rate toward the value that has been recently implemented, which may not

correspond to the steady-state. Such an assumption is implicit in the reliance on the Brainard principle to

justify gradualism, or the terminology of “conservatism principle” used by Blinder (1999).22 For instance,

in March 2019 at the time of the quote by Mario Draghi mentioned in the introduction, the eonia had

been at levels below 1.5% for more than ten years, far below its long-term average. In this context, moving

cautiously may be better interpreted as tilting nominal rates toward recent low levels, not toward their

historical average—which would mean a sharp and sudden increase in rates.

In this section we generalize the set-up of section 2 to allow for the possibility that the policy whose

effects are best understood is any arbitrary policy r, not necessarily the steady-state natural interest rate

r = 0. Equation (7) is now:

π = −φ(r − r)− φ̄r + ε+ E−1(π). (44)

The constant term −φ̄r is necessary to guarantees that the central bank’s average expectation of inflation

across all the models it considers is correct, E∗(π) = −φ̄r + ε+ E−1(π).
21Of course, the fact that average inflation is on target also depends on the fact that we shut down the inflation bias by

considering a central bank with a single inflation mandate. See appendix D for the case where both the cautiousness and
inflation biases are potentially at play.

22The importance of the reference point of minimal uncertainty was not lost to Brainard, who cautioned that “some care
must be used in interpreting [the attenuation principle]. The gap in this context is not the difference between what policy
was "last period" and what would be required to make the expected value of [the target variable] equal to [its target]. In the
example we have used, the gap is the difference between the point where the variance of [the target variable] is least and [the
policy instrument] required to give an expected value of [the target variable] equal to [its target]” (Brainard, 1967). Sack (1998)
and Wieland (2000) embed the Brainard principle in a dynamic learning model to capture the interpretation of the Brainard
principle as a recommendation for gradualism.
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5.2 Missing the Inflation Target on Average

The program of the central bank is still to minimize the loss function (6), which can still be decomposed

into a mean term (9) and a variance term. The only difference relative to section 2 is that, by definition, the

within variance of inflation

V ar∗(π) = Vφ(r − r)2 (45)

is now minimized for r = r. The central bank still solves the trade-off between its two objectives by setting

the interest rate r to a midpoint between the interest rate (11) that minimizes the mean term (9), and the

interest rate r that minimizes the variance term (45):

r = αrs + (1− α)r, , (46)

where rs is till given by (11) and α is still given by (14).

Because the real interest rate does not track the natural rate one-for-one, inflation is not on target, which

is anticipated by the private sector. Its rational expectations of inflation are:

E−1(π) = π∗ +
(

1
α
− 1
)
φ̄(E−1(r̄n)− r). (47)

It follows that unconditional average inflation is:

E(π) = π∗ −
(

1
α
− 1
)
φ̄r 6= π∗. (48)

Only when r = 0 is average inflation on target π∗. If the central bank understands better how its

policy affects inflation around a rate r>0 greater that the steady-state natural rate, Brainard’s attenuation

principle provides an argument for setting the real interest rate above the natural interest rate on average. As

a consequence, average inflation is below target π∗ on average. Conversely, if the central bank understands

better how the economy works around a rate r<0 lower that the steady-state natural rate, average inflation

is above target π∗ on average.

Having average inflation not equal to π∗ could be desirable, since it could come with the benefit of less

uncertain inflation. In order to assess whether the desire to let average inflation depart from π∗ constitutes

a bias, appendix B solves for the optimal average inflation rate under commitment to show that it does

constitute a bias. 23

23The inflation target is usually understood as the average inflation rate desired by the central bank, i.e. the optimal average
inflation rate under commitment. Therefore, by referring to π∗ as the central bank’s inflation target, we implicitly already
assumed that π∗ is the average inflation rate under commitment. Appendix B shows it is indeed the case. It is not simply by
definition of π∗ however: what the reduced-form preferences (6) assume by construction is only that π∗ minimizes the mean
term of the loss function. With Brainard uncertainty, another average inflation rate could minimize the variance term if the
central were able to affect the average real interest rate. But the Phillips curve constraint (2) imposes it cannot.
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Proposition 6 (A Cautiousness Bias on Average Inflation) Regardless of the value of r, the optimal

average inflation rate is π∗. When r 6= 0, concerns over uncertainty make average inflation depart from this

optimal inflation target.

Therefore, the departure of average inflation from π∗ when r 6= 0 is indeed a second manifestation of the

cautiousness bias, this time on average inflation. Because the desire of the central bank to systematically

tilt the real interest rate toward r is fully anticipated by the private sector, in equilibrium the central bank

fails to do so and the real interest rate is still (17). The desire to tilt the interest rate toward r only results

in an inflationary bias (if r < 0) or deflationary bias (if r > 0).

As a result, in the generic case when the best-understood policy is not the steady-state policy r 6= 0, a

discretionary central bank cannot follow a cautious strategy without failing to deliver on its inflation mandate

on average inflation. Only in the particular case when the best-understood policy is the steady-state policy

r = 0 can a cautious discretionary central bank deliver an average inflation rate in line with its inflation

mandate. In this case, inflation is still off-target more often than if the central bank were not cautious, but

symmetrically so.

6 Conclusion

Since Alan Blinder’s book (Blinder, 1999) made Brainard’s attenuation principle widely known to central

bankers, the economic literature has found several instances in which the Brainard principle proved not

robust, with uncertainty calling instead for a more aggressive policy response. Preempting the literature to

come—and because Brainard’s original paper already emphasized cases in which uncertainty called for policy

aggressiveness—Blinder commented: ”My intuition tells me that [Brainard’s principle] is more general—or

at least more wise—in the real world than the mathematics will support.”

In this paper, we made a distinct qualification to Brainard’s attenuation principle. Focusing on situations

in which uncertainty does rationalize policy attenuation, we showed that, when policy outcomes depend on

the expectations of the private sector as in monetary policy, the desire to attenuate policy can backfire.

It adversely shifts the private sector’s inflation expectations, forcing the central bank to ultimately act as

much, but for worse outcomes. Our analysis does not conclude that uncertainty does not justify moving

cautiously. But it emphasizes that central banks face a bias toward being overly cautious.
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A Microfoundations of the Shocks to the Euler Equation

In this appendix, we discuss the connection between the alternative representations of the shocks to the Euler

equation: through shocks to the underlying fundamentals such as productivity at, through shocks to natural

output ynt , through shocks to the variable vt = ynt −Et(ynt+1) = −σrnt , or through shocks to the natural rate

rnt . We show that when the central bank faces uncertainty over σ, only the first three are equivalent.

To do so, we first rederive the Euler equation (1) through a standard microfounded model with no capital

and technology shocks as the only fundamental disturbance. A representative household consumes Ct, works

Lt hours, and invests in Bt nominal riskless bonds in order to maximize intertemporal utility:

E0

∞∑
t=0

βt

(
C

1− 1
σ

t

1− 1
σ

− L1+ψ
t

1 + ψ

)
, (A.1)

where σ is the intertemporal elasticity of substitution, ψ is the inverse of the Frisch elasticity of labor, and

β ∈ (0, 1) is the household’s discount factor.

A unit of consumption costs the price Pt. A unit of labor is paid the nominal wage Wt. The household

chooses to invest Bt in nominal riskless bonds yielding the nominal interest rate It. The household receives

nominal profits Ωt from firms. He faces the flow budget constraint:

PtCt +Bt = WtLt + Ωt + ItBt−1, (A.2)

and an additional borrowing constraint that prevents it from entering Ponzi schemes. The household takes

all prices as given. Its optimal labor supply decision is to equate its marginal rate of substitution to the real

wage wt = Wt/Pt:

Lψt C
1
σ
t = wt. (A.3)

The household’s total consumption Ct results from the consumption Cit of a continuum i ∈ [0, 1] of indi-

vidual goods. We assume standard CES preferences with an elasticity of substitution across goods θ. The

household’s demand for good i is therefore:

Cit =
(
P it
Pt

)−θ
Ct. (A.4)

Firm i produces good i using the production function:

Y it = At(N i
t )α, (A.5)

where At is an aggregate productivity shock. Under flexible prices, firm i sets its price P it to maximize

present-period profits, internalizing the demand curve (A.4) it faces. Its charges a markup over marginal
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costs:

P it = θ

θ − 1Pt
wt

Atα(N i
t )α−1 . (A.6)

Define natural output as the value of output in a flexible-price equilibrium. In a flexible-price equilibrium

all firms set the same price and AtαNα−1
t = θ

θ−1wt, where Nt is total labor demanded by firms. Combining

the first-order conditions of the household and the firms and assuming that the goods and labor markets

clear, Ct = Yt and Lt = Nt, gives natural output as a function of technology. Using lower-case variables to

denote log-deviations from a steady-state with A = 1, it is given by:

ynt = ψ + 1
1 + ψ +

( 1
σ − 1

)
α
at. (A.7)

Natural output is a function of the exogenous shock at. Note that natural output depends on the parameter

σ, but only because the standard preferences we have assumed make σ parameterize both the intertemporal

elasticity of substitution, and the income effect on labor supply. Natural output depends on the strength of

the income effect but not on the intertemporal elasticity of substitution. What we assume to be uncertain

to the central bank is the intertemporal elasticity of substitution, not the strength of the income effect.

Therefore, we assume that model uncertainty does not affect the central bank’s expectations of natural

output.24

The household’s investment decision results in the Euler equation. Taking into account goods market-

clearing Ct = Yt, it writes in log-linear form:

yt = −σ(it − Et(πt+1)) + Et(yt+1) (A.8)

The Euler equation applies in particular under flexible prices, in which case it residually gives the real interest

rate in the flexible-price equilibrium, that is, the natural rate:

rnt = − 1
σ

(ynt − Et(ynt+1)). (A.9)

To rewrite the Euler equation in difference to natural output, define the output gap xt ≡ yt− ynt . The Euler

equation write:

xt = −σ(it − Et(πt+1)) + Et(xt+1) + vt, (A.10)

vt ≡ −(ynt − Et(ynt+1)). (A.11)

24There are several ways to make the parameter σ play the role of the elasticity of substitution only, and therefore to explicitly
eliminate the dependence of natural output on σ. For instance, we could assume GHH preferences (Greenwood, Hercowitz, and
Huffman, 1988) to eliminate the income effect on labor supply. Alternatively, we could disentangle the intertemporal elasticity
of substitution and the income effect on labor supply through Epstein-Zin preferences (Epstein and Zin, 1989). However, in
both cases the Euler equation would slightly differ from its canonical form. We thus stick to the standard preferences.
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The disturbance vt is a function of natural output, therefore of the exogenous shocks. Since rnt = 1
σvt, in

models where agents face no model uncertainty it is customary to write the shock vt to the Euler equation

as exogenous variations in the natural rate:

xt = −σ(it − Et(πt+1)− rnt ) + Et(xt+1). (A.12)

However, the two representations (A.10) and (A.12) are not equivalent when the central bank faces uncer-

tainty over σ. The variables at, ynt and vt are independent of the intertemporal elasticity of substitution,

while σ enters the definition (A.9) of rnt . Parameterizing the shocks to the Euler equation through an

exogenous distribution for rnt in equation (A.12) would spuriously make the effect of disturbances appear

dependent on the value of σ, whereas σ multiplies rnt in equation (A.12) only because rnt is divided by σ

in definition (A.9). While the issue is irrelevant in models without parameter uncertainty, it matters when

the central bank faces uncertainty on σ, because it changes the value of it for which the variance of xt is

minimal.

B Proofs of Propositions 2 and 6: Optimal Policy Under Com-

mitment

When the central bank sets policy under commitment, it understands the effect of its policy on the inflation

expectations of the private sector. Because it understands that the private sector forms rational expectations

in accordance with (7), it understand that in equilibrium its policy r must satisfy:

E−1(r) = E−1(rn). (B.1)

Because the constraint (B.1) on policy rates spreads across realizations of ε, the program of the central bank

no longer reduces to independent programs for each realization of ε. Instead, the central bank’s faces one

program at each information node of the private sector. At each node, it chooses the policy rates r(ε) in

each final realization of the shock, and the unique expectation of the private sector e to minimize:

min
(r(ε))ε,e

E−1(L(ε)) = E−1

((
− φ̄(r(ε)− rn(ε)) + e− π∗

)2
+ Vφr(ε)2

)
, (B.2)

s.t. E−1(r(ε)) = E−1(rn(ε)). (B.3)
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Noting 2λ the Lagrange multiplier on the constraint, the F.O.C are:

∀ε, /r(ε) : φ̄2
(
r(ε)− rn(ε)− e− π∗

φ̄

)
+ Vφr(ε) + λ = 0, (B.4)

/e : e = E−1

(
φ̄(r(ε)− rn(ε)) + π∗

)
. (B.5)

Taking expectations E−1 of the F.O.C (B.4) and using the constraint (B.3) solves for λ. Substituting the

expression for λ in the F.O.C solves for r(ε):

r(ε) = E−1(rn(ε)) + α(rn(ε)− E−1(rn(ε))) (B.6)

The policy rate takes the exact same value as under discretion (17). Using the constraint (B.3), the F.O.C.

(B.5) gives e = π∗. Inflation expectations are always on target. Substituting the policy rate (B.6) into

equation (7) gives the departure of inflation from target under commitment (19) in proposition 2.

In section 5, we generalize the set-up of section 2 by replacing equation (7) by equation (44). The optimal

policy under commitment keeps setting expected inflation on target E−1(π) = π∗ in this case, and therefore

unconditional average inflation on target, E(π) = π∗. Indeed, the only difference wrt. the case r = 0 is to

replace the first-order condition (B.4) by:

∀ε, /r(ε) :φ̄2
(
r(ε)− rn(ε)− e− π∗

φ̄

)
+ Vφ(r(ε)− r) + λ = 0. (B.7)

Equation (B.5) is unchanged. By taking its expectation and using the constraint (B.3), it still gives e = π∗.

Following the same steps as in the case r = 0, one can also check that the policy rate still takes the value

(B.6) in this generalized case, as it does under discretion. This proves proposition 6.

C Proof of Proposition 3: Optimal Discounting of Uncertainty

Concerns

A central banker that puts a weight δ ≥ 0 on the variance term in the loss function (20) sets the interest

rate to rd = αrs, where α = φ̄2

φ̄2+δVφ
. As δ increases from zero to infinity, α decreases from 1 to 0: the more

concerned he is about uncertainty, the less he reacts to shocks. We can therefore parameterize the central

banker’s type by how aggressively he reacts to shocks, as captured by α. An α-type central banker acting

under discretion delivers an inflation rate of:

E∗(π)− π∗ = (1− α)φ̄
(

1
α
E−1(rn) + (rn − E−1(rn))

)
. (C.1)
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Society compares these outcomes using its loss function with δ = 1. The average loss generated by an α-type

central banker is:

E[L(ε)] = V ar(E∗(π)− π∗) + V ar∗(π). (C.2)

The two terms write:

V ar(E∗(π)− π∗) = (1− α)2φ̄2
(

1
α2VE + VU

)
, (C.3)

V ar∗(π) = Vφ(VE + α2VU ), (C.4)

where VE ≡ V ar(E−1(rn)) is the variance of fluctuations in the natural rate that are expected by the private

sector, and VU = V ar(rn − E−1(rn)) is the variance of fluctuations in the natural rate that are unexpected

by the private sector. Therefore, society wants to appoint the central banker whose α minimizes:

E[L(ε)] =
(

(1− α)2φ̄2 + α2Vφ

)(
1
α2VE + VU

)
. (C.5)

Taking the log and differentiating in α, the optimal α satisfies:

αVφ − (1− α)φ̄2

(1− α)2φ̄2 + α2Vφ
= 1
α+ α3 VU

VE

. (C.6)

The right-hand-side term is decreasing from infinity to VE/(VE + VU ) as α increase from 0 to 1. Define the

left-hand-side term as the function f :

f(α) = α− α∗

(1− α)2α∗ + α2(1− α∗) , (C.7)

where α∗ = φ̄2

φ̄2+Vφ
is the value of α of the central banker who has the same preferences as society, δ = 1.

The LHS f is negative for α < α∗, so it can only cross the RHS over [α∗, 1]. The derivative of f as the sign

of the quadratic polynomial P (α) = −α2 + 2α∗α + α∗(1 − 2α∗). The polynomial reaches its maximum at

α = α∗ and has two real roots. If α∗ > 1/2, the larger root is greater than 1, so P is positive over [α∗, 1]. It

follows that f is increasing over [α∗, 1]. There is a unique crossing of the RHS and LHS terms in equation

(C.6). If α∗ < 1/2, then the second root is smaller than 1, so f is increasing then decreasing over [α∗, 1].

Yet, since f(1) = 1 > VE/(VE + VU ), there is still a unique crossing of the RHS and LHS terms in equation

(C.6). In both cases, the two curves cross at a value greater than α∗, unless VE = 0, in which case the

RHS is constantly equal to zero and crosses the LHS at zero. An increase in VE/(VE + VU ) corresponds to

the RHS shifting up: the optimal α therefore increases with the fraction of shocks that are expected by the

private sector.
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D Proof in the Case of a Dual Mandate

We generalize the case of a single inflation mandate considered in the main text of section 2 to allow for a

dual objective to stabilize both inflation and the output gap. In doing so, we also allow for the possibility

that the central bank seeks to set output above potential x∗ > 0, which will result in an inflation bias. The

present-period loss of the central bank is:

L(ε) = E∗((π − π∗)2) + λE∗((x− x∗)2), (D.1)

where λ is the preference weight of the central bank on stabilizing the output gap. The dependences on the

real interest rate of the output gap

x = −σr + v (D.2)

and inflation

π = κ(−σr + v) + e(π), (D.3)

are unchanged. The mean squared errors in the loss function (D.1) can still be decomposed into a terms for

squared distances to targets and a term for variances:

L(ε) =
(

(E∗(π)− π∗)2 + λ(E∗(x)− x∗)2
)

+
(
V ar∗(π) + λV ar∗(x)

)
, (D.4)

where (E∗(π)− π∗)2 + λ(E∗(x)− x∗)2 = (−κσ̄r + ε+ e(π)− π∗)2 + λ(−σ̄r + v − x∗)2, (D.5)

and V ar∗(π) + λV ar∗(x) = (κ2 + λ)Vσr2. (D.6)

Denote rs the interest rate that the central bank sets when it faces no model uncertainty, Vσ = 0. In this

case the central bank can focus on minimizing the first term (D.5) in its loss function. It sets:

rs = rn + κ

σ̄(κ2 + λ) (e(π)− π∗)− λ

σ̄(κ2 + λ)x
∗. (D.7)

A desire to stabilize the output gap λ > 0 changes the optimal discretionary policy under no concerns for

uncertainty in two ways. First, the central bank reacts less to departures of inflation expectations from

target. This is regardless of whether the central bank seeks to set output above potential x∗ > 0. Second,

when x∗ > 0 the central bank seeks to set the interest rate lower in order to set the output gap higher.

This last feature of the discretionary policy results in Kydland and Prescott (1977) and Barro and Gordon
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(1983a,b)’s inflation bias. Rational expectations of inflation are above target:

E−1(π) = π∗ + λ

κ
x∗ > π∗ (D.8)

but the output gap is x = 0.25

When the central bank is uncertain of the impact of its rate decision on inflation and the output gap,

Vσ > 0, the policy rate r also affects the variance term (10) in the loss function. The central bank solves

this problem by choosing a midpoint r between the optimal interest-rate policy without model uncertainty

rs which minimizes the first term, and the steady-state interest-rate r = 0 which minimizes the second term:

r = αrs, (D.9)

where α is still given by (14).

We solve for the rational expectations that this policy generates. Injecting policy (D.9) into equation

(7), taking expectations E−1, and imposing rational expectations e(π) = E−1(π) yields:

E−1(π) = π∗ +
(

1
α
− 1
)
σ̄(κ2 + λ)

κ
E−1(rn) + λ

κ
x∗. (D.10)

Inflation expectations can deviate from target for two reasons. First is the inflation bias, as noted in the

case of no concerns for uncertainty: a desire to set output above potential λ > 0 results in higher inflation

expectations. Second is the cautiousness bias: a concern over parameter uncertainty α < 1 results in lower

(higher) inflation expectations when the natural rate is below (above) steady-state. The generalization to

the case of a dual mandate shows both that the cautiousness bias is robust to a dual mandate, and that the

cautiousness bias and inflation bias arise from distinct perverse incentives.

Plugging expectations (D.10) into the optimal policy rate (D.9), the expression for the real interest rate

is exactly the same (17) as under a single inflation mandate. In equilibrium the central bank attenuates its

response only to unforeseen changes in the natural rate. It does so in exactly the same proportions as in the

case of a single inflation mandate.
25Monetary policy could surprise the private sector by responding to unexpected shocks to the natural interest rate, which

would make the output gap depart from zero (although it would need to be zero on average). The central bank has no interest
in doing so here however, because there are no cost-push shocks.
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E Proof of Proposition 4: Dynamics System and IRF in the Case

of the SIPC

Injecting the solution (36) for the long-term interest-rate into the Euler equation (25) (of the true model)

gives the output gap as:

xt = σ̄(1− α)Rnt −
α

κ
Ēt−1(πt − π∗ + ζ∆xt). (E.1)

Using the Sticky-Information Phillips curve (23) to replace the last expectation term gives equation (37).

Equation (38) is simply the Sticky-Information Phillips curve.

We solve for the IRF to a natural rate shock using the method of undetermined coefficients, following

Mankiw and Reis (2007). Under the assumption of an AR(1) process for the natural rate rnt , and denoting

π̂t = πt − π∗ the deviation of inflation from its target, the dynamic system writes:

xt = σ̄

1− ρr
n
t −

α

(1− α)κπ̂t, (E.2)

π̂t = κxt + Ēt−1(π̂t + ζ∆xt), (E.3)

Under the assumption of an AR(1) process for the natural rate rnt , its Wold decomposition is:

rnt =
∞∑
k=0

ρkηt−k. (E.4)

We look for a solution where π̂t and xt are functions of the fundamental shock only. We write their Wold

decompositions:

π̂t =
∞∑
k=0

φπkηt−k, (E.5)

xt =
∞∑
k=0

φxkηt−k, (E.6)

with coefficients (φπk )k and (φxk)k to be determined. To translate the dynamic system (E.2)-(E.3) into

equations on φπk and φxk, note that:

Ēt−1(πt + ζ∆xt) =
∞∑
k=1

(
1− (1− λ)k

)(
φπk + ζ(φxk − φxk−1)

)
ηt−k (E.7)

37



The dynamic system (E.2)-(E.3) therefore writes:

∞∑
k=0

φxkηt−k = σ̄

1− ρ

∞∑
k=0

ρkηt−k −
α

(1− α)κ

∞∑
k=0

φπkηt−k, (E.8)

∞∑
k=0

φπkηt−k = κ

∞∑
k=0

φxkηt−k +
∞∑
k=1

(
1− (1− λ)k

)(
φπk + ζ(φxk − φxk−1)

)
ηt−k. (E.9)

Identifying the coefficients, it implies the following difference equations in (φπk )k and (φxk)k:

∀k ≥ 0, φxk = σ̄

1− ρρ
k − α

(1− α)κφ
π
k , (E.10)

∀k ≥ 1, φπk = κφxk +
(

1− (1− λ)k
)(

φπk + ζ(φxk − φxk−1)
)
, (E.11)

For k = 0, φπ0 = κφx0 . (E.12)

Using equation (E.11) to eliminate φπk in (E.10) gives the following first-order difference equation in φxk:

∀k ≥ 1,
(

(1− λ)k + α

1− α

(
1 + ζ

κ

(
1− (1− λ)k

)))
φxk =

(
αζ

(1− α)κ

(
1− (1− λ)k

))
φxk−1 + σ̄

1− ρρ
k(1− λ)k.

(E.13)

This gives φxk as a function of φxk−1. We obtain the entire sequence of (φxk)k from the initial condition

φx0 = (1−α)σ̄
1−ρ . We then recover the solution for inflation from (E.11). The solutions for the interest rates

follow.

F Proof of Proposition 5: Derivation in the Case of the NKPC

The interest-rate that sets inflation on target is:

rst = Rnt − Et(Rt+1) + βEt(πt+1)
φ̄

. (F.1)

The interest-rate that minimizes the within variance of inflation is rt = −Et(Rt+1). The central bank sets

its policy-rate to the weighted average (35) of these two rates. This makes the long-term rate equal to the

expression in equation (42). Injecting the long-term rate into (41) (for the true model) gives inflation as:

πt = (1− α)
(
φ̄Rnt + βEt(πt+1)

)
. (F.2)

Under the assumption that rnt follows an AR(1) process (39), the solution to (F.2) is :

πt = (1− α)φ̄
1− β(1− α)ρR

n
t . (F.3)
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This implies that the private sector forms expectations of inflation:

Et(πt+1) = (1− α)φ̄
1− β(1− α)ρρR

n
t . (F.4)

Injection these inflation expectations into the solution for the long-run rate (42) gives (43). The short-term

rate rt = Rt − Et(Rt+1) is similarly:

rt = α

(
1

1− β(1− α)ρ

)
rnt . (F.5)

It follows that the ex-ante nominal long-term interest rate It = Rt + Et (
∑∞
k=0 πt+k+1) is:

It =
(
α+ (1− α)φ̄ ρ

1−ρ

1− β(1− α)ρ

)
Rnt , (F.6)

whereas it is It = Rnt absent concerns over uncertainty. The coefficient in front of Rnt tends toward infinity

as ρ tends toward 1. Therefore, for persistent enough shocks, the central bank ends up moving the nominal

long-term interest rate by more than it would have absent concerns over uncertainty. Since the nominal

short-term interest-rate it = rt + Et(πt+1) is similarly:

it =
(
α+ (1− α)φ̄ ρ

1−ρ

1− β(1− α)ρ

)
rnt , (F.7)

the same conclusion applies to the nominal short-term rate.

G The Case of the NKPC and Recursive Euler Equation

Plugging the recursive Euler equation (25) into the NKPC (40), the relationship between the short-term

interest-rate chosen at t and inflation at t is:

πt = −φrt + κEt(xt+1) + κvt + βEt(πt+1), (G.1)

where φ = κσ. Because the central bank acts under discretion, it chooses rt at t taking Et(xt+1) and

Et(πt+1) as given. It does so to minimize the loss Lt = E∗t (π2
t ). The interest-rate that sets inflation on

target is:

rst = rnt + Et(xt+1)
σ̄

+ βEt(πt+1)
φ̄

. (G.2)
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The interest-rate that minimizes the within variance of inflation is rt = 0. The central bank sets its policy-

rate to the weighted average of these two rates:

rt = αrst . (G.3)

Injecting this solution for the short-term interest rate into (G.1) and using the NKPC (40) to replace future

output gap Et(xt+1) gives inflation (in the true model) as:

πt = (1− α)
(
φ̄rnt + (1 + β)Et(πt+1)− βEt(πt+2)

)
. (G.4)

This is a second-order difference equation in πt. Noting F the forward time-series operator, the stationary

solution is:

πt =
[
I − (1− α)(1 + β)F + (1− α)βF 2

]−1
(1− α)φ̄rnt . (G.5)

Under the assumption that rnt follows an AR(1) process (39), the solution to (G.5) is:

πt = (1− α)φ̄
1− (1− α)(1 + β)ρ+ (1− α)βρ2 r

n
t . (G.6)

Expectations of inflation Et(πt+1) and of the output gap Et(xt+1) follow. Plugging them into the expression

for the short-term interest-rate (G.3) gives the solution for the short-term interest-rate:

rt = α

(
1

1− (1− α)ρ(1 + β(1− ρ))

)
rnt . (G.7)

As in the case of the iterated Euler equation, Brainard’s attenuation principle leads the central bank to move

rates less by a factor α < 1 but the reaction of inflation expectations forces the central bank to move rates

more, this time by a factor 1/(1− (1−α)ρ(1 + β(1− ρ))) > 1. Inflation expectations react all the more that

the shock is more persistent. The central bank varies the real interest-rate by more than the natural rate

if and only if the coefficient on rnt in (G.7) is greater than 1. This happens if and only if the second-order

polynomial:

P (ρ) = βρ2 − (1 + β)ρ+ 1 (G.8)

takes negative values. Because the roots of the polynomial are 1 and 1/β, this never happens for ρ ∈ [0, 1].

However, as in the case of the iterated Euler equation, the short-term nominal interest-rate can vary more

than if the central bank has no concerns over Brainard uncertainty. Indeed, the solution for the short-term
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nominal interest-rate it = rt + Et(πt+1) is:

it =
(

α+ (1− α)φ̄ρ
1− (1− α)ρ(1 + β(1− ρ))

)
rnt . (G.9)

The coefficient in front of rnt tends toward 1 +
( 1−α

α

)
φ̄ > 1 as ρ tends toward 1. Therefore, for persistent

enough shocks, the central bank ends up moving the nominal short-term interest rate by more than it would

have absent concerns over uncertainty.
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