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Abstract

In this paper, we conduct a structural analysis of multi-attribute auctions of

contracts with a general allocation rule when private information is multidimen-

sional. Upon modeling bidders’ contract value that accounts for their endogenous

ex post actions, we nonparametrically identify bidders’ private information from

their bids and estimate their joint distribution. Analyzing cash-royalty auctions

of Louisiana oil leases, we find government revenue worse and development rates

no better than in a cash auction with a fixed royalty in view of adverse selection

and moral hazard. Our findings revise conventional wisdom on the optimality of

multi-attribute auctions.
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1 Introduction

Contracts involving an upfront payment and a sharing rule based on the agent’s out-

put are commonly observed. Examples are the relationships between an author and a

publisher, a licensee and a patent holder, a sharecropper and a landlord, a contracting

firm and a government agency to name a few. The magnitude of economic activity

governed by these contracts is large.1 As a public finance issue, questions of how

best to allocate and design these contracts are important because reducing spending

and increasing revenue through better mechanisms means less distortionary taxation.

In particular, auctions are often the mechanism employed by the principal to choose

among competing agents and set contract terms. A common feature of these auctions

is that agents bid on several attributes and bidders have multidimensional private in-

formation. Our paper contributes to the literature by proposing a structural analysis

of auctions of contracts with multidimensional private information and a general allo-

cation rule based on multivariate bids. Our empirical application studies cash-royalty

auctions of oil leases where the contract takes the form of a real option.

Auctions of contracts were first studied by Laffont and Tirole (1987) and McAfee

and McMillan (1987). This literature relies on one-dimensional private information and

designs a menu of upfront cash and contingent payments that are negatively related.2 In

contrast, when private information is multidimensional, there is a paucity of theoretical

results due to technical challenges arising from multidimensional screening as surveyed

by Rochet and Stole (2003), who point out the ‘uncomfortably restrictive’ nature of

one-dimensional types in empirical applications. Indeed, multidimensionality of bids is

prevalent in practical contracting. The U.S. Government Accountability Office reports

that the vast majority of large procurement contracts is selected based on more than one

attribute. For instance, in design-build auctions used by departments of transportation

in U.S. states and other countries, the allocation process considers design quality in

addition to price. Similarly, both quality and price matter in private sector contracting

and online freelancing auctions. Multidimensional private information provides a rich

framework to account for the variability of observed multivariate bids.

In this paper, we propose a structural analysis of auctions of contracts with mul-

1The federal government alone procured $586 billion worth of contracts in 2019. Among these, the

Department of Defense awarded 18% of its procurement dollars to incentive contracts.
2See Hansen (1985) and DeMarzo, Kremer and Skrzypacz (2005) who show that royalties reduce

bidders’ information rents, Board (2007) and Cong (2020) who study optimal design when the contract

takes the form of a real option, and Skrzypacz (2013) who surveys the literature.
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tidimensional private information and a general allocation rule based on multivariate

bids. Specifically, bidders propose both an upfront or ‘cash’ payment and a sharing

rule or royalty in their bids. We make minimal assumptions about the allocation rule

and allow for non-deterministic allocation, as may arise when no rule is announced.

In view of the complexity of multidimensional screening in the presence of multidi-

mensional private information, we adopt a best response approach. Our model allows

for (i) adverse selection through the principal’s payoff which depends not only on the

bid components but also on the bidder’s private information and (ii) moral hazard or

incentive effects induced by the royalty paid as a share of production revenue. In our

empirical application, the value of the contract takes the form of a real option because

the winner is not obligated to produce. We then interpret the effect of revenue sharing

on the agent’s incentive to exercise the option as moral hazard.3 We model bidders with

bidimensional private information or types and a contract value that depends on each

bidder’s private information and royalty bid. The first type-component represents the

bidder’s productivity or expected production volume while the second type-component

represents his economic cost of production.

We show that bidding a higher royalty rate is less costly for ‘weak’ types, i.e., agents

with low productivity and/or high cost, than for ‘strong’ types. Intuitively, a given roy-

alty percentage is less costly given lower expected production because royalty is a share

of revenue. Also, it is less costly in expectation given a higher cost because a higher cost

decreases the probability of production. As the principal does not observe bidders’ pri-

vate information, agents strategically choose to submit a cash-royalty bid that reduces

their payments to the principal without compromising their winning probability. Upon

characterizing the bidder’s optimal cash-royalty bid as a function of his bidimensional

type, we show that, under a known contract value function, the joint distribution of

types is identified from bids upon exploiting the bidder’s first-order conditions. We

then develop an estimation method for the joint distribution of bidders’ types allow-

ing for affiliation of private information within and across bidders. Our methodology

extends to a large class of multi-attribute auctions with multidimensional information

including scoring auctions as well as other contract allocation procedures with general

allocation rules that may be nonlinear, nondeterministic and/or unannounced.

We use a novel dataset of Louisiana auctions of oil leases in which bidders bid on

both a cash payment and a royalty rate. Institutional and empirical evidence supports

3The traditional definition of moral hazard involves an action that is unobservable to the principal.

Here we use the term more broadly to refer to incentive effects on agents’ ex post actions.
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a nondeterministic allocation rule as well as the multidimensional nature of bidders’

private information. As firms are not obligated to drill, we model the contract value

as an option value, borrowing insights from the option pricing literature. The option

value takes into account that the winning bidder might not exercise his option, i.e.,

develop the tract. Our estimates of bidders’ private information indicate correlations

within and between bidders. We also find that for a large fraction of bidders, the

cost of production is higher than expected revenue, explaining the low development

rate observed on U.S. onshore tracts. Our estimated results on the predicted rate of

development and expected production volumes are close to those observed in reality

though we do not use any post-auction observations in estimation.

Given the limited theoretical guidance on how multiple versus single attribute bid-

ding compare under multidimensional private information, our paper provides empirical

responses to several questions through a rich set of counterfactuals. First, we compare

cash-royalty auctions with fixed-royalty auctions, in which the principal fixes the roy-

alty rate so that bidders bid on the cash component only. Cash-royalty auctions allow

royalty flexibility by letting competitive forces determine the royalty. However, they

are more susceptible to adverse selection because they give agents the freedom to se-

lect favorable contract terms which reduce their payments. Our empirical results show

that cash-royalty auctions yield lower government revenue than fixed-royalty auctions

while failing to improve the development probability or social surplus. Indeed, the

potential benefits of royalty flexibility fail to dominate the adverse selection effects of

cash-royalty bidding.4 Second, in light of Che (1993) and Asker and Cantillon (2008),

we simulate quasi-linear scoring auctions. Here again, reducing bidder-driven royalty

variance through the score’s curvature improves government revenue, and fixed-royalty

auctions perform better than the scoring auctions, in contrast to existing results from

the scoring auction literature. This is so because (i) the bidder’s incentives to develop

the lease are affected by his royalty bid, and (ii) the principal’s payoff depends not

only on the winner’s bid but also on his private information. Beyond auction design,

we also assess policy instruments such as increasing the lease duration and exploiting

fluctuations of oil prices. Both have a positive impact on government revenue, though

4As a concrete example, consider a bidder who bids a 25% royalty and $820 of cash per acre in the

Louisiana auction. From our counterfactual, this bidder would bid $940 per acre in a fixed-royalty

auction with 23% fixed royalty, which is the empirical average royalty. Endogenizing the development

probability, the government’s ex ante expected royalty receipts are only $60 per acre higher in the

cash-royalty auction while the cash bid is $120 less per acre, resulting in a net loss for the government.
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increasing the lease duration decreases the development probability.

Related Literature

Theoretical guidance on auctions with multidimensional private information is sparse;

important exceptions are Asker and Cantillon (2008, 2010) who study procurements

where the principal’s payoff is determined by the price and quality of a product. They

show that quasi-linear scoring auctions strictly dominate price-only auctions with fixed

quality standards. By characterizing an optimal mechanism in the 2-by-2 discrete type

space, they also illustrate the difficulty of deriving optimal auctions given multidimen-

sional types, finding that the optimal mechanism cannot be implemented by a simple

auction format and differs significantly from its one-dimensional counterpart. This dif-

ficulty is linked to the challenges of multidimensional screening as surveyed by Rochet

and Stole (2003), in which there is no longer an exogenous ordering of the type space

and no a priori knowledge of which incentive compatibility constraints will be binding.

Multi-attribute auctions, in which the winner is chosen based on more than one at-

tribute, encompass a large set of auction mechanisms including the scoring auctions well

known in the empirical literature. In the case of price-quality scoring auctions, a first

set of studies takes the project quality as exogenous. Examples include Nakabayashi

(2013), Yoganarasimhan (2016), Andreyanov (2018), Krasnokutskaya, Song and Tang

(2020), and Laffont, Perrigne, Simioni and Vuong (2020). A second set of studies en-

dogenizes the submitted qualities. Quasi-linear scoring rules are the most frequently

studied there due to convenient theoretical properties. Examples include Lewis and

Bajari (2011) where quality is replaced by project completion time, and Allen, Clark,

Hickman and Richert (2019) on auctions of insolvent banks, where the weights in the

scoring rule are unknown by bidders. See also Takahashi (2018) on price-per-quality

procurement auctions of road construction projects, Sant’Anna (2018) on Brazilian

oil leases and Hanazono, Hirose, Nakabayashi and Tsuruoka (2018) for an econometric

method. We contribute to the multi-attribute auction literature by allowing for agents’

endogenous ex post actions and the adverse selection and moral hazard that result, in

contrast to work that treats ex post actions as fixed or exogenous. In addition, we

provide a general methodology that extends to a broad set of allocation rules.

In using real options to study oil leases, our paper relates to Bhattacharya, Ordin

and Roberts (2021) and Herrnstadt, Kellogg and Lewis (2020). The former paper

investigates single-attribute auctions such as bidding on cash or royalty only under

one-dimensional private information. Using New Mexico fixed-royalty auctions, the
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authors exploit lease development timing to estimate drilling costs. The latter paper

abstracts from bidding and calibrates a model of firms to study the impact of royalty

rates and lease duration on their drilling and production. More broadly, our paper

relates to empirical studies of real options that are widely used to model decisions

under uncertainty in various fields such as management, research and development,

and resource economics. See e.g. Pakes (1986) on the analysis of patents.

Our paper contributes to the study of contract allocation policy by providing an

empirical response on how to allocate contracts given multidimensional private infor-

mation. We find that simpler can be better; single-attribute bidding can perform

better than multi-attribute bidding in the presence of adverse selection. This contrasts

with conventional wisdom from price-quality auctions, providing new insights on incen-

tive contracts and the merits of multi-attribute auctions. Methodologically, our paper

develops a flexible method to analyze endogenous, multivariate bids under multidi-

mensional private information and a general allocation rule. We model contract values

that allow for agents’ endogenous ex post actions and account for the moral hazard

and adverse selection that result.

The paper is organized as follows. Section 2 introduces the cash-royalty auctions of

Louisiana oil leases and models the lease contract as a real option. Section 3 presents

the auction model, establishes identification of the primitives and develops a semipara-

metric estimation method. Section 4 discusses empirical results, whereas Section 5

assesses the gain/loss of the Louisiana cash-royalty auctions relative to fixed-royalty

auctions and scoring auctions as well as the efficacy of some policy instruments in coun-

terfactual studies. Section 6 discusses robustness and an extension of our methodology

to a general multi-attribute auction setting. Section 7 concludes.

2 Oil Lease Auctions and Option Value

This section introduces our empirical context: Auctions of contracts by the State of

Louisiana for the allocation of oil leases. We present the data and some empirical

evidence on the state’s allocation rule. Given that the contract is an option to develop

the leased tract for oil production, we model its value as an option value.

2.1 Institutional Background and Empirical Evidence

Auction Data
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The Louisiana Department of Natural Resources (DNR) sells oil leases on lands owned

by the State of Louisiana and its agencies. As is common in the United States, a lease

grants the lessee the right, but not the obligation, to develop the tract for oil production.

The lessee has a period of 3 years to develop the tract. If no development is performed,

the lessee loses the lease. A significant proportion of leased tracts are not drilled. This

is also the case in Hendricks and Porter (1988), Hendricks and Porter (1996), Haile,

Hendricks and Porter (2010), Aradillas-Lopez, Haile, Hendricks and Porter (2018),

and Bhattacharya, Ordin and Roberts (2021). We consider auctions of onshore leases

between 1974 and 2003 which have at least forty acres and two or more bidders.5 In

their bid, bidders must specify both a positive cash payment and a royalty rate. We

compute the cash component as the immediate payment plus the discounted present

value of annual rental fees. Meanwhile, the royalty bid is a percentage. Contingent on

oil production, the firm must pay this percentage of production volume times the price

of oil. The State levies the royalty on revenue and not on profit as the latter would

require a close monitoring of costs. This multi-attribute auction format differs from

the standard one used in oil lease auctions studied by Hendricks and Porter (1988) and

more recently by Kong (2020, 2021) and Bhattacharya, Ordin and Roberts (2021) in

which the government fixes a common royalty rate and firms bid on the cash amount

only. We refer to this latter format as a fixed-royalty auction.

The dataset contains 568 auctions. Figure 1 displays a scatterplot of the observed

cash-royalty bids, while Table 1 provides summary statistics on the cash payment

per acre, the royalty rate, number of bidders and acreage. All dollar amounts are

expressed in 2009 dollars. The level of competition is low with 2 bidders in 80%

of the sample. The median and mean cash payment are $712 and $1,015 per acre,

respectively, suggesting skewness. The median and mean royalty are both around

23%. As a comparison, the Federal Bureau of Land Management uses a royalty rate of

12.5%, and Hendricks, Porter and Boudreau (1987) report a royalty of 16.67% for Outer

Continental Shelf leases during 1954-1969 which was subsequently raised to 18.75%

during 2008-2017, while the prevailing rate on private land is 25%.6 Royalty rates

display variability and are concentrated between 15% and 35%. Figure 1 suggests a

5We do not include data after 2003 because the boom in hydraulic fracturing caused a fundamental

shift in the US oil industry. We also exclude auctions in which any bidder bid on only a portion of

the tract offered for auction.
6www.americanprogress.org/issues/green/reports/2015/06/19/115580/federal-oil-and-gas-royalty-

and-revenue-reform/
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positive association between the logarithm of the cash payment per acre and the royalty

rate with a correlation coefficient equal to 0.38.

State’s Choice of Winner

In the absence of an announced allocation rule, we explore the data for patterns in the

state’s choice of winner among submitted bids.7 Considering two-bidder auctions, we

define a dominant bid as one which has both higher cash payment and royalty than

its competing bid. We find that there is a dominant bid 64% of the time and that the

State selects this bid as the winner 99% of the time. This is a consistent pattern that

bidders can infer. When there is no dominant bid, the state selects the bid with higher

cash payment 68% of the time and the bid with higher royalty 32% of the time. This

suggests that the State’s choice is not lexicographic. Figure 2 visualizes all the pairwise

choices implied by the data. For instance, if bid A is chosen over bids B and C, we

learn information about two pairwise choices: A over B and A over C. Figure 2 plots

all the pairwise choices with a circle for the winner and a triangle for the loser. The x

and y coordinates represent the royalty and cash components of the bid in relation to

the competing bid in the pair. Points in the right (resp. upper) quadrants have higher

royalty (resp. cash amounts) than the competing bid. Thus, points in the upper-right

quadrant have both higher royalty and cash payment. The transition from triangles in

the lower-left quadrant to circles in the upper-right quadrant visualizes the increased

probability of winning as the bid moves in that direction. This figure indicates that the

probability of winning is increasing in both cash and royalty. It also exhibits positive

correlation between cash and royalty within auctions.8

This positive correlation contrasts with the main prediction in Laffont and Tirole

(1987) and McAfee and McMillan (1987) who study optimal auctions of contracts.

Their models lead to a decreasing mapping between cash payment and royalty. In-

tuitively, the principal selects the bidder with the lowest royalty and highest cash

payment because the ‘good’ firm with high productivity or cost efficiency should be

the residual claimant and benefit from informational rent. In contrast, a ‘bad’ firm

should see its rent reduced to the minimum. This firm bids a low upfront payment and

a large royalty. These models are based on a single dimension of private information.

More generally, one-dimensional private information would result in bid pairs that ap-

7Our inquiry to the Louisiana DNR did not yield more details on the allocation procedure beyond

a response that the “geological and engineering staff looks at each bid and make the determination”.
8In the Online Appendix, we also check for bidders’ asymmetry and stability of the allocation

patterns.
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proximate a curve in cash-royalty space. In our data, however, the within-auction bid

distribution is widely scattered across two dimensions rather than exhibiting a curve,

suggesting multi-dimensional rather than one-dimensional bidders’ types.

2.2 Contract as an Option Value

Since the lessee has no obligation to develop the tract, we model the oil lease as an

option value. Let a ∈ [0, 1) be the royalty component of the bid, θ1 the firm’s expected

production volume, and θ2 the firm’s economic cost of production. From a bidder’s

perspective, the contract is an option to obtain (1−a)θ1 expected units at a cost of θ2,

where 1 − a is the portion kept by the firm. The bidder’s contract value internalizes

the fact that the probability of exercise is less than one and depends on the future

price of oil which is uncertain at the time of bidding. Letting p be the oil price, the

firm exercises the option when (1− a)pθ1 > θ2, i.e., the profit is positive. In the option

literature, one says that a stock option is exercised only if the stock price exceeds the

strike price, which is the role played by θ2. Modeling the bidder’s value as an option

is not new in the empirical literature on oil lease auctions. Bhattacharya, Ordin and

Roberts (2021) and Herrnstadt, Kellogg and Lewis (2020) adopt option values in their

analysis of fixed-royalty auctions and non-auctioned leases, respectively.

Borrowing insights from the option pricing literature, we model oil prices as following

a geometric Brownian motion with known volatility that is constant for the duration of

the option. As in Black and Scholes (1973), Merton (1973) and Black (1976), the geo-

metric Brownian motion yields a closed-form expression of value for European options,

which are exercised only at expiration. American options, which can be exercised at

any time until expiration, do not have a closed form solution. We adopt European

options for the following reasons. First, Hull (2017) explains that some properties of

an American option are frequently deduced from those of its European counterpart.

Second, we conduct a robustness analysis with American options and find that the

difference in empirical results is small. See Section 6.1. Third, Bhattacharya, Ordin

and Roberts (2021) and Herrnstadt, Kellogg and Lewis (2020) document substantial

bunching of drilling times in the final months before lease expiration.

Let t be the duration in years until the lease expires, p the price of oil at the time

of the auction, σ the price volatility, r the one-year interest rate and Φ(·) the standard

normal distribution. The oil price p follows a geometric Brownian motion with volatility

σ and zero drift after adjusting for inflation. The variables t, p, σ and r are exogenous.
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Upon production, the firm receives the price at the time of production. A bidder’s

value for the lease at the time of auction is

V (a; θ1, θ2) = e−rt[(1− a)pθ1︸ ︷︷ ︸
firm′s share

Φ(x)− θ2 Φ(x− σ
√
t)︸ ︷︷ ︸

Pr(exercise)

], (1)

where

x ≡ log((1− a)pθ1/θ2) + σ2t/2

σ
√
t

. (2)

The derivation of (1)-(2) is as follows. The firm exercises the option if (1−a)ptθ1−θ2 > 0

where pt is the price at the time t of expiration. Thus, the present value of the option

is e−rtE[max{(1 − a)ptθ1 − θ2, 0}]. The geometric Brownian motion implies that pt is

lognormally distributed with E(pt) = p and the standard deviation of log pt is σ
√
t.

From Hull (2017), E[max{(1 − a)ptθ1 − θ2, 0}] = E[(1 − a)ptθ1]Φ(x) − θ2Φ(x − σ
√
t),

where x = [log[E((1− a)ptθ1)/θ2] + σ2t/2]/(σ
√
t).9

Intuitively, Φ(x − σ
√
t) represents the ex ante probability of option exercise, i.e.,

the probability that the oil price will be high enough to make the firm’s profit positive.

If option exercise occurs exogenously with probability Φ(x − σ
√
t), the value of the

option would be instead e−rt[(1− a)pθ1 − θ2]Φ(x− σ
√
t), i.e., the discounted expected

profit from exercise times the exercise probability. However, option exercise is in fact

endogenous and occurs when the oil price is higher than some threshold. Thus, the

expected price conditional on exercise is actually higher than the unconditional price.

Therefore, (1− a)pθ1 is multiplied by Φ(x) to account for this.

In view of our empirical analysis, it is useful to state how the exogenous variables,

the firm’s types, and the bidder’s royalty bid affect the option value and the exercise

probability. Table 2 summarizes these effects. See also Hull (2017). Everything else

constant, a higher productivity θ1 has a positive effect on both the contract value and

the exercise probability, while a higher cost θ2 has a negative effect on both, in line

with intuition. Also as expected, a higher royalty rate a has a negative effect on both

option value and exercise probability while a higher price p has a positive effect on

both. Meanwhile, the price volatility σ and the duration t have ambiguous effects on

9As explained above, the explicit expression of the option value in (1)-(2) depends on the log

normality implied by geometric Brownian motion. Noting that E[max{(1− a)ptθ1 − θ2, 0}] = −θ2 +

(1− a)θ1E[max{pt, θ2/[(1− a)θ1]}], the latter expectation is
∫

max{pt, θ2/[(1− a)θ1]}dHt(pt), where

Ht(·) is the distribution of pt. This distribution could be estimated using oil price data thereby

providing more flexibility to the option value at the cost of not having a closed form expression.
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the exercise probablity. We assess the effect of lease duration in a counterfactual study

in Section 5.3. The negative effect of the royalty on the probability of option exercise

highlights moral hazard, which we define as the effect of revenue sharing on the agent’s

incentive to exercise the option. The lack of obligation to develop the lease opens up the

possibility of this type of moral hazard.10 This reduced probability of option exercise

is partially responsible for the negative effect the royalty rate has on contract value.

Since royalty rates are determined endogenously through the allocation mechanism,

moral hazard emphasizes that the allocation mechanism has consequences for agents’

ex post incentives. Agents in turn take these effects on incentives and contract value

into account as they choose their cash-royalty bids, as we discuss in Section 3.

3 Model, Identification and Estimation

We develop a model of auctions of contracts in which bidders bid an upfront payment

and a royalty rate on future revenue. For general applicability, we consider a generic

contract value V (·; ·, ·), the contract value in (1) being an application. We then establish

identification of the model and develop a flexible estimation procedure.

3.1 A Model of Auctions of Contracts

Notations and Assumptions

A principal, who can be a buyer or a seller, organizes a sealed-bid auction or procure-

ment auction in which each bidder submits a pair (ai, bi), where ai ∈ [0, 1) is a share or

royalty rate on future expected revenue and bi is a cash payment. There are n bidders

participating in the auction. The agents or bidders have bidimensional private informa-

tion (θ1, θ2) ∈ Θ1×Θ2 ≡ [θ1, θ1]× [θ2, θ2]. The term θ1 represents expected production

which incorporates productivity/efficiency as well as some degree of uncertainty. The

term θ2 represents the economic cost of production including opportunity costs. Upon

winning the contract, the agent expects to produce θ1 at a cost of θ2. We allow θ1 and

θ2 to be dependent as a higher production volume may entail a higher cost. Moreover,

private information is affiliated among the n bidders as bidder i’s production and cost

may be large when other bidders have large production and cost values. Thus, the

10Incentive effects on drilling activity are referred to as moral hazard by e.g. Bhattacharya, Ordin

and Roberts (2021). See Lewis and Bajari (2014) for moral hazard in procurement auctions.
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vector (θ11, θ21, . . . , θ1n, θ2n) is distributed as F (·, . . . , ·|n) on (Θ1 × Θ2)n, which is ex-

changeable across bidders. Though the type distribution depends on n automatically

through its dimension, the conditioning on n also allows for endogeneity of the number

of bidders, which captures unobserved heterogeneity as in Campo, Perrigne and Vuong

(2003). Bidders do not observe other bidders’ private information, but they know the

joint distribution F (·, . . . , ·|n) and that other bidders’ private information is affiliated

with their own. Independence of types among the n bidders and among the two type

components for each bidder is a special case. Our model is in the spirit of a private

value paradigm where bidders know their expected production and cost.11

Bidder i’s contract value is captured by the function V (a; θ1, θ2) ≥ 0. We make

the following natural assumptions on V (·; ·, ·): (i) a larger royalty reduces the bid-

der’s contract value, (ii) larger expected production increases the contract value, and

(iii) a larger cost decreases the contract value. Assumption A1-(i) summarizes these

assumptions using a subscript to denote partial differentiaton.

Assumption A1: The contract value V (·; ·, ·) satisfies

(i) Va(a; θ1, θ2) < 0, Vθ1(a; θ1, θ2) > 0, Vθ2(a; θ1, θ2) < 0,

(ii) Vaθ1(a; θ1, θ2) ≤ 0, Vaθ2(a; θ1, θ2) ≥ 0.

Assumption A1-(ii) on the cross-derivatives is intuitive. Since royalty is a share of

revenue, paying a given royalty is costlier given larger expected production. Also,

a larger cost decreases the probability of production, making a given royalty rate less

costly in expectation for the bidder. A simple example of contract value is V (a; θ1, θ2) =

(1−a)pθ1−θ2, where p is the price of the product. The bidder keeps (1−a) of revenue

pθ1 from which he deducts cost θ2. The context of the empirical application dictates the

choice of the contract value function. In the Appendix, we prove that the specification

of contract value in (1) satisfies assumption A1.

The principal is characterized by an allocation rule which can be deterministic or

probabilistic. This rule incorporates various objectives, need not be announced and can

be interdependent. We only require that the principal favors bidders submitting larger

royalties and cash payments.12 Bidders infer their winning probability given their bid

from the history of past auctions. Because of affiliation, this probability is conditional

on the bidder’s own private information (θ1, θ2) as in the case of affiliated private values

11We discuss the common value paradigm in the Online Appendix.
12The purpose of our model is not to derive the optimal allocation rule which would imply defining

a surplus function for the principal and his optimal behavior.
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or more generally interdependent values. See Milgrom and Weber (1982) and Krishna

(2009). Indeed, with affiliation, the bid distribution the bidder expects to compete

against is conditional on his own type/value. This conditioning disappears if the types

are independent. We denote the winning probability when submitting the pair (a, b)

as P (a, b|θ1, θ2, n). We make the following assumption on the winning probability.

Assumption A2: At given n, the probability P (a, b|θ1, θ2, n) satisfies Pa(a, b|θ1, θ2, n) >

0 and Pb(a, b|θ1, θ2, n) > 0.

Assumption A2 reflects the principal’s preference for larger cash and royalty payments.

It assumes symmetric bidders as the winning probability does not depend on the bid-

der’s identity. Bidders are symmetric when F (·, . . . , ·|n) is exchangeable across bidders.

Cash-Royalty Bidding

We adopt a best response approach in the spirit of Guerre, Perrigne and Vuong (2000).

Given his type (θ1i, θ2i), bidder i chooses his bid (ai, bi) to maximize his expected util-

ity from the auction given his winning probability P (·, ·|θ1i, θ2i, n). His maximization

problem is maxa,b[V (a; θ1i, θ2i)− b]P (a, b|θ1i, θ2i, n). We now omit the index i for sake

of simplicity. Differentiating with respect to a and b, the first-order conditions give

Va(a; θ1, θ2) = −Pa(a, b|θ1, θ2, n)

Pb(a, b|θ1, θ2, n)
(3)

V (a; θ1, θ2) = b+
P (a, b|θ1, θ2, n)

Pb(a, b|θ1, θ2, n)
. (4)

Equation (4) resembles the first-order condition for first-price auctions in Guerre, Per-

rigne and Vuong (2000) for independent private values.13

To gain intuition on the bidder’s trade-off between cash payment and royalty, we

decompose his optimization problem as follows. For any given winning probability

P , a choice of a automatically determines the b that satisfies P (a, b|θ1, θ2, n) = P

because P (a, b|θ1, θ2, n) is increasing in both (a, b) by assumption A2. This defines a

function b(a, P |θ1, θ2, n) giving the iso-probability curve of cash-royalty combinations

that achieve the winning probability P . Then the bidder’s maximization problem is

equivalent to maxa,P [V (a; θ1, θ2)− b(a, P |θ1, θ2, n)]P . We break this problem into two

steps. In the first step, we consider the choice of a given P , denoted a(P ; θ1, θ2, n).

This step allows us to see how a (θ1, θ2)-bidder makes the trade-off between royalty

13See Li, Perrigne and Vuong (2002), Athey and Haile (2007) and Somaini (2020) for similar ex-

pressions for affiliated private and interdependent values.
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and cash, holding fixed his winning probability. In the second step, we consider the

bidder’s optimal choice of P in light of a(P ; θ1, θ2, n) from the first step.

In the first step, the bidder’s choice of a given P solves a(P ; θ1, θ2, n) ≡ maxa V (a; θ1,

θ2) − b(a, P |θ1, θ2, n), where the maximand is the payoff conditional on winning. The

bidder chooses royalty a to maximize this payoff, accounting for its effect on the contract

value and cash payment required to achieve P . This leads to the first-order condition

Va(a; θ1, θ2) = ba(a, P |θ1, θ2, n), (5)

where a = a(P ; θ1, θ2, n). This choice of a implies b = b[a(P ; θ1, θ2, n), P |θ1, θ2, n].

Equation (5) expresses the trade-off of the marginal cost of a higher royalty against its

marginal benefit. Bidding a higher royalty reduces the contract value but allows a bid-

der to bid less cash by assumptions A1 and A2. This step has implications for adverse

selection. Bidding a higher royalty rate is less costly for the undesirable ‘weak’ types

(with low productivity θ1 and/or high cost θ2) than for the desirable ‘strong’ types (with

high θ1 and/or low θ2). Given a, a strong type pays more in royalties than a weak type,

making the cash component relatively more (less) attractive to the strong (weak) type.

Because the principal does not observe (θ1, θ2), bidders exploit their private information

to choose a favorable combination from the set {(a, b);P (a, b|θ1, θ2, n) = P}, result-

ing in adverse selection. In other words, bidders strategically choose a cash-royalty

combination that reduces their total payment without compromising their winning

probability. Since the royalty provides weak types a cheaper currency with which to

bid, they win more often than they would in the absence of royalty bidding. This

insight is similar in spirit to Che and Kim (2010) and Skrzypacz (2013).

In the second step, the bidder chooses the winning probability P . Plugging in the

royalty a(P ; θ1, θ2, n) and cash amount b[a(P ; θ1, θ2, n), P |θ1, θ2, n] from the first step,

the maximization problem reduces to maxP π(P ; θ1, θ2, n)P , where π(P ; θ1, θ2, n) ≡
V [a(P ; θ1, θ2, n); θ1, θ2] − b[a(P ; θ1, θ2, n), P |θ1, θ2, n] is the payoff conditional on win-

ning. This leads to the first-order condition

1

P
= −πP (P ; θ1, θ2, n)

π(P ; θ1, θ2, n)
, (6)

giving the solution P = P (θ1, θ2, n). Equation (6) expresses the trade-off between

the bidder’s desire to increase his winning probability through a more competitive

bid and his payoff conditional on winning. This step implies that a strong bidder

tends to bid a higher cash payment and/or royalty to increase his winning probability
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because his contract value is larger. Depending on the allocation rule, this can lead

to the prevalence of dominant bids as documented in Section 2.1. The auction also

induces moral hazard since higher royalty rates provide poor incentives for the winner

to execute the contract.

Differentiating P [a, b(a, P |θ1, θ2, n)|θ1, θ2, n] = P with respect to a and P gives

ba(a, P |θ1, θ2, n) = −Pa(a, b|θ1, θ2, n) /Pb(a, b|θ1, θ2, n) and bP (a, P |θ1, θ2, n) = 1/Pb(a, b|
θ1, θ2, n). Thus, using the definition of π(·; ·, ·, n) and πP (P ; θ1, θ2, n) = −bP [a(P ; θ1, θ2,

n), P |θ1, θ2, n] by the envelope theorem, the first-order conditions (5)-(6) give (3)-(4).

As in the previous literature on the structural analysis of auction data, (3) and (4)

constitute the basis for identification and estimation as discussed next.

3.2 Identification of Model Primitives

Observables and Primitives

We consider L independent auctions. In each auction `, we observe the bid vector

(a1`, b1`, . . . , an``, bn``) of the n` bidders, which is distributed as G(·, . . . , ·|n`). For now,

we omit exogenous variables characterizing the auctioned contracts. In each auction,

we also observe the winning dummy Wi` indicating that bidder i is selected by the

principal. Because types are affiliated across bidders, the bid components are also affil-

iated across the n` bidders. Moreover, the bid components (ai, bi) for each bidder i are

dependent within bidder. The joint bid distribution G(·, . . . , ·|n) of (a1, b1, . . . , an, bn)

is exchangeable in the bidders’ identities since they are symmetric. The model prim-

itives are the contract value V (·; ·, ·), the joint distribution of types F (·, . . . , ·|n) and

the probability of winning P (·, ·|·, ·, n).

About the Contract Value

We first discuss the identification of the value function V (a; θ1, θ2). Suppose that the

winning probability and its derivatives are known so that the right-hand sides in (3)

and (4) denoted (say) Y1 and Y2, respectively, are observed. This gives a system of

equations Va(a; θ1, θ2) = Y1 and V (a; θ1, θ2) = Y2, where (θ1, θ2) are unobserved ran-

dom terms. These resemble nonseparable models with multiple error terms. Matzkin

(2003, Appendix A) addresses their identification under (i) monotonicity in (θ1, θ2),

(ii) independence of (θ1, θ2) from a and (iii) some normalizations. While (i) is satisfied

by assumption A1 and (iii) can be imposed, (ii) does not hold since a = a(θ1, θ2;n)

through bidders’ best response.14

14This difficulty also arises in Luo, Perrigne and Vuong (2018) in nonlinear pricing with a one-
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The value function V (·; ·, ·) is not identified without additional information and/or

restrictions. Consider the following separable specification V (a; θ1, θ2) = θ1V0(a)− θ2,

where V0(·) is a positive decreasing function. The system (3)-(4) becomes θ1V0a(a) =

Y1 and θ1V0(a) − θ2 = Y2. Any choice of V0(·) identifies θ1 = θ1(a, b, n) and θ2 =

θ2(a, b, n) given (Y1, Y2). In other words, different specifications of V0(·) lead to the

same observables (Y1, Y2). Intuitively, any choice of V0(·) is ‘compensated’ by the

inverse best responses θ1(·, ·, n) and θ2(·, ·, n). This leads to the next assumption.

Assumption A3: The contract value V (a; θ1, θ2) is a known function.

For instance, the agent’s contract value could be (1− a)pθ1 − θ2. Our empirical appli-

cation takes V (a; θ1, θ2) as an option value given by (1).

Identification of P (·, ·|·, ·, n) and F (·, . . . , ·|n)

We now turn to the identification of the winning probability P (·, ·|·, ·, n) and its

derivatives. If private information were independent across bidders, this probability

would reduce to P (a, b|n) which is identified as the conditional expectation of winning

E[W |a, b, n], where W is observed. With affiliated private information, we note that

bidder i’s winning probability with a bid pair (a, b) is a composite of two objects: The

conditional distribution Ga−,b−|θ1,θ2(a−i, b−i|θ1i, θ2i, n), which assesses the competition

given bidder i’s type (θ1i, θ2i), and the choice probability C[a, b, a−i, b−i|n] that bidder

i wins with (a, b) when his opponents submit the vector (a−i, b−i) . Specifically,

P (a, b|θ1i, θ2i, n) =
∫
C[a, b, a−i, b−i|n] dGa−,b−|θ1,θ2(a−i, b−i|θ1i, θ2i, n). (7)

The choice probability C[·, . . . , ·|n] is identified from observed bids and the winner’s

identities as the conditional expectation E[Wi|a, b, a−i, b−i, n]. Our approach concerning

C[·, . . . , ·|n] is flexible and data-driven. We allow for uncertainty in the principal’s

allocation rule by not restricting the choice probability to be zero/one as in (say)

scoring auctions. This uncertainty may be due to other factors considered beyond the

bid components. Also, the auctioneer’s choice may be the result of some information

learned from the bid compositions (a, b) and (a−i, b−i). Our approach does not exclude

such a possibility as C[·, . . . , ·|n] is a nonparametric function of a, b, a−i, b−i.

dimensional type. Identification is achieved by exploiting multiplicative separability of the consumer’s

utility and optimality of the observed nonlinear pricing. Here, the optimal mechanism remains an

unresolved issue because of multidimensional screening. See Rochet and Stole (2003) for a survey,

Asker and Cantillon (2010) and Carroll (2017). For this reason, we adopt a best response approach.
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Next, we consider identification of Ga−,b−|θ1,θ2(a−i, b−i|θ1i, θ2i, n) in (7). We note that

the system (3)-(4) leads to the best responses ai = a(θ1i, θ2i, n) and bi = b(θ1i, θ2i, n).

The next assumption says that this relationship is invertible.

Assumption A4: The mapping (θ1, θ2)→ [a(θ1, θ2, n), b(θ1, θ2, n)] is invertible.

A necessary condition for assumption A4 is that the system Va(a; θ1, θ2) = Y1 and

V (a; θ1, θ2) = Y2 has at most a unique solution in (θ1, θ2) for any triplet (a, Y1, Y2).

This condition becomes necessary and sufficient when bidders’ private information are

independent because the right-hand sides of (3)-(4) are independent of (θ1, θ2). It is

satisfied for the example V (a; θ1, θ2) = (1−a)pθ1−θ2 as shown below. In the Appendix

we show that it is satisfied by the option value V (a; θ1, θ2) given by (1). Assumption A4

implies Ga−,b−|θ1,θ2(a−i, b−i|θ1i, θ2i, n) = Ga−,b−|a,b(a−i, b−i|ai, bi, n). Thus, the winning

probability (7) can be written as P (a, b|ai, bi, n).15 The conditional bid distribution

Ga−,b−|a,b(·, . . . , ·|·, ·, n) is identified from the joint distribution G(·, . . . , ·|n) of the bid

pairs (a1, b1), . . . , (an, bn). Thus P (·, ·|a, b, n) is identified from observables. Hence, its

derivatives Pa(·, ·|a, b, n) and Pb(·, ·|a, b, n) are also identified.

With this information in hand, we rewrite the system (3)-(4) as

Va(a; θ1, θ2) = −Pa(a, b|a, b, n)

Pb(a, b|a, b, n)
(8)

V (a; θ1, θ2) = b+
P (a, b|a, b, n)

Pb(a, b|a, b, n)
. (9)

This system identifies the bidder’s private information (θ1, θ2) from his observed bid

(a, b). For instance, if the contract value is of the form V (a; θ1, θ2) = (1−a)pθ1−θ2, then

θ1 = Pa(a, b|a, b, n)/[pPb(a, b|a, b, n)] and θ2 = (1− a)[Pa(a, b|a, b, n)/ Pb(a, b|a, b, n)]−
b − [P (a, b|a, b, n)/Pb(a, b|a, b, n)] are identified. Once the pair (θ1, θ2) is identified for

every bidder, the joint type distribution F (·, . . . , ·|n) is identified as stated next.

Proposition 1: Under assumptions A1–A4, the bidder type (θ1, θ2) associated with

bid (a, b) is identified. Therefore, the joint type distribution F (·, . . . , ·|n) is identified.

The separate identification of (θ1, θ2) implies that bidders’ types cannot be reduced

to scalar representations. To provide a contrasting example, suppose that royalties

were levied on profit instead of revenue. The value function would be V (a; θ1, θ2) =

(1 − a)(pθ1 − θ2) and Va(a; θ1, θ2) = −(pθ1 − θ2). Thus, (θ1, θ2) can replaced by the

15This probability is similar to GB|b(b|bi) in the case of first-price sealed-bid auctions where b denotes

an arbitrary bid and B is the maximum of the competitors’ bids. See, e.g., Laffont and Vuong (1996)

and Li, Perrigne and Vuong (2002).
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‘aggregate’ type t = pθ1 − θ2 in (8)-(9). This implies that all (θ1, θ2) pairs such that

pθ1 − θ2 = t are observationally equivalent. This case is ruled out by assumption A4,

which requires that θ1 and θ2 play distinctive roles in determining the bid components.16

3.3 An Estimation Method

The estimation method follows the identification argument. There are several possi-

ble estimation methods ranging from nonparametric to parametric ones. We adopt

a semiparametric procedure. In auction models, the equilibrium strategies depend

on the whole distribution of bidders’ private information. Thus, estimating a few

moments of this distribution is not sufficiently informative. Because one has little in-

formation on this distribution, and parametric families can lead to an inadequate fit

to the observed bid distributions, we favor data driven methods to uncover the bid-

ders’ private information distribution. This is important as this latent distribution

drives the economics and counterfactuals. We present an estimation method taking

into account (i) functional form flexibility, (ii) the curse of dimensionality associated

with nonparametric estimators and (iii) interpretability of results. First, we estimate

the conditional density of bid pairs semiparametrically by ĝa−,b−|a,b(·, . . . , ·|·, ·, n) using

a Gaussian copula upon estimating the marginal bid densities nonparametrically. Sec-

ond, we estimate the choice probability that a bidder wins with bid components (a, b)

when his opponents bid (a−, b−) by Ĉ[a, b, a−, b−|n] via sieve approximation of the con-

ditional expectation E[W = 1|a, b, a−, b−, n]. Third, by (7) we estimate the winning

probability by P̂ (·, ·|·, ·, n) as a composite function of Ĝ(·, . . . , ·|n) and Ĉ[a, b, a−, b−|n].

Finally, using P̂ (·, ·|·, ·, n), we solve the system (8)-(9) at each observed bid (ai`, bi`) to

estimate the bidder type (θ1i`, θ2i`). Using the latter, we estimate the joint density of

(θ11, θ21, . . . , θ1n, θ2n) semiparametrically using a Gaussian copula. Readers who wish

to skip the technical details may proceed to Section 4 for the estimation results.

We omit the exogenous variables Z` characterizing contract ` and incorporate them

in Section 3.4. We impose exchangeability of distributions/densities throughout since

bidders are symmetric. We first estimate the conditional bid density ga−,b−|a,b(·|ai, bi, n).

This density is the ratio of the 2n-variate joint density g(·, . . . , ·|n) over the bivariate

density ga,b(·, ·|n). To alleviate the curse of dimensionality, we use the semiparamet-

ric estimator of Genest, Ghoudi and Rivest (1995) for the 2n-multivariate joint den-

16Aggregating types is traditionally used in mechanism design with multidimensional screening. See

Armstrong (1996) and Rochet and Stole (2003). Our best response approach avoids this technique.
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sity g(·, . . . , ·|n) of bid pairs. This requires estimating the two marginal distributions

Ga(·|n) and Gb(·|n), which are obtained by integrating the kernel density estimators

ĝa(·|n) and ĝb(·|n). For interpretability of empirical results, we choose the Gaussian cop-

ula density c2n(·, . . . , ·;R), where the subscript 2n indicates its dimension and R is the

correlation matrix. Exchangeability imposes equalities on the correlation coefficients,

thereby reducing R to the four correlations ρa1b1 , ρa1b2 , ρa1a2 and ρb1b2 that are estimated

by maximizing with respect toR the likelihood
∏Ln
`=1 c2n[Ĝa(a1`|n), Ĝb(b1`|n), . . . , Ĝa(an`

|n), Ĝb(bn`|n);R], where Ln is the number of auctions with n bidders. This gives the

estimated joint density c2n[Ĝa(a1|n), Ĝb(b1|n), . . . , Ĝa(an|n), Ĝb(bn|n); R̂]
∏n
j=1 ĝa(aj|n)

ĝb(bj|n) as well as the bivariate marginal density c2[Ĝa(ai|n), Ĝb(bi|n); ρ̂a1b1 ]ĝa(ai|n)

ĝb(bi|n). The ratio of these two gives ĝa−,b−|a,b(a−, b−|ai, bi, n).

Second, we estimate the choice probability C[a, b, a−, b−|n] = E[W = 1|a, b, a−, b−, n],

where W indicates that the bidder wins. We approximate this expectation with sieves.

To alleviate the curse of dimensionality, we reduce the number of arguments by consid-

ering differences in bid components, namely C(a− a−, b− b−|n). When n = 2, the log-

likelihood is
∑L2
`=1 {W1` logC(a1` − a2`, b1` − b2`) +W2` log[1− C(a1` − a2`, b1` − b2`)]},

where L2 is the number of auctions with 2 bidders and Wi` = 1 (= 0) if bidder i is the

winner (loser). The function C(·, ·) is approximated with Bernstein polynomials while

imposing it to be increasing in both arguments in view of assumption A2.17

Third, given ĝa−,b−|a,b(·, . . . , ·|·, ·, n) and Ĉ(a−a−, b−b−|n), we estimate P (·, ·|·, ·, n)

as

P̂ (·, ·|a, b, n) =
∫
Ĉ(· − a−, · − b−|n)ĝa−,b−|a,b(a−, b−|a, b, n) da−db−. (10)

This integral can be computed using Monte Carlo integration. Its partial derivatives

with respect to the first two arguments are estimated by differentiating inside the

integral. In the last step, we solve the system (8)-(9) with the estimated winning prob-

abilities and derivatives evaluated at each observation (ai`, bi`). This gives (θ̂1i`, θ̂2i`),

i = 1, . . . , n`, ` = 1, . . . , Ln. We can also estimate the marginal density of the cost

per unit θ̂2`/θ̂1`, which provides interesting economic content. This step is performed

17When n = 3, the likelihood becomes
∑L3

`=1{W1` logC(a1` − a2`, b1` − b2`, a1` − a3`, b1` − b3`) +

W2` logC(a2`−a1`, b2`−b1`, a2`−a3`, b2`−b3`)+W3` logC(a3`−a1`, b3`−b1`, a3`−a2`, b3`−b2`)}, where

L3 is the number of auctions with 3 bidders. We impose that (i) the three choice probabilities sum

up to one, (ii) the first and second arguments are exchangeable with the third and fourth arguments

in the choice probabilities, and (iii) the choice probability is increasing in all its arguments. These

restrictions are imposed on the coefficients of the Bernstein polynomial expansion which are estimated

by maximum likelihood after normalization of each argument to the interval [0, 1] through its quantile.
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using a kernel density estimator subject to some trimming to correct for boundary

effects following Guerre, Perrigne and Vuong (2000). To assess the degree of type de-

pendence within and between bidders, we use a Gaussian copula estimator as above

while imposing exchangeability of the joint type distribution.

3.4 Incorporating Auction Covariates

We now discuss how to introduce auction covariates in the estimation method. We

consider a vector Z` of covariates in the estimation of the 2n-variate joint bid distri-

bution G(·, . . . , ·|z, n) and the choice probability C(a, b, a−, b−|z, n). This leads to the

winning probability P (a, b|a, b, z, n) in (10). To alleviate the curse of dimensionality,

we propose a demeaning approach using an index to account for auction heterogeneity

in the estimation procedure, as in Haile, Hong and Shum (2005).

Given n, we estimate the means of ai` and log bi` conditional on Z` using a ‘leave-one-

out’ regression of ai` and log bi` on Z`, respectively. Leave-one-out refers to not using

data from auction ` when predicting the means for auction `. To estimate the joint

bid distribution, we convert each observed ai` and log bi` to deviations from the leave-

one-out conditional mean royalty Ê(a−`|z, n) and logarithm of cash bid Ê(log b−`|z, n),

respectively. This normalizes the bids and allows pooling of bids across heterogeneous

auctions. Let ãi` = ai`− Ê(a−`|z, n) and b̃i` = log bi`− Ê(log b−`|z, n) denote these nor-

malized bids distributed as G̃(·, . . . , ·|n). Using the estimation method in Section 3.3,

the estimated conditional density ĝ(·, . . . , ·|z, n) is obtained from ĝ(a1, b1, . . . , an, bn|z, n)

≡ c2n(G̃a(ã1|n), . . . , G̃b(b̃n|n); R̂)Πn
j=1g̃a(ãj|n)g̃b(b̃j|n).

To estimate the choice probability C(a−a−, log b− log b−|z) for n = 2, we reduce the

dimensionality of z through the leave-one-out conditional expectation E(log b−`|z, n)

defined above by adding Ê(log b−`|z, n) as an argument to the choice probability, i.e.,

C(a − a−, log b − log b−, Ê(log b−`|z, n)). We then follow the estimation procedure of

Section 3.3 to obtain Ĉ(·, ·, ·). With these estimates in hand, following (10) we obtain

P̂ (·, ·|a, b, z, n) =
∫
Ĉ(·−a−, ·− log b−, Ê(log b−|z, n))ĝa−,b−|a,b,z(a−, b−|a, b, z, n)da−db−,

and its derivatives P̂a(·, ·|a, b, z, n) and P̂b(·, ·|a, b, z, n) by numerical differentiation.

Lastly, the type distribution depends on the covariates Z`, which are aggregated in

the single index Ê(log b−`|z, n) that we normalize through its quantile q(z, n). Upon

estimating (θ̂1i`, θ̂2i`) for i = 1, 2 and ` = 1, . . . , L2 by solving (8)-(9), we assess the de-

gree of affiliation among (θ11, θ21, θ21, θ22, q(z, n)) using a Gaussian copula with smooth

kernel estimates of the marginal distributions as explained in Section 3.3.
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4 Estimation Results

This section presents the estimation results for the Louisiana oil lease auction data

preceded by a description of the covariates that characterize auction heterogeneity.

4.1 Characterizing Auction Heterogeneity

We present additional data sources needed in the computation of the option value.

For the one-year risk-free interest rate r, we convert the nominal one-year treasury

rates from the Federal Reserve Economic Data (FRED) to real rates via application of

the Fisher equation, using percentage changes in the GDP implicit price deflator as a

measure of inflation. We use the latter to adjust all values subject to inflation. For the

oil price p, we use the West Texas Intermediate price provided by FRED. Including p

as a covariate allows the distribution of θ1, θ2 to be conditional on p. For the volatility

σ, we use the expected volatility implied by contemporary crude oil option prices.18

Since crude oil options have been traded since November 1986, we use bids from 1987

onwards in the last step which estimates the joint type distribution by solving (8)-(9).

For more details on the derivation of implied volatility, see the Online Appendix.

In addition to the oil price, volatility and interest rate which enter in the option

value, bids depend on other characteristics that we now define. To account for ge-

ographical and geological heterogeneity, we use historical data from Drillinginfo to

compute a production index based on production in the lease’s township during the

five years preceding its auction. To account for unobserved geographical and geological

heterogeneity, following Kong (2020), we exploit the spatial continuity of land-based

heterogeneity to construct smooth and location-based ‘heatmap’ indices as follows. To

first eliminate time effects from the indices, we regress observed bid components on year

fixed effects and obtain the residuals. We then define heatmap royalty and cash indices

for each tract as the residuals predicted by geographic location. Hereafter we consider

the logarithm of the cash component because of its skewness from Table 1. The pre-

dictions are obtained from leave-one-out local quadratic regressions of the residuals on

geographic coordinates of the lease township. The prediction for auction ` uses only

those auctions occurring up to the auction year to avoid using information from the

‘future’. Lastly, for some auctions, the royalty recipient is a state agency other than

the Department of Natural Resources (DNR), which is captured by a dummy.

18Access to these market data was purchased from the Chicago Mercantile Exchange Inc.
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Table 3 gives the results of the regressions of the bid components on the auction

covariates using the full sample of 1,291 bids. As year fixed effects are included, the

monthly oil price and interest rate do not always have statistically significant coeffi-

cients. The logarithm of the cash bid per acre is affected by acreage and its square.

When the royalty recipient is not the DNR, there is a negative effect on both bid

components suggesting that these leases are less desirable. Lastly, leases with larger

heatmap indices attract higher bid components, suggesting that these indices success-

fully capture unobserved geographical and geological heterogeneity.

4.2 Estimation Results

Given that 80% of the dataset contains two bidders per auction, we present the results

for n = 2. Data on implied volatility are available after 1987. To exploit the maximum

number of observations, we estimate the winning probability using the 904 (452 auc-

tions times 2) bids including observations before 1987.19 Figure 3 plots level contours

of the estimated pairwise choice probability at the median value of the quality index

q(z) along with the observations. The contours, ranging from 0.1, 0.2,..., 0.9, show the

transition from low to high probability of being chosen as bid components increase.

Because the option value is a function of implied volatility, we estimate bidders’

types using the 258 (129 times 2) bids after 1987. The estimated values for θ1 (expected

production volume) are mostly between 100 and 3,000 barrels per acre. Though we

have not used any ex post information on production, our estimates are comparable

to general statistics on onshore oil production. Based on data from Drillinginfo, the

median township in our data produces about 270,000 barrel-of-oil-equivalents (BOE)

per well. Conditional on the median quality index, our estimate of expected production

is 700 barrels per acre or about 230,000 barrels for the average-sized lease, which is

close to the actual production statistic. We also examine the relationship between

expected production volume θ̂1 and realized production from wells spudded in the

lease’s township during the three years following its auction.20 As there are no such

wells for many of the auctioned leases, we estimate a type I Tobit model of log realized

production on log θ̂1 treating the latent volume of production as censored from below

19Because the nonparametric estimation of the choice probability is data demanding, we pool the

data across n and consider the n− 1 pairs (a− a−, log b− log b−) when estimating C(·, ·, ·).
20Since we do not have production data at the lease level, as a substitute, we use knowledge of each

lease’s township and auction date to compute production from wells spudded in the lease’s township

during the three years following the auction.
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at the minimum observed non-zero value in the sample. The estimated Tobit coefficient

is 0.71 with standard error 0.24, meaning a one percent higher value of θ̂1 is associated

with a 0.71 percent higher value of latent production at the township level.

Figure 4 plots the density of the per unit cost θ̂2/θ̂1. This ratio represents the cost

per barrel of production, which is a more intuitive measure of cost than θ̂2. Our median

estimate of cost per barrel is $21 in 2009 dollars, which is comparable to figures reported

by the Wall Street Journal.21 Figure 4 includes a vertical dotted line representing the

sample average firm’s revenue per barrel (1−a)p. Assuming a fixed revenue per barrel,

this gives a rough idea of which firms would exercise their options, i.e., develop their

tracts. Firms to the left of this value would exercise their option, while firms to the

right would not. As there is a substantial mass to the right, Figure 4 provides a

rationale as to why so many leases remain undeveloped in the U.S.22 Next, we discuss

the estimated correlation matrix of the joint density of types (θ11, θ21, θ12, θ22) and the

index q(z). The correlation coefficient between θ1i and θ2i is 0.86 indicating correlation

between production and cost. The correlations between bidders (0.81 for production

and 0.90 for cost) show affiliation of private information among bidders. If production

and cost are expected to be high for one bidder, they are likely to be high for the

other bidder as well. Lastly, the correlation between the types and the quality index

q(z) is 0.68 for both production and cost, confirming the explanatory power of tract

heterogeneity through our index q(z). Part of the correlation among the components

(θ11, θ21, θ12, θ22) is due to their collective correlation with q(z).

In light of the government’s concern about undeveloped tracts, we assess the model’s

predicted development rate. We compare the ex ante predicted exercise probability

Φ(x − σ
√
t) to the ex post observed probability of development. We consider a tract

developed if the Louisiana DNR has a record of receipts of royalties from the lease or

of a well attached to the lease. Our average predicted ex ante exercise probability is

equal to 0.44. For the same set of leases, we observe an exercise probability of 0.42.

The closeness of these two values assesses the good fit of our model. Indeed, our model

and our estimates of production and cost are consistent with the observed low rate

of development, though we did not use any post-auction information in estimation.

Relating to our discussion of Figure 4 above, our model explains this phenomenon by

moral hazard induced by the combination of bidders’ production costs, royalty bidding

21See graphics.wsj.com/oil-barrel-breakdown/.
22The Department of the Interior reports that by the end of 2011, about 56% of total acres of public

land under lease in the lower 48 states are not undergoing either production or exploration activities.
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and the optional nature of production. The option model also explains why firms are

willing to pay for leases they may not develop. Even if the oil price is below the ‘strike

price’ at the time of auction, the leases have option value.

5 Counterfactual Analysis

Fixed-royalty auctions are commonly used for public mineral leasing in the U.S. In

that auction format, the principal fixes the royalty rate and bidders bid on the cash

payment only, leading to one-dimensional bidding. Since little is known about optimal

auction design with multidimensional private information, we compare our cash-royalty

auctions to fixed-royalty auctions. In addition, since scoring auctions are the most

studied multi-attribute auctions, we also investigate their performance. Lastly, in view

of recent policy debates on the poor performance of oil lease auctions in the U.S., we

assess the effects of increasing the lease duration and exploiting auction timing.

Regarding the pros and cons of cash-royalty versus fixed-royalty auctions, allowing

competitive forces to determine royalties can potentially reap a higher share of revenue

for the principal by driving up royalties on strong tracts while increasing the devel-

opment probability by driving down royalties on weak tracts. Royalty rates, however,

could be too high, exacerbating moral hazard, or too low, ceding information rents to

the winner. Also, cash-royalty bidding gives firms more room to exploit information

asymmetry. This adverse selection can depress the principal’s revenue and distort lease

allocation. In our counterfactual, we investigate whether the pros outweigh the cons.

Asker and Cantillon (2008) show that the principal is better off using a price-quality

scoring auction than imposing a fixed quality and selecting the winner on the basis

of price only. Cash-royalty auctions differ, however, from price-quality auctions in

two key aspects. First, the winning bidder chooses whether to develop the lease,

while his incentives are affected by the endogenous royalty. Second, since royalty

revenue depends on the exercise probability and production volume, the principal’s

payoff e−rtapθ1Φ(x) + b, where x is given in (2), depends directly on bidders’ private

information. This is not the case in a price-quality scoring auction, where the principal’s

payoff is entirely determined by the observable bid components (price, quality). The

bidder can exploit this extra gap created by asymmetric information in cash-royalty

auctions by trading off cash and royalty to the detriment of the principal.23

23Thus the proof of Asker and Cantillon (2008, Theorem 6) no longer applies, and the superior

performance of scoring auctions is no longer guaranteed.
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5.1 Cash-Royalty vs Fixed-Royalty Auctions

We compare the observed cash-royalty auctions to simulated fixed-royalty auctions. Us-

ing our estimation results, we simulate auctions with a fixed royalty ranging from 0%

to 50%. For a fixed royalty A, we compute for every bidder i in auction ` the lease value

Vi` = V (A; θ̂1i`, θ̂2i`). Using random draws (θs11`, θ
s
21`, θ

s
12`, θ

s
22`) from F̂ (·, ·, ·, ·|q(Z`), n),

we simulate the joint value distribution FV1,V2|q(Z)(·, ·|·, n) for n = 2. Second, from Mil-

grom and Weber (1982)’s equilibrium in a first-price sealed-bid auction with affiliated

private values, we compute the cash bid that each bidder would have submitted in a

fixed-royalty auction. We use notation A for a fixed royalty and a for a royalty bid.

In Figures 5–7, the solid curve represents the outcome of the fixed-royalty auction

with A on the x-axis. For comparison, the horizontal dashed line represents the out-

come of the Louisiana cash-royalty auction. We examine royalty revenue, cash revenue

and their sum which gives total government revenue. Figure 5 displays the ex ante

expected royalty revenue given by e−rtpAθ1Φ(x) from (1)-(2). The solid curve ex-

hibits a Laffer curve, in which royalty revenue initially rises but eventually falls after

A = 43% as moral hazard overwhelms the gains from taking a higher share of revenue

because a higher royalty induces a lower exercise probability. The average royalty from

the Louisiana cash-royalty auction is 23% (vertical dotted line). We see that royalty

revenue would have been similar had the royalty been fixed at 23%. Thus, allowing flex-

ibility in royalties would not achieve any benefit compared to fixing it at the average.

Meanwhile, Figure 6 displays cash revenue. Higher fixed royalties decrease the cash

bid because bidders’ lease values decline as A increases. We find that the Louisiana

cash-royalty auction gives $112 per acre or 11% less in cash than the 23% fixed-royalty

auction.

Figure 7 displays total government revenue. The Louisiana auctions outperform

fixed-royalty auctions when the fixed royalty is either higher than 48% or lower than

18%: This includes the federal fixed rate of 12.5%. For middle royalties ranging from

19% to 47%, the fixed-royalty auction outperforms the Louisiana auction. This includes

the 25% rate common on private lands. In this middle range, the adverse selection

effects of cash-royalty bidding dominate the benefits of royalty flexibility. As a result,

a 23% fixed-royalty auction would generate an average gain of 4% or $103 per acre

relative to the cash-royalty auction. Meanwhile, the optimal royalty for fixed-royalty

auctions is 34% allowing a gain of 8% or $213 per acre compared to the cash-royalty

auction. This optimal royalty rate is higher than most rates seen in Table 1. This
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confirms that Louisiana’s underperformance is not caused by high royalties per se but

by adverse selection in the cash-royalty combinations bidders choose.24

To get a sense of the firms’ surplus, we consider their information rents defined as

the firm’s ex ante value for the contract V (a; θ1, θ2) evaluated at the relevant royalty

rate minus the cash payment. According to our simulations, bidders in Louisiana enjoy

4% or $52-per-acre larger information rents than under a 23% fixed royalty, consistent

with greater adverse selection in the cash-royalty auction. Meanwhile, one of the main

concerns of the government is the low development rate. We find that royalty bidding

in Louisiana does not yield special benefits for option exercise compared to fixing the

royalty at 23%. Lastly, we consider social surplus defined as the firm’s lease value plus

the government’s expected royalty revenue, accounting for the endogenous probability

of development. We find that royalty bidding in Louisiana does not yield special

benefits for social surplus compared to fixing the royalty at 23%. Graphs associated

with these simulations are provided in the Online Appendix.

5.2 Scoring vs Fixed-Royalty Auctions

Scoring auctions, especially with quasi-linear scoring rules, are the most studied class

of multi-attribute auctions. In light of Asker and Cantillon (2008), one may won-

der whether the underperformance of cash-royalty relative to fixed-royalty bidding is

specific to Louisiana’s allocation rule. To investigate this question, we consider the

quasi-linear scoring rule S(a, b) = b−ωp/aρ, increasing in both a and b, where ω > 0 is

a weight on the royalty component and ρ > 0 defines the curvature with respect to it.

A higher ρ increasingly discourages low-end and high-end royalty rates. We also allow

the royalty component to carry more weight with oil price p. We simulate the outcome

of scoring auctions for values of ρ = 1, 2, . . . , 10. For each ρ, we perform a grid search

for the optimal weight ω maximizing expected government revenue.

The first row of Table 4 displays E[(b− b)/(s− s)], the expected portion of the score

that is due to the cash payment b, where b and s are the minimum of cash and score

values, respectively. This portion ranges from 0.35 to 0.51. We simulate scoring auction

outcomes using a second-score mechanism for computational ease. Correspondingly, we

use a second-price auction to simulate the fixed-royalty auction for comparison. With

a quasi-linear score, Asker and Cantillon (2008) show that the second-score auction

induces the same royalty choice as in a first-score auction because the royalty choice is

24See the Online Appendix for an assessment of the allocative performance of fixed-royalty auctions.
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independent of the score a bidder is trying to achieve. We compute the optimal royalty

bid and cash bid for each bidder. The last two rows of Table 4 show the mean and

median royalty bids given each ρ. For all simulated values of ρ, these scoring auctions

would lead to higher royalty rates on average than those observed in Louisiana.

Figure 8 displays the variance of royalty bids in a dashed curve and the government’s

total revenue per acre in a solid curve with ρ on the x-axis. As the curvature ρ

increases, the variance of royalties decreases and the government’s revenue increases to

approach that of the optimal fixed-royalty auction. These results confirm a consistent

pattern: Reducing or eliminating bidder-driven royalty variance improves revenue for

the government. Indeed, the fixed-royalty auction achieves a better outcome even

though the weights ω were chosen optimally in the scoring auctions. Table 5 provides

more details on fixed-royalty versus scoring auctions with ρ = 1. In the former, the

optimal royalty is about 30%. The scoring auction would lead to a loss of $799 per acre

in royalty revenue that is not recouped in cash revenue which increases by only $654.

This leads to a 5% decrease in total government revenue, while yielding 38% higher or

$356 of additional information rents to firms. Thus, adverse selection outweighs the

potential benefits of royalty flexibility in this class of scoring auctions. In contrast,

Table 5 suggests that the scoring auction may induce a higher exercise probability and

higher social surplus than the optimal fixed-royalty auction. Also, total government

revenue from this scoring auction exceeds that of the Louisiana cash-royalty auction.

To summarize, fixed-royalty auctions would yield higher government revenue than

the current cash-royalty format and quasi-linear scoring auctions. Since fixed-royalty

auctions are straightforward to implement, fixing the royalty seems the more reliable

way to auction lease contracts. This policy recommendation contrasts with conven-

tional wisdom from price-quality auctions, providing new insights on incentive con-

tracts and the merits of multi-attribute auctions. This is not to say that superior

multidimensional mechanisms do not exist. They may just take more complex forms.

Taking cues from Asker and Cantillon (2010), such a mechanism may have allocation

rules that cannot be summarized by a scoring function. It could involve the principal

designing a menu of contracts or revising the current contract form. What superior

mechanisms look like are open questions given multidimensional private information.
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5.3 Alternative Policies: Lease Duration and Timing

Some industry voices have argued that the rate of development would increase if leases

were longer. The 3-year lease in Louisiana is shorter than the 5-year lease in New

Mexico and the 10-year federal lease. We simulate fixed-royalty auctions for a 6-year

lease thereby doubling the observed duration. We present results for the American

option valuation to emphasize that firms can exercise their option at any time during

the lease. Our method for valuing American options is discussed in Section 6.1.

Though a longer lease duration could increase the ex ante exercise probability, this

is not guaranteed. First, at any point in time, an agent possessing an American option

compares the payoff of exercising it today to the continuation value of waiting for a

potentially higher price. This continuation value is increasing in the remaining duration

of the option. Thus, the time-specific threshold for exercising the option is higher when

the remaining duration is longer. Second, from an ex ante perspective, the later three

years of a six-year lease starting today are not equivalent to a three-year lease starting

today; they do not ‘cancel out’ in a comparison. The starting oil price for the latter

is today’s price, while the starting oil price for the former is uncertain today and has

a log normal distribution. The combined effects of the above on exercise probability

are ambiguous. At all fixed royalties between 0% and 50%, we find that increasing the

lease duration decreases the ex ante exercise probability, which contradicts the popular

belief. At a 23% fixed royalty, the decrease would be from 0.46 to 0.40. However, it

does increase government revenue because it increases option values and hence cash

bids. At a 23% fixed royalty, total revenue would increase by about 16%.

An alternative policy would be to exploit fluctuations in oil prices. As Louisiana

has control over auction offerings, the DNR could withhold leases when oil prices

are low and release them when oil prices are high. We simulate government revenue

under fixed-royalty auctions had oil prices been 20% higher than what they were at

the time of the auction. The resulting increase in government revenue is at least 46%

depending on the fixed royalty. From Table 2, higher oil prices increase not only the

royalty dollars conditional on option exercise but also the exercise probability, as well

as option value and cash bids. This is a promising policy that states could pursue. The

Online Appendix provides figures showing additional details from these simulations.
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6 Extensions

We discuss (i) the robustness of our results to the American option in which firms can

exercise the option at any time and (ii) a general extension of our method.25

6.1 Robustness Analysis: American Option

To ensure that our conclusions are not sensitive to the European-option specification,

we use a numerical procedure known as a binomial tree to value the lease as an Amer-

ican option and reestimate (θ1, θ2) accordingly. Following Cox, Ross and Rubinstein

(1979) and Rendleman and Bartter (1979), the binomial option pricing model begins

with a single node and each node connects to two nodes in the next period, one rep-

resenting the probability that the oil price will go up, the other the probability that

the oil price will go down. At each node, the agent chooses whether to exercise the

option given the node-specific oil price p. The agent exercises the option at that node

if (1−a)pθ1−θ2 exceeds the continuation value. The value of the node is (1−a)pθ1−θ2

if the option is exercised and the continuation value otherwise. The value of the Amer-

ican option is then computed as the present-discounted expected value of all nodes

that extend from the first node. The fineness of the binomial tree is adjustable by

the number of steps in the tree. As the number of steps grows large, the value of

the binomial tree converges to the value of the option. See Hull (2017) for details.

We use a binomial tree with 100 steps to value V (a; θ1, θ2) and then use constrained

optimization to estimate (θ1, θ2) from (8)-(9).26 The Online Appendix explains how

each step of the binomial tree evolves as a function of volatility σ and the number of

steps. Figure 4 displays in a dash-dotted line the estimated marginal density of the

unit cost θ̂2/θ̂1 using this method. The European and American estimated densities

closely superimpose each other suggesting that our results are robust to the American

option specification. In addition, the Online Appendix provides the results of all the

counterfactuals using the American option. These results are qualitatively identical

and quantitatively very close to the European option results.

25The Online Appendix contains discussions on bidders’ cash constraints, unobserved heterogeneity

and common values.
26Using 100 steps means that 2100 possible price paths are considered over the 3-year duration of

each option, and firms make a decision about whether to exercise the option every 3×365/100 = 10.95

days. We adapt code from Zagaglia’s (2012) option pricing package to compute the option value.
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6.2 Extension

Our methodology extends to a large class of auctions under multidimensional private

information. It accommodates as special cases the scoring auctions used in construc-

tion procurements and oil lease sales among other examples. For simple exposition,

we assume independent private information across bidders and omit auction covari-

ates. Let (θ1, . . . , θK+1) be a K + 1 vector of the bidder’s private information dis-

tributed as F (·, . . . , ·|n). Each bidder submits a K + 1 vector of bid components

(b1, . . . , bK+1), where bK+1 is a cash component. The bidder’s value for the auctioned

object is V (b1, . . . , bK ; θ1, . . . , θK+1). The auctioned object is allocated to this bid-

der with probability P (b1, . . . , bK+1|n). Each bidder maximizes his expected profit

[V (b1, . . . , bK ; θ1, . . . , θK+1) − bK+1]P (b1, . . . , bK+1|n). The first-order conditions with

respect to (b1, . . . , bK+1) lead to a system of K + 1 equations

Vk(b1, . . . , bK ; θ1, . . . , θK+1) = − Pk(b1, . . . , bK+1|n)

PK+1(b1, . . . , bK+1|n)
, k = 1, . . . , K

V (b1, . . . , bK ; θ1, . . . , θK+1) = bK+1 +
P (b1, . . . , bK+1|n)

PK+1(b1, . . . , bK+1|n)
,

where the index k refers to the derivative with respect to bk. This extends the system

(3)-(4) under independent private information. Our identification argument of Section

3.2 applies. For example, in the case of scoring procurement auctions, bidders bid a

quality vector (b1, . . . , bK) and a cash component bK+1. The bidder’s value is given by

the total cost θK+1 + θ1b1 + . . . + θKbK , where θK+1 is interpreted as a fixed cost and

θk as the marginal cost of quality k. The bidder’s expected profit is [bK+1 − θK+1 −
b1θ1− . . .− θKbK ]P (b1, . . . , bK+1|n). Our method, allowing for general allocation rules,

does not require a defined scoring rule, but accommodates them as a special case where

bidder i’s winning probability is Pr[Si ≥ Sj,∀j 6= i|(b1, . . . , bK+1)i] = Gn−1
S (Si|n) with

score Si = S[(b1, . . . , bK+1)i] and score distribution GS(·). Up to sign, the first-order

conditions are as above. See Takahashi (2018), Hanazano, Hirose, Nakabayashi and

Tsuruoka (2018) and Sant’Anna (2018) for recent contributions on scoring auctions

with endogenous qualities.27

27Our methodology also extends to scale auctions that are used in the sale of timber and construction

procurement auctions. See Bajari, Houghton and Tadelis (2014), Luo and Takahashi (2021) and

Bolotnyy and Vasserman (2021). In such auctions, agent i bids a unit price bik on each of the (K+ 1)

items composing the auctioned object. His score is Si =
∑K
k=1 bikq

e
k+biK+1, where qek is the estimated

quantity for item k. His ex post payment is based on realized quantities qk as
∑K
k=1 bikqk + biK+1. In

a procurement setting, bidder i’s cost is
∑K
k=1 ckθikqk + cK+1θiK+1, where (θi1, . . . , θiK+1) is private
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7 Conclusion

In this paper, we perform a structural analysis of bidding on contracts. Using oil lease

data in Louisiana, our goal is to assess the impact of multi- versus single-attribute

auctions on government revenue, allocation, information rents, development rates and

social surplus. By allowing bidders with multidimensional private information to choose

the most favorable combination of their multidimensional bid components, we account

for adverse selection. Using option values, our model also accounts for moral hazard

as firms can choose whether to execute the contract depending on their incentives.

The latter in turn affects the bid components and vice versa. Our model and empirical

methodology allow for a general contract value and allocation rule. We recover expected

production volumes, costs and development rates without ex post observations.

In the case of Lousiana, we find that (i) cash-royalty bidding exacerbates adverse se-

lection, (ii) a fixed-royalty auction would improve government revenue without harming

development rates or social surplus and (iii) a fixed-royalty auction would also dom-

inate a scoring auction. These findings contrast with what we have learned about

multi-attribute auctions in the price-quality auction literature, where scoring auctions

dominate one-dimensional fixed-quality auctions. Lastly, auctioning of incentive con-

tracts with multidimensional private information is an area where the design space is

rich but auction design recommendations and empirical work are sparse. We hope that

this paper helps trigger new developments in this area.

information and (c1, . . . , cK+1) are the known engineering cost estimates. To account for bid skewing

patterns as first shown by Athey and Levin (2001), one introduces bidders’ risk aversion. Maximization

of expected profit gives first-order conditions similar to those above adjusted for the nonseparability

of bK+1. Risk aversion could be identified and estimated using Guerre, Perrigne and Vuong (2009)

and Campo, Guerre, Perrigne and Vuong (2011).
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Appendix

Verification of Assumption A1 for Option Value: In view of Table 2, we only need to

show that Va(a, θ1, θ2) is decreasing in θ1 and increasing in θ2. Let R ≡ (1 − a)pθ1. By the

chain rule and product rule of derivatives, we have for k = 1, 2

∂

∂θk
Va(a; θ1, θ2) =

∂

∂θk

(
∂V

∂R

∂R

∂a

)
=

∂

∂θk

(
∂V

∂R

)
∂R

∂a
+

∂

∂θk

(
∂R

∂a

)
∂V

∂R
.

It is well known from the option pricing literature (see Hull (2017)) that ∂V/∂R = e−rtΦ(x).

So using this and the definition of x in (2) leads to

∂

∂θ1

(
∂V

∂R

)
= e−rtφ(x)

∂x

∂θ1
= e−rtφ(x)

1

θ1σ
√
t
,

∂

∂θ2

(
∂V

∂R

)
= e−rtφ(x)

∂x

∂θ2
= e−rtφ(x)

1

−θ2σ
√
t
.

Meanwhile, ∂R/∂a = −pθ1, so ∂ (∂R/∂a) /∂θ1 = −p and ∂ (∂R/∂a) /∂θ2 = 0. Plugging

these into the above first equation, we have

∂

∂θ1
Va(a; θ1, θ2) = −e−rtφ(x)

1

θ1σ
√
t
pθ1 − pe−rtΦ(x) < 0,

∂

∂θ2
Va(a; θ1, θ2) = e−rtφ(x)

1

θ2σ
√
t
pθ1 + 0 > 0.

Proof of Proposition 1: Under assumptions A1–A4, the first-order conditions (3)-(4)

become (8)-(9) as explained in the text. Thus, by the invertibility assumption A4, (8)-

(9) has a unique solution in (θ1, θ2) given (a, b). Hence, the private information (θ1, θ2) is

identified for each bidder from his bid (a, b) since the RHS of (8)-(9) is identified. It follows

that the 2n-dimensional joint distribution of types F (·, . . . , ·|n) is identified.

Verification of Necessary Identification Condition for Option Value: A necessary

condition for identification is that the system Va(a; θ1, θ2) = Y1 and V (a; θ1, θ2) = Y2 has at

most one solution in (θ1, θ2) given (a, Y1, Y2). Indeed, if this was not the case, then (8)-(9)

would have more than one solution in (θ1, θ2). We now prove that the option value in (1)-(2)

satisfies this condition. Since (2) is a monotonic function of the ratio θ1/θ2, we use a change

of variables to solve (8)-(9) for θ1 and x instead of θ1 and θ2. First, we use (8) to express θ1

in terms of x. Second, we plug this expression for θ1 into (9), yielding an equation with one

unknown x. Third, we show that there cannot be more than one solution x to this equation.

Finally, we give closed-form expressions for θ1 and θ2 as functions of the solution x.

First, we define R ≡ (1−a)pθ1. We have Va(a; θ1, θ2) = (∂V/∂R)(∂R/∂a) = −e−rtpθ1Φ(x)

using ∂V/∂R = e−rtΦ(x). See Hull (2017). Substituting this into the left-hand side of

(8) leads to −e−rtpθ1Φ(x) = Y1. Hence, θ1 = −Y1/[e
−rtpΦ(x)] = C1/Φ(x), where C1 =

−Y1/[e
−rtp] > 0 is a known constant.
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Second, plugging this expression for θ1 in (1) gives

V (a; θ1, θ2) = e−rt(1− a)pθ1

[
Φ(x)− θ2Φ(x− σ

√
t)/((1− a)pθ1)

]
= e−rt(1− a)p (C1/Φ(x))

[
Φ(x)− θ2Φ(x− σ

√
t)/((1− a)pθ1)

]
= e−rt(1− a)pC1

[
1− θ2Φ(x− σ

√
t)/ ((1− a)pθ1Φ(x))

]
= e−rt(1− a)pC1

[
1− e−σ

√
txeσ

2t/2Φ(x− σ
√
t)/Φ(x)

]
,

where the last equality follows from θ2/ [(1− a)pθ1] = exp(−σ
√
tx + σ2t/2) by (2). Using

this expression for V (a; θ1, θ2) in (9) gives

e−rt(1− a)pC1

(
1− e−σ

√
txeσ

2t/2 Φ(x− σ
√
t)

Φ(x)

)
= Y2.

Collecting x on the left-hand side yields

e−σ
√
txΦ(x− σ

√
t)

Φ(x)
= e−σ

2t/2
(

1− Y2

e−rt(1− a)pC1

)
. (A.1)

Third, the right-hand side of (A.1) is known and denoted C2. We show that the left-hand

side is strictly monotonic in x, so that there cannot be more than one value of x satisfying

(A.1). Taking the derivative of the left-hand side with respect to x gives

∂

∂x

(
e−σ
√
txΦ(x−σ

√
t)

Φ(x)

)
= −σ

√
te−σ

√
txΦ(x−σ

√
t)

Φ(x)
+e−σ

√
tx

(
φ(x−σ

√
t)Φ(x)−Φ(x−σ

√
t)φ(x)

Φ(x)2

)

=
(
e−σ
√
tx/Φ(x)

)(
−σ
√
tΦ(x− σ

√
t)+φ(x− σ

√
t)− φ(x)

Φ(x)
Φ(x− σ

√
t)

)
=
(
e−σ
√
txφ(x− σ

√
t)/Φ(x)

)(
−σ
√
t
Φ(x− σ

√
t)

φ(x− σ
√
t)

+1− φ(x)

Φ(x)

Φ(x−σ
√
t)

φ(x−σ
√
t)

)

=
(
e−σ
√
txφ(x− σ

√
t)/Φ(x)

)(
1−Φ(x−σ

√
t)

φ(x−σ
√
t)

(
σ
√
t+

φ(x)

Φ(x)

))
.

But h′(x) > −1, where h(x) ≡ φ(x)
Φ(x) .28 Thus

σ
√
t+

φ(x)

Φ(x)
>
φ(x− σ

√
t)

Φ(x− σ
√
t)
⇒ 1− Φ(x− σ

√
t)

φ(x− σ
√
t)

(
σ
√
t+

φ(x)

Φ(x)

)
< 0,

for any value of σ
√
t. Thus from the above derivative, it follows that ∂

∂x

(
e−σ
√
txΦ(x−σ

√
t)

Φ(x)

)
<

0, showing that the left-hand side of (A.1) is strictly decreasing in x. Thus, there is at most one

solution in x to (A.1), which can be obtained numerically. Finally, as functions of the solution

x, θ1 = Pa(a, b|a, b, n)/(Pb(a, b|a, b, n)e−rtpΦ(x)) and θ2 = (1− a)pθ1 exp(−σ
√
tx+ σ2t/2).

28To prove this, we adapt Sampford (1953)’s proof about the derivative of φ(x)
1−Φ(x) . Specifically,

consider a standard normal distribution which is top-truncated at x. Its variance is 1 − xφ(x)
Φ(x) −(

φ(x)
Φ(x)

)2

= 1− xh(x)− h(x)2 > 0. Because h′(x) = −xh(x)− h(x)2, then h′(x) > −1.
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Table 1: Bid Statistics

mean p10 p25 p50 p75 p90

cash per acre ($) 1,015 224 385 712 1,154 1,903

royalty 0.23 0.18 0.20 0.23 0.25 0.27

number of bids 2.3 2 2 2 2 3

acreage 327 44 72 157 400 750

Notes: Table shows summary statistics of bids in the estima-

tion sample. Dollar amounts are expressed in 2009 dollars

and a royalty rate of 0.23 corresponds to 23%. Observations

are at the bid level in the upper two rows and auction level

in the lower two rows.

Table 2: Effects on Option Value and Probability of Exercise

V (a; θ1, θ2) Pr(exercise)

θ1 + +

θ2 − −

a − −

p + +

σ + ambiguous

t + ambiguous

Notes: Table shows the sign of the partial derivative of option value

V (a; θ1, θ2) and the probability of option exercise with respect to each

variable listed.
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Table 3: Reduced-Form Analysis of Bids

log(cash per acre) royalty

Oil Price 0.002 0.001

(0.004) (0.000)

Interest Rate 3.131 0.305

(2.371) (0.126)

log(acreage) -0.661 -0.004

(0.215) (0.011)

log(acreage)2 0.058 0.000

(0.020) (0.001)

Royalty Recipient not DNR -0.342 -0.013

(0.068) (0.004)

Township Production Index 0.000 0.000

(0.005) (0.000)

Heatmap log Cash Index 0.425

(0.040)

Heatmap Royalty Index 0.178

(0.031)

Constant 8.128 0.204

(0.598) (0.032)

Year fixed effects Y Y

Number of bidder fixed effects Y Y

Observations 1291 1291

R2 0.204 0.137

Adjusted R2 0.178 0.109

Notes: Table shows OLS regression of the log cash bid per

acre and royalty bid, respectively, on covariates that describe

the auctioned lease. Observations are at the bid level. Stan-

dard errors are in parentheses.
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Table 4: Details of Quasi-Linear Scoring Auctions

ρ 1 2 3 4 5 6 7 8 9 10

E[(b− b)/(s− s)] 0.51 0.35 0.41 0.42 0.44 0.46 0.49 0.48 0.45 0.47

mean royalty bid 0.37 0.41 0.31 0.32 0.33 0.31 0.30 0.31 0.32 0.32

median royalty bid 0.20 0.26 0.25 0.27 0.28 0.28 0.28 0.31 0.32 0.32

Notes: We counterfactually simulate second-score auctions with quasi-linear scoring

rules of the form S(a, b) = b− p(ω/aρ), where a and b are the royalty and cash compo-

nents of the bid, respectively, p is the oil price, ω is a revenue-maximizing weight, and ρ

determines the curvature of the scoring function. Table columns from left to right show

auction outcomes associated with ρ = 1, 2, . . . , 10. The first row shows the expected

portion of the score that is due to the cash payment b, where b and s are the minimum

of cash and score values, respectively.

Table 5: Fixed-Royalty versus Scoring Auctions

Fixed-royalty auction Scoring auction, ρ = 1

Mean royalty 30% 37%

Median royalty 30% 20%

Total government revenue $2,889 $2,743

Royalty revenue $1,995 $1,196

Cash revenue $893 $1,547

Firm information rents $944 $1,300

Same allocation as fixed-royalty – 0.97

Pr(option exercise) 0.41 0.45

Social surplus $3,832 $4,042

Notes: Table presents outcomes associated with counterfactual simulations of a

second-price fixed-royalty auction in the first column, with revenue-maximizing

fixed royalty of 30%, and a second-score scoring auction in the second column,

which uses a quasi-linear scoring rule S(a, b) = b− p(ω/aρ) with curvature ρ = 1

and revenue-maximizing weight ω. Dollars are expressed in 2009 dollars and per

acre.
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Figure 1: Scatterplot of Bids
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Notes: Figure displays a scatterplot of the cash-

royalty bids observed in the data sample, of which

the related statistics are provided in Table 1.

Figure 2: State’s Choice Patterns
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Notes: Figure visualizes the state’s choice patterns.

When a bid is chosen over the n− 1 other bids in the

auction, this correponds to n − 1 observed pairwise

choices. The winning and losing bids in each pairwise

choice are plotted with a circle and a triangle, respec-

tively. The x and y coordinates represent the royalty

and cash components of each bid in relation to the

competing bid in the pair.

Figure 3: Estimated Choice Probability
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Notes: Solid lines plot level contours of the estimated

probability that royalty-cash bid (a, b) is chosen over

a competing bid (a′, b′), as a function of a − a′ and

ln b − ln b′, at the median value of the quality index

q(z). The contours range from 0.1, 0.2,..., 0.9. Bids

in the observed pairwise choices used to estimate the

probabilities are plotted in the background, with win-

ning bids in circles and losing bids in triangles.

Figure 4: Marginal Density of Unit Cost
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Notes: Figure plots kernel density of the estimated

cost per unit of production, θ̂2/θ̂1. Solid line shows

estimates from the European option model, and dash-

dot line shows estimates from the American option

model. Dashed vertical line marks $21.7, the sample

average of firms’ per unit revenue after paying royal-

ties.
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Figure 5: Royalty Revenue
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Notes: Solid line displays ex ante expected roy-

alty revenue from counterfactual simulations of fixed-

royalty auctions, as a function of the fixed royalty rate

displayed on the x-axis. For comparison, the dashed

horizontal line marks ex ante expected royalty rev-

enue from observed bids in the Louisiana cash-royalty

auction, and the vertical dotted line marks the aver-

age observed royalty rate resulting from that auction,

23%.

Figure 6: Cash Payment Revenue
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Notes: Solid line displays expected cash revenue from

counterfactual simulations of fixed-royalty auctions,

as a function of the fixed royalty rate displayed on

the x-axis. For comparison, the dashed horizontal

line marks cash revenue from observed bids in the

Louisiana cash-royalty auction, and the vertical dot-

ted line marks the average observed royalty rate re-

sulting from that auction, 23%.

Figure 7: Government Revenue
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Notes: Solid line displays ex ante expected total gov-

ernment revenue, which is the sum of cash and royal-

ties, from counterfactual simulations of fixed-royalty

auctions, as a function of the fixed royalty rate dis-

played on the x-axis. For comparison, the dashed

horizontal line marks ex ante expected total govern-

ment revenue from observed bids in the Louisiana

cash-royalty auction. For reference, vertical dotted

lines mark the standard royalty rate on federal leases,

12.5%, and the prevalent royalty rate on privately held

lands, 25%.

Figure 8: Scoring Auctions
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Notes: The solid line and dashed line plot simulated

outcomes of a second-score scoring auction with quasi-

linear scoring rule S(a, b) = b−p(ω/aρ), as a function

of curvature parameter ρ. Given each ρ, a revenue-

maximizing weight ω is used. The dashed line is to

be read by the left y-axis, and the solid line is to be

read by the right y-axis. For comparison, the dash-dot

horizontal line to be read by the right y-axis marks

simulated revenue from a second-price fixed-royalty

auction with revenue-maximizing fixed royalty (30%).

42


	Introduction
	Oil Lease Auctions and Option Value
	Institutional Background and Empirical Evidence
	Contract as an Option Value

	Model, Identification and Estimation
	A Model of Auctions of Contracts
	Identification of Model Primitives
	An Estimation Method
	Incorporating Auction Covariates

	Estimation Results
	Characterizing Auction Heterogeneity
	Estimation Results

	Counterfactual Analysis
	Cash-Royalty vs Fixed-Royalty Auctions
	Scoring vs Fixed-Royalty Auctions
	Alternative Policies: Lease Duration and Timing

	Extensions
	Robustness Analysis: American Option
	Extension

	Conclusion

