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Abstract
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1 Introduction

Priority scores

Matching problems study the formation of productive partnerships, with numerous applica-
tions to marriage, labor, housing, college admissions, organ donation, and many more. Important
primitives of any matching problem are the preferences, which specify how market participants
value each other or (non-strategic) objects, and priorities, which specify how participants value
the objects.
Preferences and priorities can be expressed either cardinally or ordinally. Subsequently, allocation
mechanisms can be ordinal (demanding that participants submit rank-ordered lists of the available
options), or cardinal (demanding that participants reveal how much they like each available op-
tion). There is evidence that the mechanisms used on real-life markets are increasingly cardinal on
the priority side. Market operators more and more use priority points and priority scores. Exam-
ples include college admissions, where students are assessed based on their scores in standardized
tests, civil servant job markets such as teacher or doctor allocation, where civil servants accumulate
points for experience or performance, or social housing, where households are assigned a score re-
flecting the emergency of the housing need.
This suggests that cardinality helps to finely discriminate between agents on the market.1 We,
micro-theorists must certainly accommodate the shift from ordinality to cardinality. We must model
the effect of working with cardinal priorities, with two goals: to improve our understanding of real-
life markets (this is the descriptive stake) and to engineer matching markets efficiently (this is the
normative stake).

Private information

The issue is that the natural information structure on the priorities, absent any intervention
by the market operator, is private information. An agent observes her own priority score but is
ignorant of other agents’ scores. This is because, in general, these scores are computed based on
criteria of private circumstances. FIGURE 1 below illustrates this point.

FIGURE 1: London social housing - Priority score computation rule

The table shows the scoring rule used in London social housing. Households are awarded pri-
ority points if they are currently homeless, have large families, or have health issues. Household
A knows about her status with respect to every criterion and, when given this table, can compute
her aggregate priority score. But household A could not make the same computation for another
household, say B , simply because she has no idea about the inputs.
The empirical matching literature supports this intuition providing evidence that participants are
poorly informed about their order in priority. Kapor, Neilson and Zimmerman (2020) [13] using
data from New Haven, US, show that beliefs about admissions chances differ from rational ex-
pectations values. They predict choice behaviors and quantify the welfare costs of belief errors.

1Throughout the article, we use the word discrimination in a positive sense. Discriminating means allocating a good
(with a high probability) to the people who need it the most.

1



Fabre et al. (2021) [9] using data from Chile show that on-the-fly information about programs’
cutoff scores has a causal effect on reducing students’ biases, application mistakes, and improving
students’ outcomes.

Theoretical matching papers most often do not investigate the effect of this private informa-
tion.2 Most papers either unrealistically assume perfect information or set strategy-proof mecha-
nisms (hence, no incentive to know about others).
In practice, though, the most widely used mechanisms are typically truncations of standard
strategy-proof mechanisms. Agents are not allowed to rank all available options and submit a
truncated rank-ordered list. The issue is that the truncated versions of the mechanisms are no
longer strategy-proof. The manipulation consists of listing safe objects.

Leading example: Social Housing in Europe

A prominent example is the assignment of social housing units in Paris. Since 2016, the
municipality has allocated around 4,500 housing units a year through an online scheme called
“LOC’annonces”.3 The allocation occurs in three steps. In the first step, households register as
social housing seekers. The market operator performs eligibility checks and places households in
rent and bedroom categories depending on their earnings and sizes. Most importantly, households
are assigned priority scores based on their circumstances. The computation mode awards points
for homelessness or unsuitable current housing (overcrowding), ill-health status, and more crite-
ria. In the second step, households apply for vacant housing units. More specifically, vacancies
are advertised on a dedicated website4 from each Tuesday morning until the following Wednesday
midnight. Households apply to one housing unit per round or choose not to apply. Very impor-
tantly, no precise feedback information is provided on the identities of other applicants to the same
housing units. Following the application closing, applicants who have applied and who are on a
shortlist of the highest priorities can view the accommodation and decide to maintain or withdraw
their bids. In the third and final step, each vacant property goes to the applicant with the highest
priority score among those who have applied for it. The whole allocation process, from the applica-
tion closing to the final allocation, can take a maximum of three months.5 During the three-month
period, households may miss attractive opportunities from the private sector.
In total, this example motivates the three frictions from the model: the private information on
priority scores, the truncation on the allocation mechanism and the application cost (modelling
the opportunity cost of waiting).

The London social housing allocation scheme (“Choice Based Lettings Scheme”) much resem-
bles the Paris scheme, except for the information. On the dedicated website,6 the application pe-
riod runs from each Thursday morning until the following Monday midnight. During this period,
as a household applies, she observes her position in a priority ranking of all current applications
on her targeted housing unit.
Through a process of trials and withdrawals, it is then possible to recover common knowledge on
(the order of) priority scores.

Research question

In this paper, we model private information on priorities, jointly with the other realistic /
standard market frictions (truncation, participation cost). We study application behaviors, the

2With some exceptions, which we discuss in section §2.
3To be translated as “rental advertisements”.
4https://teleservices.paris.fr/locannonces.
5The example of social housing is in fact dynamic, with successive rounds on application. An agent who does not

apply or fails in a given round is offered the opportunity to apply again in the next round. Appealing to a static model,
we certainly miss this aspect. We address this issue in section §6.1 by introducing in the static model an endogenous cost
of participation which captures one of the main effects of the dynamic. The cost decreases with the priority, reflecting
that high-priority agents keep their high score in successive rounds.

6www.homeconnections.org.uk.
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allocation, and the welfare.
We want to be able to predict the outcome of social housing in Paris, in comparison with London.
More generally speaking, we try to build a model capturing the dilemma of “Whether and Where
to Apply” and giving insights about any market where there is uncertainty on priorities.

Overview of model
To address this agenda, we follow a standard methodology.

We define a stylized frictional matching market: two-sided, one-to-one, agent-object, with
non-transferable utilities. Preferences and priorities are homogeneous, meaning that each object
is characterized by a unique objective value, and conversely, each agent is endowed with a single
(privately known) priority score. The allocation occurs through a truncated Deferred Acceptance
(equivalently, truncated Serial Dictatorship) mechanism, with truncation one. Agents indepen-
dently and simultaneously decide to apply to one or no object, where an application is costly. Then
each object goes to the highest priority agent among the pool of applicants.

We model strategic interactions on the market as a Bayesian Game of incomplete information
termed “Application Game”. On the market defined, any participant suffers uncertainty on who
else applies and wonders “Whether and Where to Apply?”.7 Her answer to that question should
depend on the other participants’ strategies since any higher priority agent applying to the same
object eliminates her chances of getting the object. Thus, in building one’s application strategy, the
agent must consider the trade-off between being ambitious, accepting the prospect of competition
(targeting high-value objects), or being practical, seeking coordination (targeting under-demanded
objects).

Preview of results
The analysis elicits the equilibrium application strategies as defined by the Bayes-Nash equilib-

ria of the Application Game. It finds that in any equilibrium, high-score agents are ambitious, and
low-score agents are practical. We fully characterize the symmetric equilibrium, and in particular,
we show that it is necessarily interior. We also uncover two salient and somehow puzzling features
of the symmetric equilibrium, regarding its structure and its efficiency. One, agents with scores on
a continuous support sort into discrete classes (defined as groups of close priorities) where they
adopt exactly the same strategy.

We compute the welfare associated with equilibrium outcomes using the two criteria of ex
ante and interim expected payoffs, and compare it with the level of welfare achieved without
the frictions. We derive implications for market design. Although the frictional market design is
sub-optimal for the criterion of ex ante welfare, it maximizes participation, and the inefficiencies
associated with the described market design are interim asymmetric. In many instances of the
Application Game, we even find that low-score agents are better off in the sub-optimal (private
information) design than in the optimal (public information) design. The conclusion is that the
frictional design is less efficient but more egalitarian than the friction-less design. Private informa-
tion mitigates the discriminatory power of the priority score system. This calls for a joint design of
the priority score computation rule and the information structure.

Outline of paper
The rest of the paper8 is structured as follows. Section §2 reviews the related literature. Section

§3 models the market and the associated game. Section §4 derives the Bayes-Nash equilibria. Sec-
tion §5 investigates the welfare. Section §6 proposes and processes three natural model extensions.
Section §7 concludes. All proofs are available in appendix §A.

7Because the model is static, agents do not wonder when to apply.
8Throughout this work, we regularly make use of the social housing vocabulary. This semantic choice is for illustra-

tion purposes, yet it should not conceal the wider ambition of this work, shedding light on any market featuring cardinal
priorities.
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2 Literature review

Markets with private information or uncertainty on priorities or competition

We are not the first ones to be interested in matching with private information or uncertainty.
Yet, in the majority of existing matching papers, the uncertainty applies to one’s own ex-post payoff
in the match (preferences). In our paper, the uncertainty applies to the probability of acceptance
(priorities). It comes from the fact that participants have little information (number and prior
distribution of scores) about the competitors they face.

Thus, the present is closer in the spirit to the literature modeling uncertainty about the compe-
tition on the market.
For auction problems, Gleyze and Pernoud [10] focus on the uncertainty about other bidders’s pref-
erences and Lauermann and Speit (2019) [15] model uncertainty about the number of bidders.
For matching problems, Roth (1989) [20] models agent-agent market with private information
on preferences on both sides: an agent only observes her own utility function and holds a prior
distribution over the possible vectors of other agents’ utilities. As a motivation, Roth (1989) de-
scribes the market for hospital interns, where students do not know how hospitals value them. He
studies the revelation game induced by direct mechanisms. He shows that results on dominant
and dominated strategies are similar to the standard results from the complete information bench-
mark. But results on Bayes-Nash equilibria are negative: for any mechanism, there exists some
prior distributions for which at least some Bayes-Nash equilibria of the resulting game produce
unstable matchings.
Kloosterman and Troyan (2020) [14] show that when preferences are uncertain but correlated,
DA is no longer strategy-proof or stable and less informed students are worse off due to a curse
of acceptance (being accepted at a school signals that the school’s quality is low). They show that
priority design (so that any student is guaranteed a safe school) mitigates these issues.
Because in Roth (1989) and Kloosterman and Troyan (2020), the uncertainty is on other agents’
preferences, an agent’s payoff depends on the types of other players only indirectly through the
actions of the players. In the agent-object market with private information on priorities from the
present paper, the payoff more generally depends both on the actions and on the types of the other
players. There are no reporting issues: by definition, the market designer designs the priority
system and perfectly observes the priority scores.

Matching with uncertain priorities

One notable exception is the literature on “optimal portfolio choice”, mostly in school choice.

Chade, Lewis and Smith (2014) [5] consider a decentralized Bayesian game of admissions
gathering two colleges and many heterogeneous students.9 Colleges have the same value to all
students, and each student is characterized by a unique score, so that preferences and priorities
are homogeneous. There is a cost of application for students, and in addition, colleges’ evaluations
of students’ applications are uncertain.10 A student designs her application strategy11 (no appli-
cation, application to one college, to both colleges) maximizing her expected payoff, which is the
college’s value she is admitted to minus application costs. A college designs the admission stan-
dard to maximize the total score of its student body under capacity constraints. Their model differs
from ours in two ways. They model strategic interactions within the college side and between stu-
dents and colleges, whereas we are interested in strategic interactions within the agent side. The
uncertainty also differs. In their model, there is common knowledge of students’ priority types
but exogenous noise on the allocation. In our model, uncertainty on priority order endogenously

9This model is a special case of the problem of simultaneous search by Chade and Smith (2006) [6].
10The key assumption about this uncertainty is a monotone likelihood property for the distribution of signals on

students’ scores to colleges. Therefore, a higher score student always sends a higher proportion of good signals (vs. bad
signals) on her score than a lower score student, so that colleges use cutoff strategies at equilibrium.

11The paper-specific terminology says that students make “portfolio choices”.
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arises from private information on priority scores. Their analysis finds that at Bayes-Nash equilib-
rium, student-college sorting may fail in two ways: first, weaker students sometimes apply more
aggressively; second, weaker colleges might impose higher standards. Our analysis (see section
§4.4) finds the opposite and more standard pattern for our agent-object market: at the Bayes-Nash
equilibria of the Application Game, higher-value objects are played more often, at higher scores.

Ali and Shorrer (2021) [1] define the general decision problem of students who are uncertain
about their (correlated) priorities (whereas our paper studies a game between participants). Their
focus is on the correlation between admission chances and the subsequent signaling effects. Be-
cause priorities so admissions decisions are correlated, the optimal portfolio involves applying to a
combination of “reach”, “match”, and “safety” schools. In our model, as in many applications be-
yond school choice, priorities are homogeneous (perfectly correlated). We could generate results
similar to Ali and Shorrer (2021) only after enlarging the truncation on the mechanism.

Avery and Levin (2010) [2] model students who are differentiated in their academic ability and
in their fit for different schools. Each student knows her ability only imperfectly, thus is uncertain
about the priority order. The focus of the paper is on early admissions. They show that early
admissions have a sorting effect (early applications convey a signal of good fit from students to
schools) and a competitive effect (lower-ranked colleges attract cautious high-ranked students).

Frictional matching

This paper more generally relates to the literature on frictional matching, as it models a trun-
cated sub-optimal mechanism and costly application. The ”Whether and Where to Apply” dilemma
stems from the fact that truncating the Deferred Acceptance mechanism sacrifices the strategy-
proofness (Haeringer and Klijn (2009) [11]).12

The novelty in our approach comes from the fact that frictions add up and interplay to create
novel strategic interactions arising within the agent side of the market. It combines some aspects
of centralized matching (coordination in the timing of application) with some decentralized as-
pects (private information). The policy recommendation stemming from the welfare analysis is
straightforward and should be applied broadly.

Multi-item auction

Because it features homogeneous preferences and priorities, the coming model also bears some
similarities with a multi-item auction. In Demange, Gale and Sotomayor (1986) [8], a collection
of items is to be distributed among several bidders. All bidders rank items in the same way, and
each bidder is to receive at most one item. The truncated Deferred Acceptance mechanism in our
matching model and the generalized first-price or second-price mechanisms in the auction model
have in common that they fail to be strategy-proof and that they result in the same allocation
(when bids in the auction are consistent with priority scores in matching).

12The profitable preference manipulation is to include “safe schools” in the rank-ordered list.
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3 Model

3.1 Frictional market and Application Game

We consider a market with n agents and m objects (m ≤ n). Agents (resp. objects) are num-
bered by i ∈ {1, . . . ,n} ( j ∈ {1, . . . ,m}).13 Agents have common cardinal preferences over objects: all
agents assign the same objective value to each object, denoted a j for object j ∈ {1, . . . ,m}. The
convention is set that object 1 (resp. m) is the highest (lowest) value object: am < . . . < a1. Ob-
jects’ preferences over agents (equivalently priorities) are also cardinally common: each agent
i is characterized by a unique priority score, denoted ωi . Priority scores are independently
and identically distributed according to some (cumulative) distribution F on the unit interval:
ωi ∼ F ([0,1]), i ∈ {1, . . . ,n}.
Information about priority is private: an agent i only knows her own priority score ωi , but is igno-
rant of the priority scores ω j of other agents j 6= i .
The allocation occurs through a truncated Deferred Acceptance mechanism, with truncation one.
In this mechanism, agents are asked to independently and simultaneously choose whether to apply
to an object and, if yes, to which object. Because priorities are common, the mechanism is equiva-
lent to a serial dictatorship where the serial order is given by the score.
Application is costly, it costs c < am . If a given object receives no application, then it is wasted. If
an object receives exactly one application, it goes to the single applicant. If an object receives at
least two applications (crowding), the mechanism selects the agent with the highest priority score
among the pool of applicants and endows this agent with the object.14 In this latter crowding case,
we say that the agent who gets the object succeeds, while the other applicants fail.
A successful agent receives the value of the object she is assigned minus the application cost. An
agent who has failed just pays the application cost, hence a negative utility. An agent who has
chosen not to apply secures a reservation utility of zero.

This model poses a symmetric Bayesian Game of incomplete information that we call “Applica-
tion Game” (AG). This game comprises n players, with action space Ai = {A1, . . . , Am , N } - where A j

denotes the action of applying to object j and N 15 stands for the action of not applying -, privately
known independent types, prior F over [0,1], and payoffs:

ui (Xi , X−i ) =


a j − c if Xi = A j and {l ∈ {1, . . . ,n}\{i }|Xl = A j , ωl >ωi } =;, j ∈ {1, . . . ,m}
−c if Xi = A j and {l ∈ {1, . . . ,n}\{i }|Xl = A j , ωl >ωi } 6= ;, j ∈ {1, . . . ,m}
0 if Xi = N

where ui (Xi , X−i ) denotes the payoff of player i when she plays action Xi and the rest of agents
play according to action profile X−i .

A pure strategy s : [0,1] → {A1, . . . , Am , N } in the AG is a mapping from the interval of scores
to the set of available actions (distributions over actions). A mixed or behavioral strategy
p : [0,1] →4{A1, . . . , Am , N } is a mapping from the support of scores into the simplex of the ac-
tion set: p : [0,1] →4{A1, . . . , Am , N }). The probability p j

i (ω), j ∈ {1, . . . ,m + 1} stands for the odds
that agent i chooses action A j when her score is ω. A strategy is interior whenever the prob-
ability distribution is non-degenerate on more than a finite number of points, that is when
∃ ω′ <ω′′ ∈ [0,1], j ∈ {1, . . . ,m +1} s.t. ∀ ω ∈ [ω′,ω] : 0 < p j

i (ω) < 1.
A strategy can easily be represented graphically, displaying areas of scores where the agent chooses
each action; in one dimension ([0,1] line) for pure strategies, two dimensions ([0,1] square) for be-
havioral strategies.

13Notation: In all the following, numerals for agents (resp. objects) are written in indices (exponents).
14The mechanism does not specify how to break ties in case crowding happens between several agents with the same

priority scores. But since F is a continuous probability distribution, ties occur with probability 0, hence no consequence
on payoffs and equilibrium behaviors.

15Occasionally, to ease the notations in the rest of the analysis, we denote the action N as an additional application
action, Am+1 := N , and define am+1 := c.
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3.2 Benchmark Market with perfect information

Throughout the analysis, we continuously refer to an alternative market design with public
information. More precisely, priority scores are common knowledge.16 We call this design the
“friction-less” or “benchmark” market.17 It defines a game with perfect information called “Sorting
Game”.

The following table summarizes the difference between the frictional and benchmark markets.

Design Game Information on priorities
Frictional market Application Game Private (perfect observation of own score)

Benchmark market Sorting Game Public (common knowledge of scores)

FIGURE 2: Summary of two market designs

The comparison between the two designs, both in terms of predicted behaviors and subsequent
welfare, will shed light on the most interesting features of the frictional market.
By definition, the benchmark frictionless market is efficient, whereas the frictional market is inef-
ficient. In section §5, we precisely characterize the inefficiencies associated with the frictions. The
general idea is that providing public information on priorities, removing the truncation, or making
the mechanism sequential would enable to capture the maximum welfare.

3.3 Model justifications

Modelling a sub-optimal mechanism follows from the observation that market operators most
often stick to the frictional design. Paris social housing is just one example. About the truncation,
Pathak (2016) [19] observes that in school choice, the truncation is more often the rule than the
exception. We propose two families of explanations: constraints and hidden objectives.
On the constraint side, Pathak (2016) suspects that truncation is used because it saves on opera-
tional costs that are usually unmodelled in theoretical matching papers. In school choice, reviewing
students records takes time. In social housing, organizing viewings of the accommodations also
takes a lot of time. Universities and social landlords could try to limit the number of applications
they receive to save on this time. With respect to private information, Roth and Sotomayor (1990)
[21] note that many two-sided matching markets - in particular, entry-level labor markets - use
decentralized application procedures, where agents from the same side of the market are isolated
from each other, and information on preferences or priorities is subsequently private. It could also
be that public information cannot be achieved due to privacy concerns. Finally, sequentiality is not
a solution if there is a high opportunity cost of time (in social housing, this corresponds to the cost
of vacancy).
With respect to social objectives, we argue that market operators may have different or additional
objectives than just maximizing the ex ante aggregate welfare. With respect to efficiency still, they
could be interested in using more sophisticated criteria such as the Pareto order (considering that
a market design is superior if it leads to a higher payoff for all levels of scores). In addition to
efficiency concerns, they could be interested in participation. Indeed, in many social landlords
reports, we observe that statistics about high or increasing number of applications received are
proudly announced.
In the baseline model, we impose an extreme truncation on the mechanism: agents can apply to
at most on object. This is mostly to keep the model simple and tractable. In section §6.2, we show
that our results are robust to a larger truncation.

16Common knowledge of the order of score is the most parsimonious information structure leading to the same
equilibria.

17An alternative but equivalent design would consist in making the mechanism sequential rather than static. The
market operator would organize the timing of applications by decreasing order of scores so that lower-ranked agents
have the opportunity to observe the highest-priority agent assignments before submitting their own applications.
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The homogeneous preferences are an extreme version of correlated preferences,18 and mostly
a first approach. In section §6.3, we show that our results are robust to imperfect correlation in
the preferences.
Homogeneous priorities (as materialized with a unique priority score for each agent) fit the many
contexts where the needs of the object side of the market are similar and are very standard in
many public economic applications. For college admissions, the SAT score, as a weighted average
of student performance in a number of maths, reading and writing exercises, serves as a measure
of a high school student’s readiness for any college. In social housing, the priority score, reflecting
the emergency of the household’s housing need, controls the priority to any vacant housing unit.
In the case of teacher allocation to schools, the same priority score applies to any school where a
teacher can apply.

Finally, the cost of application models the opportunity cost of time and effort dedicated to the
application (reviewing available objects, sending application), sometimes adding up to an objective
application or participation fee.

18Homogeneous or correlated preferences are problematic empirically, hence interesting theoretically, because they
introduce competition within the sides of the matching market.

8



4 Equilibria

To study behaviors in the AG, we use Bayes-Nash equilibrium (BNE) as equilibrium concept.

4.1 Preliminaries

We make a few preliminary qualitative remarks on the structure of the problem and introduce
the formalism.

4.1.1 Existence

We first state existence of an equilibrium in the AG.

Lemma 1. [Existence]
There exists a Bayes-Nash equilibrium of the Application Game.

The proof exploits the Bayes-Nash existence theorem for games with finite action space and
independent types (potentially infinite type space) by Milgrom and Weber (1985) [18].

4.1.2 Interim expected payoffs

The interim expected payoff of player i under strategy profile p, when her priority score is ω is
denoted E[ui (p)|ω]. Due to the dictatorship, in the AG, interim payoffs depend on the strategy of
other agents through the behaviors of higher score agents, yet are independent of the behaviors of
lower score agents. Trivially, the interim payoffs also depend only on the agent’s strategy through
the agent’s behavior at the set score and not at higher or lower scores. Thus in the formalism for
interim payoffs, it is enough to specify for p just pi (ω) for the agent, and p−i ([ω,1]) for the other
agents: E[ui (p)|ω] = E[ui (pi (ω), p−i ([ω,1]))|ω].
At BNE p?, we have:

∀ i ∈ {1, . . . ,n}, ∀ ω ∈ [0,1] : p?
i (ω) ∈ argmax

pi (ω)
E[ui (pi (ω), p−i ([ω,1]))|ω]

In the case where the agent applies with full probability to one object at score ω, the interim
payoff is a weighted sum of two ex-post payoffs: the (positive) object value and the (negative)
application cost, where the value is weighted by the conditional probability of success, denoted
P(S|p,ω):

E[ui (A j
i , p−i ([ω,1]))|ω] =P(S|p,ω)a j − c

The following lemma characterizes this interim expected payoff:

Lemma 2. [Interim payoff after pure action - Characterization]
(i) Continuity: Interim payoff conditional on any action is continuous in the score.

(ii) Monotonicity:
• Interim payoff conditional on not applying is constant equal to 0.
• Interim payoff conditional on any application action is increasing (constant) on any inter-

val of scores where at least one other agent (no other agent) applies to the same object with
a positive probability.

(iii) Value at highest bound: Interim payoff at score 1 conditional on applying to any object is equal
to the value of the object minus the cost.

Statement (i ) states that there is no jump in the interim payoff: one’s chance to get an object,
hence one’s payoff cannot dramatically change from one score to a neighbor score. Statement (i i )
says that one’s payoff increases when one’s score rises if and only if the agent was facing crowding
on the targeted object by agents with scores slightly above. Statement (i i i ) formalizes that the
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highest score agent is successful for sure.
The three statements are direct consequences of the serial dictatorship mechanism and the conti-
nuity of the priority score support.

4.1.3 Gross incentive analysis

It is well known that once truncated, the Deferred Acceptance mechanism is no longer strategy-
proof (Haeringer and Klijn (2009) [11]). The typical preference manipulation consists in applying
to “safe” objects (objects which accept the agent with high probabilities). It materializes in different
ways at different levels of scores.

A player with a score close to 1 should feel confident that when applying to any object and
in case of crowding, she will succeed. She should target high-value objects, fully accepting the
prospect of competition.
Conversely, a player with a score approaching 0 should expect that when applying to any object
and in case of crowding, she will fail. This low-score agent seeks to avoid competition and to
coordinate with peers so as to target different objects: she should target under-demanded objects.
Even more than that, she may be tempted not to apply to guarantee a utility of zero. Any agent
with an intermediate score faces a trade-off between applying to high-value objects and risking
failure or to under-demanded objects (or even giving up) and settling for a low (zero) satisfaction.
We illustrate this discussion on the graph below.

ω : 0 1

CompetitionCoordination Trade off

FIGURE 3: Coordination and competition behaviors in the AG as a function of priority scores

4.2 Toy examples

As a prelude for the general results, we display the equilibria in an example where dimensions
are small (n = 3 > m = 2) and the distribution is uniform (F ∼ U ([0,1])). We provide a graphical
representation, a description, and the intuition.

4.2.1 Pure (asymmetric) equilibrium

On the graph below,19 each line going from 0 to 1 stands for the score support [0,1], one line
for each strategy of the three players, and the letters above stand for the action played at the
corresponding scores.
The bracket “robust profile” specifies the part of the profile that is realized at the pure strategy
equilibrium of any AG.

p1? :

p2? :

p3? : A2

A2

A1

A1

A1

N

A2/N

s1 =
√

a2

a1s2 =−1+ s1 + c
a2

Robust profile

FIGURE 4: Pure (asymmetric) BNE - n = 3, m = 2, F ∼U

19We deal with the asymmetry by numbering players and assigning each of them to a specific role. Yet any permuta-
tion of strategies between players is again an equilibrium.
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The graph shows three intervals, where the intervals’ bounds s2, s1 are indifference points.

On an interval of high scores [s1,1], all agents apply to object 1. This is because an agent with
the highest possible score 1 always gets the object she has applied to. So she applies to the highest
value object and secures the highest possible payoff in the game a1 − c.

At score s1, confidence in success in case of crowding when applying to object 1 becomes quite
low. By contrast, the probability of success conditional on applying to object 2 is constant equal
to 1. Algebraically, the interim payoff of applying to object 1 hits the value of object 2 minus cost
a2 − c. At s1, agents become indifferent between applying to objects 1 or 2.
On an interval of intermediate scores [s2, s1], two agents (agents 2 and 3) apply to object 2. Because
they compete, their interim payoff steadily decreases from s1 leftward. The other agent (agent 1)
keeps on applying to object 1. From her point of view, there is no competition anymore on object
1, her interim payoff is constant on the whole interval [s2, s1].
The fact that agents share roles (with a majority of applicants to object 2, a minority of applicants
to object 1) breaks the possibility of a symmetric equilibrium in pure strategies. To get an intuition
on the necessity of asymmetry, we can consider (by contradiction) a symmetric strategy profile
where all players would shift to apply to object 2 below s1. Then, the interim payoff conditional
on playing object 1 would be constant (no competition) as the score decreases below s1, whereas
the interim payoff conditional on playing object 2 would increase (2 competitors). Consequently,
the former would be higher than the latter at any score below s1, and any player would face a
profitable deviation from object 1 to object 2.
At score s2, the interim payoff of agents 2 and 3 hit the zero bound. It becomes profitable for one
of them (say agent 2) to deviate to N , to secure a payoff of zero. Conditional on that, agent 3 is
indifferent between maintaining action A2 with no competition or playing action N (both deliver
the same zero payoff). Agent 1 keeps on playing object 1 on the whole interval [s2, s1]. She still
faces no competition on object 1, hence a constant interim payoff.

The bracket “robust profile” shows that only the right side of the graph is realized at the pure
strategy equilibrium of any AG. For some sets of parameters, we may observe only the top part of
the profile, and not the bottom part. Agents with score 0 may all apply (potentially only to the two
best objects).

4.2.2 Symmetric (interior) equilibrium

On the following graph, the horizontal line in the square still represents the score support [0,1].
The vertical line represent the probabilities of each action in the behavioral strategy.
For example, p2

J1,2K denotes the probability with which an intermediate score agent applies to object
2.

A2

A1

A1N

0 1

1

t 1 =
√

a2

a1t 2 =−1+
√

c
a1 +

√
c

a2

p2
J1,2K = 1

1+t 1

Robust profile

FIGURE 5: Symmetric (interior) BNE - n = 3, m = 2, F ∼U

11



As in the pure strategy equilibrium, all agents apply to object 1 at scores belonging to an interval
[t 1,1].
The equilibrium strategy becomes truly interior on an interval [t 2, t 1], where an agent applies with
positive probabilities to objects 1 or 2. What is striking here is that those probabilities are constant.
This is what we call the “block structure of the equilibrium”. In section §4.3.2, we discuss this
central result.
Notably, intermediate score agents apply more often to object 2 than to object 1 (p2

J1,2K > 1
2 ).

At some low score t 2, due to competition by higher-ranked agents, the interim payoff of playing
A1 and A2 hits the zero bound. Agents choose not to apply at any score below. Symmetry does not
allow one player to keep on applying, unlike what happens in the pure case.

The bracket “robust profile” shows that for some parameters of the AG, all agents apply with
probability one, (potentially only randomizing on the two best objects).

4.2.3 Summary results from toy example

In both the pure and interior equilibria, confidence in success makes high-priority agents am-
bitious. At intermediate scores, it becomes rewarding to be less ambitious (say “practical”) and to
try to coordinate to avoid competition.
In the pure equilibrium, this happens through a sharing of roles between applicants to different
objects; in the interior equilibrium, by positive probabilities to apply to both objects. Many inter-
mediate score agents settle for the secure option. A remaining smaller group of intermediate score
agents take advantage of alleviated competition to maintain high ambitions. At the lowest possible
scores, agents may need to shift to the no application action so as to secure a positive payoff.

Although the structure of the equilibrium is very robust, whether the possibility to abstain or
to apply to low value objects is used at equilibrium depends finely on the parameters of the AG.

4.3 General results

The analysis from the toy example generalizes to any number of agents n, objects m, and any
priority score distribution F .

4.3.0 Nash equilibrium of the Sorting Game

Proposition 0. [(Unique) NE]
In the Sorting Game, there is a unique Nash equilibrium σ?, where:

(i) The agent ranked i th, 2 ≤ i ≤ m in priority applies to and is allocated object ranked i th in value.

(ii) Agents ranked i th, m +1 ≤ i ≤ n in priority do not participate.

The proof is done by induction, following the priority order for agents, which is also the serial
order used in the dictatorship mechanism.

On the benchmark market, agents are able to perfectly tailor their ambitions to their ranks
in the priority order and endogenously sort. The highest priority agent (second-highest priority
agent) applies to the highest value object (second-highest value object), and so on. If there are
strictly more agents than objects, the lowest score agents do not apply to avoid certain failure. In
total, each available object receives exactly one application, which is accepted. No object is wasted
and no agent fails.

4.3.1 Pure (asymmetric) Bayes-Nash equilibrium of the Application Game

Proposition 1. [Asymmetry of pure BNE]
A pure strategy Bayes-Nash equilibrium of the Application Game is necessarily asymmetric.

12



The proof is done by contradiction, just as in the toy example.
The short intuition is that competition by high-score agents on the highest-value objects

smooths interim payoffs conditional on different application actions. Consequently, at any in-
termediate or low score, several objects of different values are equally attractive. To guarantee the
absence of profitable deviation, they all need to be targeted by at least one agent with positive
probability. A pure symmetric profile would not permit that.

In the rest of the paper, we discard the BNE in pure strategies, for two reasons. First, we remain
skeptical about the capacity of (ex ante symmetric) agents to coordinate to share the different roles
in an asymmetric profile, absent any communication. Second, the pure strategy BNE structure is
little robust. In the general model with any number of agents, objects, and any distribution, it
depends very finely on the set of parameters of the game. A general characterization would be
very tedious to write. We illustrate this lack of robustness in appendix §B.

4.3.2 Symmetric (interior) Bayes-Nash equilibrium of the Application Game

The following theorem states existence and uniqueness of a symmetric BNE and describes a
very specific equilibrium structure.

Theorem 1. [Symmetric (interior) BNE]
A symmetric (interior) Bayes-Nash equilibrium p? of the Application Game:
(1) Exists and is unique.
(2) Exhibits a “block structure”, meaning that there is a finite number of intervals of scores, called

“classes” where the interim strategy profile at any score is the same:
(i) There are between 2 and m +1 classes: k0(p?) ∈ {2, . . . ,m +1}.

More precisely, there are exactly:

– k, k ∈ {2, . . . ,m} classes iff: 1+
k∑

l=1

( ak+1

al

) 1
n−1 ≤ k < 2+

k−1∑
l=1

( ak

al

) 1
n−1

– m +1 classes iff: m < 1+
m∑

l=1

( c

al

) 1
n−1

(ii) Conditional on existence, classes write [t k , t k−1], with:

∀ k ∈ {1, . . . ,k0(p?)−1} : t k = F−1
(
1−k +

k∑
l=1

( ak+1

al

) 1
n−1

)
t k0(p?) = 0

(iii) Conditional on existence:
– In class k ∈ {1, . . . ,m}, agents apply to object j ∈ {1, . . . ,k}, with probability:

p j
J1,kK :=

( k∑
l=1

( a j

al

) 1
n−1

)−1

– In class m +1, agents do not apply.

The next figure illustrates the symmetric equilibrium.
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p3
J1,3K

FIGURE 6: Symmetric (interior) BNE of the AG – General form

From now on, the bounds of the classes t k are “thresholds”, and the constant probabilities p j
J1,kK

are “levels”.20

The proof of theorem 1. is done in three steps.
In the first step, we prove that we can divide the score support [0,1] in a finite number of intervals
where agents with scores in one interval apply with positive probabilities to only object 1, then both
object 1 and 2 until an interval where they potentially apply to all objects and a bottom interval
with no application. This step relies heavily on lemma 2., jointly with the intermediate value
theorem applied recursively m times. The proof that t 1 necessarily exists is made by contradiction,
exactly as in the sketched proof of proposition 1..
The next step is to characterize the probability functions. The proof that they are piece-wise
constant is done by induction. At inductive step k ∈ {2, . . . ,m −1}, the strong indifference principle
applied at a score ω? ∈ (t k , t k−1) delivers a system of k−1 differential equations with k−1 unknowns
(p j (ω?), j ∈ {2, . . . ,k}). Substituting within the equations, we find a relation between the primitives
of f p j and f , hence constant probabilities ∀ ω ∈ [t k , t k−1], p j (ω) := p j

J1,kK. Meanwhile, we use the

differential equations again to get a recursive relation between all p j
J1,kK, j ∈ {1, . . . ,k}, and use the

fact that they sum up to one to get the explicit formula.
In the third and final step, we use the thresholds’ definitions (t k , k ∈ {1, . . . ,m} is the highest score
where there is indifference between all actions A1, . . . , Ak+1) to derive their expressions.

The symmetric equilibrium in small (§4.2) and general dimensions displays the same pattern,
and the overall interpretation (intermediary between cooperation game at low scores and con-
flict game at high scores) is similar. However, the general version sheds light on two interesting
equilibrium features deserving a dedicated discussion, in the coming paragraphs.

4.3.3 Block structure and sorting

This block structure of the symmetric equilibrium may appear surprising at first glance.
From a theoretical perspective, it says that within a very large strategy space made of potentially
uneven probability functions, agents effectively use a small number of application mixtures. Start-
ing from a continuous type support, we end up with a discrete number of equilibrium behaviors.

20Appendix §B.2 provides comparative statics showing how the thresholds and levels vary with the parameters. In
particular, it shows that when the distribution of scores change, the levels remain unchanged, only the width of the
classes adapt, so that the expected mass of agent belonging to each class remains constant.
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From an applied perspective, it means that agents self-sort according to their priority scores into
a finite and quite small number of classes. Two households with close priority scores (in the same
class) use exactly the same (potentially highly sophisticated) application mixture.
We could have rather expected that higher priority agents would be strictly more ambitious than
lower priority agents.

The algebraic necessity of the block structure is clear enough. It comes from the following
observation (made on class [t 2, t 1], to fix ideas). The indifference principle, when applied at a
score slightly below threshold t 1 (say t 1−ε) when indifference at t 1 is already established, delivers
exactly the same constraint on the probability function as when applied slightly leftward at a score
t 1 − 2ε, when indifference at t 1 − ε is already established. This constraint writes as the ratio of
probabilities of success conditional on applying to different objects is equal to a constant. In both
cases, it is thus expected to deliver the same level p2

J1,2K.

A more direct intuition combines the notions of ambition and risk. The class defines the strat-
egy, hence a constant level of ambition in each class. By contrast, the risk (as measured by the
probability of failure) varies within a given class: it is high (low) just above (below) the thresh-
olds. Therefore, for agents at the bottom of a class, the equilibrium strategy features a given level
of ambition and is risky; hence a low payoff. For agents at the top of the same class, the equilib-
rium strategy features the same level of ambition but a low risk; hence a high payoff. The risk and
payoff variations are smooth in between. We illustrate this line of intuition below with a figure
eliciting the variations of risk and ambition within and between classes.

t 1t 2 1

low low high high

high low high low

Ambition

Risk

Payoff low high

FIGURE 7: ambition, risk and interim payoffs at symmetric BNE of the AG

In total, the block structure is reminiscent of the “class segregation result” in the dynamic search
problems. The dynamic search literature (McNamara and Collins (1990) [16], Burdett and Coles
(1997) [4], Bloch and Ryder (2000) [3], Jacquet and Tan (2007) [12]) studies two-sided agent-
agent markets where each agent is characterized by a value distributed on a continuous support.
At each time period, agents are tentatively matched, they observe each other’s values and decide
to accept or reject the proposed match. At equilibrium, agents sort into a finite number of classes
(value intervals) where all agents use exactly the same acceptance cutoff and match within classes.
In their case, the equilibrium with class segregation is in pure strategies. In our case, the block
structure is even more surprising as agents use sophisticated behavioral strategies.

A related interesting question is whether, at equilibrium, agents are able to self-sort, conforming
their ambitions to their scores. It matters in relation to the frictionless benchmark, where the
equilibrium outcome is the perfectly positive assortative matching. In our environment with private
information, truncation, and application cost, we would like to know whether some assortativity
remains. The following corollary answers in a positive way. There is a kind of sorting, although,
by the block structure, it proceeds with discrete jumps.

Corollary 1. [Sorting at symmetric BNE]
At the unique symmetric (interior) Bayes-Nash equilibrium of the Application Game:

(i) For a given object j ∈ {1, . . . ,m} and two scores 0 ≤ ω < ω′ ≤ 1 where the object receives applica-
tions, it receives more applications at the higher score ω′.

(ii) At any two scores 0 ≤ω<ω′ ≤ 1, the probability level vector at the higher score p(ω′) first-order
stochastically dominates the same vector at the lower score p(ω).
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(iii) For a given score 0 ≤ω≤ 1 and two objects 1 ≤ j < j ′ ≤ m that receive applications at this score,
the lower value object j ′ receives strictly more applications.

(iv) In total, conditional on existence of class m, the ex ante probability to apply to object k is
1− ( c

ak

) 1
n−1 .

Statement (i ) states that as the score increases, agents apply more and more frequently to high-
value objects.
Statement (i i i ) uses the standard criterion of First Order Stochastic Dominance (FOSD).21 What
it means is that the probability of playing the highest value object is increasing in the score, the
cumulative probability of playing one of the two highest value objects is also increasing in the
score, and so forth.
Interestingly, statement (i i i ) also claims that within class [t 2, t 1] (for example), agents apply more
often to object 2 than to object 1 (as displayed on FIGURE 6). Hence, the equilibrium appears closer
to a pure strategy equilibrium with perfect vertical sorting than to a single-class block equilibrium
with no sorting.
Statement (i v) computes the ex ante probability with which an agent applies to a given object,
giving a sense of how bankable an object is. It finds that it is increasing with the value of the
object ak (higher-value objects are played more often), decreasing with the application cost c,
independent of others objects’ values a j , j 6= k and of the score distribution.

4.3.4 Robust profile and participation

Theorem 1. (2)(i ) ensures that the two highest classes [t 1,1] and [t 2, t 1] are realized at symmetric
equilibrium of any AG. Yet, it does not guarantee that any lower class is reached. For some sets
of parameters (low cost, low and balanced number of objects and agents, heterogeneous values),
classes 3 to m+1 (interval [0, t 2]) may not be observed (t 2 = 0), and low score agents may apply to
objects 1 and 2 only. This is the meaning of the vocabulary “robust profile” for [t 2,1].
In particular, in the extreme case with only 2 classes, this suggests that agents with very different
scores (distant from about a half) use exactly the same randomization over actions.

The robust profile bracket also characterizes participation in the mechanism. We say that an
agent (fully) participates if she applies with positive (one) probability. The next corollary discusses
participation in the AG.

Corollary 2.
At the unique symmetric (interior) Bayes-Nash equilibrium of the Application Game:

(i) If m ≥ 1+
m∑

l=1

( c

a j

) 1
n−1 , all agents on the market participate.

(ii) If m ≥ n

n −1

m∑
l=1

( c

a j

) 1
n−1 , expected participation is higher than in the Nash equilibrium of the

Sorting Game.

Statement (i ) states that whenever class [0, t m] is not reached, all agents on the market - includ-
ing the ones with the lowest possible scores-, fully participate. They do so in spite of the congestion
(the fact that there are fewer objects than agents on the market). This is a major contrast with the
benchmark design, where the agents with the lowest possible scores do not apply.
The more general statement (i i ) gives a sufficient condition for higher participation in the fric-
tional market. The condition is easily satisfied, as soon as n is not too small or values are quite
heterogeneous, or the cost is low.
The lesson is that frictions enhance participation. This has major welfare consequences, which we
explore in the next section §5.

21First-order stochastic dominance translated to our (discrete) case is given by: p(ω) ºFOSD p(ω′) if
∀ j ∈ {1, . . . ,m −1},

∑ j
l=1 p j (ω) ≥∑ j

l=1 p j (ω′).
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5 Welfare

In this section, we compute the welfare at the symmetric equilibrium of the AG (§4.3.2). We
compare this welfare from the fictional market to the welfare on the benchmark frictionless market.

5.1 Ex ante

We first examine the ex ante payoff, that is, for an anonymous agent, before her priority score
is realized. It is a measure of aggregate welfare.

Inefficiencies

The ex ante payoff on the benchmark market is given by:

W B := E[u(σ∗)] = ( m∑
k=1

ak)− cm

There is no waste (agents collectively capture the whole sum of objects’ values) and no failure (the
number of agents paying the cost equals the number of applicants equals the number of objects
(m)).

The ex ante expected payoff on the frictional market22 is given by:

W F := E[u(p∗)] == 1

n

( m∑
k=1

ak)− c

n

(
m − (n −1)

m∑
j=1

( c

a j

) 1
n−1

)
Therefore, the difference in welfare is:

W B −W F := c(n −1)
(
m −

m∑
j=1

( c

a j

) 1
n−1

)

Proposition 2. [ex ante welfare]
(B) The benchmark market design is efficient.

(F) The frictional market is inefficient: W B −W F > 0.
The size of the inefficiency increases with the values of all objects and with the cost of application.

(B) recalls that, by definition, the friction-less design achieves a higher total welfare than the
frictional design. The comparative statics in (F ) is straightforward. When an object’s value in-
creases, waste on this object is more detrimental to welfare. When the application cost increases,
failure is also more consequential.

5.2 Interim

We push the characterization of the inefficiencies identified in section §5.1. We are not only
interested in the size, but also in the shape of the inefficiencies.

5.2.1 Interim expected payoffs

The interim expected equilibrium payoff in the benchmark market is given by:

W B (ω) := E[u(σ?)|ω] =
m∑

j=1

(
n −1

j −1

)
(1−F (ω)) j−1F (ω)n− j (a j − c)

22The formula is written for the case t m ≥ 0. For case t m < 0, the formula is more sophisticated but proposition 2.
remains valid.
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It is just the sum of probabilities that the agent with score ω is ranked i th, i ≥ m in priority
multiplied by the ex-post payoff in this case (object value minus application cost). If the agent is
ranked lower (i th, i > m), the ex-post payoff is zero.

The interim expected equilibrium payoff in the frictional market is given by:

W F (ω) := E[u(p?)|ω] =


k∑

j=1
p j

J1,kK.
(( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK

)n−1
a j − c ,ω ∈ [t k , t k−1], k ∈ {1, . . . ,m}

0 ,ω ∈ [0, t m]

At any score where the agent applies, it is an expected sum. p j
J1,kK is the probability that the agent

applies to object j , it multiplies the probability of success conditional on applying to object j . To
succeed, one needs that each of all other agents (n −1) does not apply to the same object or has a
lower score, which happens with probability

( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK.
23

How the interim expected payoff varies with the score indicates the effect of priority on indi-
vidual welfare. If the priority score system fulfills the role of discriminating between agents with
different levels of priority, the interim expected payoff should increase with the score.

Lemma 3. [Equilibrium interim payoffs]
(B) On the benchmark market, the interim equilibrium payoff is continuous and strictly increasing

with priority score ω.

(F) On the frictional market, the interim equilibrium payoff is continuous and:

– Constant on [0, t m] (t m > 0).
– Strictly increasing on [t m ,1]

The proof of (B) is from the formula above, plus the continuity and monotonicity of the cdf F .
The proof for (F ) just stems from the initial characterization of interim payoffs in lemma and the
symmetric equilibrium structure from theorem 1..
Overall, in both kinds of markets, higher score agents are always better off. This means the block
structure (featuring constant ambition on each class of scores) still allows for continuously and
strictly increasing payoffs. For illustration, we display below two graphs for interim expected
payoffs on the frictional market, in the context of the toy example from section §4.2: one with
k0 = 2 classes, one with k0 = 3 classes.
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FIGURE 8: Interim expected payoff at the
symmetric (interior) BNE -

m = 2, n = 3, a2 = 2, a1 = 4, c = 0.2, F ∼U
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FIGURE 9: Interim expected payoff at the
symmetric (interior) BNE -

m = 2, n = 3, a2 = 2, a1 = 4, c = 1, F ∼U

23The fraction
( ak

a j

) 1
n−1 simplifies the whole probability of an agent having a score in a higher class and applying to

the same object j .
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5.2.2 Asymmetries

FIGURE 8 specifically shows that on the frictional market, when k0 < m, agents with low scores
apply and expect a positive payoff. In the benchmark market (proposition 0.), by contrast, low-
score agents decide not to apply to secure a zero payoff.
This is a clue that there is a score-related asymmetry in the way the inefficiencies associated with
private information affect market participants. The next proposition shows that this asymmetry
can make low-score agents prefer the situation when everyone has less information.

Proposition 3. [Low score agents’ preference for private information]

If m > 1+
k∑

l=1

( c

al

) 1
n−1 , then ∃ ω′ ∈ (0,1) s.t.: ∀ω ∈ [0,ω′), W B (ω) <W F (ω).

Thus, in some instances of the AG, low-score agents are better off with less (private) informa-
tion than with full (public) information. The condition on parameters looks quite general, easily
satisfied if the number of objects is large enough and the application cost is reasonably low.24 One
important implication is that we cannot rank the two benchmark and frictional designs through a
Pareto order.
The proof uses the definition of t m as the indifference point between application actions and the no
application action, hence an expected payoff of zero, jointly with continuity and strict monotonic-
ity of interim payoff above t m (lemma 2.). When t m < 0, the monotonicity mechanically induces a
positive interim payoff at score zero, to compare with an interim payoff in the benchmark design
of 0. The continuity of payoffs extends the comparison to a non-degenerate interval of low scores
[0,ω′).
A graphical illustration is given below. FIGURE 10 (left) shows the interim expected payoffs from
the frictional market in orange, and the interim expected payoffs from the benchmark market
in green. On FIGURE 10 (right) the filled orange area displays the difference in interim payoffs
W B (ω)−W F (ω).

0 t 1 1
0

a2 − c

a1 − c

ω

E
[u

(p
?

)|ω
]

0 t 1 1

0

a2 − c

a1 − c

ω

E
[u

(p
?

)|ω
]

FIGURE 10: Frictional vs. benchmark markets: Interim expected payoffs at symmetric (interior) BNE
m = 2, n = 3, a2 = 2, a1 = 4, c = 0.2, F ∼U

A more general statement from this graph is that intermediate score agents bear most of the
burden associated with the inefficiency of private information.

5.2.3 Signal quality, competitive advantage, and competition easing

We formulate the intuition in successive effects of private information on cardinal scores: dis-
crepant signal quality, competitive advantage, and competition easing.

In the application game, although all agents receive signals of the same nature (perfect obser-
vation of their own priority score), the informative value of the signal depends on the score level.

24Notably, it seems to match our empirical driving empirical motivation of social housing.
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A low-score agent, by observing a signal at the bottom of the prior distribution support, realizes
that she is almost surely the lowest type, ranked at the bottom of the priority order. By contrast, for
an intermediate score agent, observing her score is a poor signal of her ranking. But ranking or or-
dinality of scores (as opposed to cardinality) is what decides on the allocation in case of crowding.
When it comes to information, the low-score agent benefits from a relative competitive advantage.
This advantage more than offsets the fact that, in absolute terms, the private information they get
is slightly less revealing.
It translates into actions in the following way. The intermediate score agent, misguided by impre-
cise posterior on ranking, is likely to make mistakes (compared to what she would do with perfect
information): being too or too little ambitious, miscoordinating with intermediate-to-high score
agents. In total, and due to the recursive structure of the AG, these mistakes tend to alleviate the
fierceness of competition by intermediate score agents.
Thanks to the precision of her posterior, the low-score agent avoids any mistake due to unrealistic
ambitions. More importantly, she is fully aware of the competition easing. Therefore, she under-
stands that this leaves some room for her to apply. She applies and captures a positive expected
payoff.25

The result that frictions favor participation and equity is very general and can be reconstructed
in many different economic settings. For example, Mekonnen (2019) [17] compares random and
directed search on an agent-object market with also common preferences but homogeneous agents.
This is equivalent to comparing a no information design to a full information design. At equilib-
rium, an agent is better off under the random search because she benefits more from the ease of
congestion on high-value objects than she suffers from not being able to target objects accurately.
Che and Tercieux (2021) [7] study the optimal design of a queueing system when agents’ arrival
and servicing are governed by a general Markov process. They show the optimal information is
no information (beyond recommendation to join / stay in / leave the queue). The intuition is that
no information pools the various incentive constraints, ensuring more participation, which, in the
queue environment, increases efficiency.

5.2.4 Implications for decentralized matching markets

We have found that in a very stylized frictional market, private information on priorities tends
to favor low-score agents.
The question therefore arises: is it an issue for the proper functioning of markets?
The answer to that question rests on the role of priority score systems. In social housing, for
instance, the priority system recognizes differential rights to housing based on different levels
of emergency. During the allocation stage, it maps those differential rights into proportionally
different probabilities of satisfaction. In particular, point rules and allocation mechanisms are
often jointly thought of as giving twice more chances to an agent with a score 2ω of getting an
object or the best object than to an agent with a score ω.
Yet, in the considered design, private information artificially distorts in an increasing fashion the
probability for low-score agents to get a valuable object with respect to intermediate and high-
score agents. In other words, private information mitigates the ability of the priority system to
discriminate between agents.

From a design perspective, we have found that three elements matter for the final allocation
and for welfare: the allocation mechanism, the inputs in the mechanism (the exact rule used to
compute priority scores), and the information structure. Our analysis suggests that they should be
designed jointly in order to keep control over the amount of discrimination on the market.

25A wonder may be: how does private information affect the competition between high-score agents and
intermediate-score agents? A high-score agent observes a score close to the higher bound of the support, which is
a clear signal that she is likely the highest type, so this agent also benefits from a relative informational competitive
advantage. But because she always plays the same action (applying to the best object) in the two designs, she cannot
exploit this advantage, and there is no competition easing effect from which the intermediate score agent could benefit.
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6 Extensions

The lessons we have learned from our simple model extend to more sophisticated and realistic
markets.

6.1 Endogenous cost and the dynamic

In reality, decentralized allocation is always a dynamic process. This is also true in the leading
example of social housing in Paris, where each week, a new application round opens and new
vacant accomodations become available.
There are two ways to include a dynamic in the model, thereby increasing its descriptive strength.
The first and probably most natural way is to model the dynamic explicitly and study the subse-
quent dynamic search problem.26 The second and undoubtedly more tractable way is to endo-
genize some previously exogenous parameters of the static model to display the main effects of
the dynamic while remaining in a static and simple framework. In this line of idea, it must be
considered that in a dynamic version of the allocation, an agent with a high priority who fails in
a given round necessarily keeps a high chance of being allocated an object in future rounds. Her
continuation value is high. One way to capture this effect in the static model is to have the cost
depend negatively on the priority score. C is now a strictly decreasing function of ω: c ′(ω) > 0. We
set c(0) < am implying ∀ ω ∈ [0,1], j ∈ {1, . . . ,m}, c(ω) < a j (the cost never exceeds the value of any
object).

Proposition 4. [BNE with score-dependent cost]
In the application game with score-dependent strictly decreasing cost c(ω), c ′(ω) < 0, a symmetric

(interior) Bayes-Nash equilibrium:
(1) Exists and is unique.

(2) Is similar to the symmetric Bayes-Nash equilibrium of the Application Game with exogenous
cost:

(i) If t m < 0, the equilibria are exactly the same with exogenous and score-dependent costs.

(ii) If t m > 0, the equilibria are the same except that t m is higher in with endogenous cost and the
mth class [t m , t m−1] is narrower.

In the proof for the exogenous cost model equilibrium, it was already apparent that thresholds
and probability levels in the domain where agents apply with full probability were independent
of the cost (with cost functions canceling out on both sides of indifference differential equations).
Only the indifference equations between application actions A j and no application N at t m feature
the application cost on one side.
The implication is that with an endogenous cost rising sharply, the agent applies a little less to all
objects by being more prudent at low scores. The lowest value objects suffer the larger decrease in
applications.
For illustration, we display the symmetric equilibrium for the small dimensional AG with a score-
dependent (linear) cost: c(ω) = 3

2 −ω. For comparison, we also display the equilibrium on the same
market with exogenous cost c = 1:27

26Stationarity assumptions may help: agents and objects leaving the market are replaced by agents with similar
priorities and objects with similar values, and agents staying on the market during several periods keep their priorities.

27Note that the expected cost is the same in both cases (equals 1).
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FIGURE 11: Endogenous cost c(ω) = 3
2 −ω (left) vs constant cost c = 1 (right)

Symmetric (interior) BNE m = 2, n = 3, a2 = 2, a1 = 4, F ∼U

Corollary 3. [Welfare with endogenous cost]
On the frictional market with score-dependent strictly decreasing cost c(ω), c ′(ω) < 0, the equilibrium

interim expected payoff rises faster (∂W B (ω)
∂ω larger) on [t m ,1] than with exogenous cost.

We illustrate this point below:

0 t 2 t 1 1
0

a2 − c

a1 − c

ω

E
[u

(p
?

)|ω
]

FIGURE 12: Endogenous cost c(ω) = 3
2 −ω (blue) vs constant cost c = 1 (orange)

Interim expected payoff at the symmetric (interior) BNE - m = 2, n = 3, a2 = 2, a1 = 4, F ∼U

In conclusion, endogenous cost induces more discrimination according to score. The market
outcome is closer to the outcome of the benchmark market (more discrimination). Accounting for
the dynamic will reduce the magnitude of the welfare effects identified in section §5.2.

6.2 Larger or no truncation

In many real-life matching markets, agents are allowed to apply to more than one object. This
is usually the case in school choice or centralized job market. In particular, the French national
system for allocating teachers to schools uses a priority point system and a mechanism akin to a
serial dictatorship where teachers can apply to several schools.28

Thus, a natural extension of our model consists in relaxing or removing the truncation of the
application menu.29

To simplify, we process this extension within the framework of the toy example with n = 3, m =
2, F ∼ U . With no truncation, the action space includes an additional action B for “both” that
consists in applying to both objects on the market (hence paying the application cost twice).

Preliminary results are summarized in the next proposition.
28In two steps: The first step manages allocation between regions, and the second stage within regions.
29Due to homogeneous preferences, the ranking between objects is common, and the action space consists of menus

rather than rank-ordered lists.
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Proposition 5. [BNE with no truncation]
A symmetric (interior) Bayes-Nash equilibrium of the Application Game with n = 3, m = 2, F ∼ U

and no truncation:
(1) Exists and is unique

(2) (i) If a2

a1 + c
a2 > 1, the symmetric equilibrium is the same as with the truncation. In particular,

agents always apply to at most one object.
(ii) If a2

a1 + c
a2 < 1, at symmetric equilibrium: agents with large scores apply to object 1, agents

with scores lower than a threshold r 1 apply to both objects.

Case (i ), where agents disregard the possibility of applying to both objects arises when the
application cost is high relative to the objects’ values. In case (i i ), agents use the possibility to
apply to all objects, aiming for the high-value object, but hedging against the possibility that it
may not be available anymore. Below r 1, all interim expected payoffs strictly decrease due to
competition on both objects, and what is the next shift in action is non-obvious (and non-robust).

The figure below illustrates the two cases:

A2

A1

A1N

t 1t 2

p2
J1,2K

FIGURE 13: BNE with no truncation - Case (i)
m = 2, n = 3, a2 = 2, a1 = 4, c = 1.5, F ∼U

B A1

r 1

FIGURE 14: BNE with no truncation - Case (ii)
m = 2, n = 3, a2 = 2, a1 = 4, c = 0.5, F ∼U

6.3 Imperfectly correlated preferences

The assumption that preferences are homogeneous, with any agent assigning exactly the same
value as her peers to any object, is rather restrictive. In social housing, for example, some criteria
are valuable to all applicants (size of the accommodation, equipment), but applicants may value
(for example) different micro-locations differently due, for example, to the location of their jobs.
All in all, individual preferences likely combine common and idiosyncratic components.

We model imperfectly correlated preferences in a simple setting with n = 2 agents and m = 2
objects, and a uniform priority distribution. The objects can have two possible values v > u > 0, so
that each agent has exactly one most preferred object with value v and one least preferred object
with value u. A preference profile (X1X2), Xi ∈ {u, v} means that object 1 has value X1 to agent 1,
X2 to agent 2.
The prior distribution over preference profiles is such that: objects are the same ex ante (they are
equally likely to be each agent’s most preferred object), but preferences are correlated (positive
correlation when θ > 1

2 ):

P(uu) =P(v v) = θ

2
, P(uv) =P(vu) = 1−θ

2
, θ ∈ [0,1]

We assume that preferences, just as priority scores, are private information. Thus, a type is two-
dimensional: it specifies the priority (score) and the preference (most preferred object), with
independence between the two dimensions.
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In this setting, a strategy is a mapping of the score support into two possible actions: applying to
one’s most preferred object (denoted ⊕) or to one’s least preferred object (denoted ª).

Proposition 6. [BNE with correlated preferences]
A symmetric (interior) Bayes-Nash equilibrium of the Application Game (n = 2, m = 2, F ∼U ):
(1) Exists and is unique.

(2) Has the following block structure:

(i) There are between 1 and 3 classes.
(ii) In the top class [t 1,1], the agent plays ⊕ with full probability, t 1 = θu−(1−θ)v

θv+(1−θ)u .

(ii) Conditional on existence, in intermediate class [t 2, t 1], the agent plays ⊕ with probability
p(⊕) = θu−(1−θ)v

(2θ−1)(u+v) , ª with probability p(ª) = 1−p(⊕)

(iii) Conditional on existence, in the bottom class [0, t 2], the agent does not apply.

At any equilibrium, and as expected, agents with high scores are ambitious and apply to their
most preferred object (⊕). It may become more profitable at lower scores (below a score t 1) to
also target one’s least preferred object (ª), because, in expectation, this object is less demanded.
Interestingly, the block structure remains.
The difference with the perfect correlation case is that the shift at t 1 does not necessarily happen.
Indeed, the fact all agents play ⊕ combined with the imperfect correlation guarantees that both
objects receive applications with positive probabilities. Even when both agents are ambitious, there
is partial coordination. Thus, it can be that all agents keep on with the same strategy at low scores.
The shift happens if and only if the correlation is sufficiently strong and the gap between the two
object values is sufficiently small (θ > v

v+u ).

The figure below illustrates the two cases:

ª

⊕

⊕N

t 1t 2

p(ª)

FIGURE 15: BNE with correlated preferences
m = n = 2, F ∼U , v = 2, u = 1, c = 0.5, θ = 0.75

⊕N

t

p(ª)

FIGURE 16: BNE with correlated preferences
m = n = 2, F ∼U , v = 5, u = 4, c = 1, θ = 0.75
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7 Conclusion

This paper models a stylized market where agents with homogeneous preferences and privately
known priority scores can (costly) apply to at most one object, and each object is assigned to its
highest priority applicant. On this market, the frictions (private information, truncation of the
mechanism, and application cost) ask for a trade-off between competition and coordination, with
participants wondering "Whether and Where to Apply?". They consider the trade-off between being
ambitious, accepting the prospect of competition (targeting high-value objects), or being practical,
seeking coordination (targeting under-demanded objects).

We find that in all equilibria, high-score agents are ambitious, and low-score agents are practi-
cal. The analysis also uncovers three salient and surprising features of the symmetric equilibrium.
One, the symmetric equilibrium necessarily involves agents randomizing between applications.
Second, in this equilibrium, agents with scores on a continuous support sort into discrete classes,
defined as intervals of priority scores, where they adopt exactly the same strategy. Third, the fric-
tional market design is less efficient but more egalitarian than the benchmark design. Indeed,
low-score agents may be better off with private information than with public information, because
they benefit from a relative informational competitive advantage.

The value of this work is two-fold. It illustrates the role of information on priorities on matching
markets, showing how the uncertainty interplays with other standard market frictions to distort
the allocation. This results in a clear design recommendation: mechanism design, information
design and priority design should be performed jointly in order to achieve the desired pattern of
discrimination. It also makes a methodological contribution by displaying a novel and rich mode
of strategic interactions arising within the agent side of a matching market (the application game),
resulting in an equally novel equilibrium structure (the block structure).

We believe the lessons learned from this work may generalize to more sophisticated (idiosyn-
cratic, hybrid) preferences and mechanism (dynamic, with deterministic and stochastic stages).
Ultimately, our framework should be able to accommodate more numerous and interesting empir-
ical applications: beyond social housing, any market where priority is defined by a cardinal point
system (teacher allocation, college admissions in many countries).

Another interesting challenge in this research is to provide micro-foundations for the use of a
sub-optimal mechanism. Ideally we would explicitly model the general design problem and show
that once we consider a two-fold social objective (we care not only about efficiency but also about
participation), the private information mechanism becomes optimal. Another foundation could
come from political economy. In our applied example, the market frictions give a chance to middle
class households to be allocated social housing. Using a frictional design could be a way for a
greedy politician to earn these households’ votes for reelection.
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A Proofs

Proof of lemma 1.
• Action spaces ∀ i ∈ {1, . . . ,n}, Ai = {A1, . . . , Am , N } are finite. So by proposition 1 in Milgrom and Weber

(1985) [18], payoffs are equicontinuous (R1).

• Types ωi , i ∈ {1, . . . ,n} are independent. So by proposition 3 in Milgrom and Weber (1985) [18],
information is absolutely continuous (R2).

Finally, by theorem 1 in Milgrom and Weber (1985) [18] applied to the AG satisfying R1 and R2, there exists
a BNE in the AG.

Proof of lemma 2.
• By definition, ∀ ω ∈ [0,1], E[ui (Ni )|ω] = 0. This proves (i ) and (i i ) for Xi = Ni .

• For Xi = A j
i , j ∈ {1, . . . ,m}, we have:

E[ui (A j
i , p−i ([ω,1]))|ω] = ∏

i ′∈{1,...,n}\{i }

(
ω+

∫ 1

ω
(1−p j

i ′ (x))d x
)

︸ ︷︷ ︸
P(S|A j

i ,p−i ([ω,1]),ω)

ak − c

∀ i ′ ∈ {1, . . . ,n}\{i }, j ∈ {1, . . . ,m}, ω 7→ ∫ 1
ω(1−p j

i ′ (x))d x is continuous.

So the probability of success ω 7→ P(S|A j
i , p−i ([ω,1]),ω) and the whole expectation

E[ui (A j
i , p−i ([ω,1]))|ω] are also continuous. This proves (i ).

Set ω−<ω+.

ω−+
∫ 1

ω−
(1−p j

i ′ (x))d x = (
ω++

∫ 1

ω+
(1−p j

i ′ (x))d x
)+ω−−ω++

∫ ω+

ω−
(1−p j

i ′ (x))d x

= (
ω−+

∫ 1

ω−
(1−p j

i ′ (x))d x
)+∫ ω+

ω−
(−p j

i ′ (x))d x

<ω++
∫ 1

ω+
(1−p j

i ′ (x))d x

=⇒P(S|A j
i , p−i ([ω,1]),ω−) <P(S|A j

i , p−i ([ω,1]),ω+)

=⇒ E[ui (A j
i , p−i ([ω,1]))|ω−] < E[ui (A j

i , p−i ([ω,1]))|ω+]

This proves (i i ).
In addition:

lim
ω→1

P(S|A j
i , p−i ([ω,1]),ω) = 1 =⇒ lim

ω→1
E[ui (A j

i , p−i ([ω,1]))|,ω] = a j (i i i )

Proof of proposition 0.
For agent ranked i th in priority, i ∈ {1, . . . ,n}, denote µ(i ) ∈ {1, . . . ,m,;} her final allocation on the benchmark
market.

(i) Induction statement: H(i ) : µi = i , i ∈ {1, . . . ,m}

– Initial step
∀ i {1, . . . ,n} : ω1 >ωi =⇒ u1(A j

1,σ−1) = a j − c
u1(N1,σ−1) = 0
=⇒ ∀ σ−1, BR1(σ−1) = {A1

1}
=⇒ σ1 = A1

1, µ1 = 1 H(1)

– Inductive step
Set i ∈ {1, . . . ,m −1} s.t. H(1), . . . , H(i ) true.
∀ j ∈ {1, . . . , i } : ω j >ωi+1 =⇒ ui+1(A j

i ,σ−(i+1)) =−c

∀ j ∈ {i +1, . . . ,n} : ωi+1 >ω j =⇒ ui+1(A j
i ,σ−(i+1)) = a j − c

ui (Ni ,σ−(i+1)) = 0
=⇒ BRi+1(σ−(i+1)) = {Ai+1

i+1}

=⇒ σi+1 = Ai+1
i+1, µi+1 = i +1 H(i +1)
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(ii) Set m +1 ≤ i ≤ n.
By (i ): ∀ j ∈ {1, . . . ,m}, ui (A j

i ,σ−i ) =−c

ui (Ni ,σ−i ) = 0
=⇒ BRi (σ−i ) = {Ni }
=⇒ σi = Ni =⇒ µi =;

Proof of proposition 1.
We define the “interim action set” at score ω as the subset of actions that are played with positive probabil-

ities at score ω: A j ∈ I AS(ω) if p j (ω) > 0.
We state and prove a lemma characterizing interim action sets at any BNE of the AG (symmetric or asym-
metric).

Lemma 4. [Interim action sets at BNE]
(i) At any BNE of the AG, σ ∈äB N E (G ):

• Robust profile:

– ∃ 1 =ω0 >ω1 >ω2 ≥ 0 s.t. :

{
I AS((ω1,ω0)) = {A1}
I AS((ω2,ω1)) = {A1, A2}

.

• Potential profile:
– ∀ k ∈ {3,m}, if ∃ ω|pk (ω) < 0, then:

∃ 1 =ω0 >ω1 > ... >ωk ≥ 0 s.t.: ∀ j ∈ {1, . . . ,k}, I AS((ω j ,ω j−1)) = {A1, . . . , A j }.
– If ∃ ω|pm+1(ω) < 0, then:

∃ 1 =ω0 >ω1 > . . . >ωm >ωm+1 = 0 s.t.
{ ∀ j ∈ {1, . . . ,m}, I AS((ω j ,ω j−1)) = {A1, . . . , A j }

{N } ⊆ I AS((0,ωm))

(ii) Moreover: ω1 is the same in all multiple BNE of a given AG G .

Proof of lemma 4. Set σ ∈äB N E (G ).
• By lemma 2., (i i i ):

lim
ω→1

E[ui |A1
i ,σ−i ,ω] = a1 − c >

 a j − c = lim
ω→1

E[ui |A j
i ,σ−i ,ω]

0 = lim
ω→1

E[ui |N ,σ−i ,ω]

And by lemma 2., (i ) (continuity): ∃ ω1 s.t. I AS((ω1,1)) = {A1}.

• Suppose all players play A1 at all scores: I AS([0,1]) = {A1}.

lim
ω→0

P(S|A1
i ,ω) = 0 =⇒ lim

ω→0
E[ui |A1

i ,σ−i ,ω] =−c < 0

j ∈ {2, . . . ,m} : lim
ω→0

P(S|A j
i ,ω) = 1 =⇒ lim

ω→0
E[ui |A j

i ,σ−i ,ω] = a j − c

lim
ω→0

P(S|Ni ,ω) = 0 =⇒ lim
ω→0

E[ui |Ni ,σ−i ,ω] = 0

Then, by lemma 2. again, (i ) and (i i ):

– ω 7→ E[ui |A1
i ,σ−i ,ω] is continuous and strictly increasing on [0,1] from −c to a1 − c.

– ω 7→ E[ui |A j
i ,σ−i ,ω], j ∈ {2, . . . ,m} is constant on [0,1] and equal to a j − c.

– ω 7→ E[ui |Ni ,σ−i ,ω], j ∈ {2, . . . ,m} is constant on [0,1] and equal to 0.

By the bijection theorem, ∃ ω1 ∈ [0,1] s.t.:

E[ui |A1
i ,σ−i ,ω1] = E[ui |A2

i ,σ−i ,ω1] = a2 − c >
{

a j − c = E[ui |A j
i ,σ−i ,ω], j ∈ {3, . . . ,m}

0 = E[ui |N ,σ−i ,ω]

And by lemma 2., (i ) (continuity) again: ∃ 0 <ω2 <ω1 s.t. I AS((ω2,ω1)) ⊆ {A1, A2}.

• Suppose no one plays Ak , k ∈ {1, . . . ,2} on (ω2,ω1). Set k ′ ∈ {1,2}, 6= k.
Then, by lemma 2., (i i ), again:

– ω 7→ E[ui |Ak
i ,σ−i ,ω] is constant on (s2, s1) equals to a2 − c.

– ω 7→ E[ui |Ak ′
i ,σ−i ,ω] is strictly increasing on (s2, s1).

So: E[ui |Ak
i ,σ−i ,ω] > E[ui |Ak ′

i ,σ−i ,ω], and playing Ak is a profitable deviation. So Ak ∈ I AS((ω1,ω2)).
Exchanging the the roles objects 1 and 2, we get: {A1, A2} ⊆ I AS((ω1,ω2)).
In the end: I AS((ω1,ω2)) = {A1, A2}.

27



• The proof for the intervals (ωk ,ωk−1), j ∈ {3, . . . ,m} below is similar. The inclusion I AS(ωk ,ωk−1) ⊆
{A1, . . . , Ak } relies on the continuity and monotonicity of expected interim payoffs in lemma 2. enabling
an application of the intermediate value theorem. The reverse inclusion comes from the indifference
in ωk−1 plus the monotonicity of expected interim payoffs in lemma 2., giving a sharp characterization
of the no profitable conditions.

• If ωm−1 exists and ∀ j ∈ {1, . . . ,m} s.t. lim
ω→0

E[ui |A j
i ,σ−i ,ω] < 0, then by the intermediate value theorem

again, ∃ 0 <ωm <ωm−1 s.t. {N } ⊆ SS((0,ωm)) ⊆ {A1, . . . , Am , N }.
All the preceding proves (i ) and (i i ).

Notations: sk :=ωk , k ∈ {0,m +1}.
Lemma 4. shows that both actions A1 and A2 are played with positive probabilities on (s2, s1). At pure equi-
librium, this implies that different players play different actions and the equilibrium profile is asymmetric.

Proof of theorem 1.
1. Interim action sets

Interim action sets at symmetric equilibrium are given by lemma 4..
Notations: t k :=ωk , k ∈ {0,m +1}.

2. Constant probabilities
Let us now locate on the interval (t k , t k−1) and prove that the probability functions ω 7→ p j (ω), j ∈ {1,m}
are constant on each interval (t k , t k−1). Due to the complexity of notations, we write down the explicit
proof of the probabilities being constant at the inductive step for k = 2 and give the way to go for the
lower classes.

• Set k = 2. Let us locate on the (t 2, t 1) interval.
The strong indifference principle applied at a score ω? ∈ (t 2, t 1) delivers the following differential
equation:

(E 1
J1,2K) : E[ui (A1

i (ω),σ−i ([ω?,1]))|ω?] = E[ui (A2
i (ω),σ−i ([ω?,1]))|ω?]

⇐⇒
(
1−

∫ 1

t 1
f (ω)dω−

∫ t 1

ω?
p1(ω) f (ω)dω

)n−1
a1 − c =

(
1−

∫ t 1

ω?
p2(ω) f (ω)dω

)n−1
a2 − c

⇐⇒
(
1−F (1)+F (t 1)−F (t 1)+F (ω?)+

∫ t 1

ω?
p2(ω) f (ω)dω

)n−1
a1

=
(
1−

∫ t 1

ω?
p2(ω) f (ω)dω)

)n−1
a2

⇐⇒ F (ω?)+
∫ t 1

ω?
p2(ω) f (ω)dω=

( a2

a1

) 1
n−1

(
1−

∫ t 1

ω?
p2(ω) f (ω)dω

)
⇐⇒ (1+F (t 1))

∫ t 1

ω?
p2(ω) f (ω)dω= F (t 1)−F (ω?)

Set: G2, a primitive of p2 f . Then:

(E 1
J1,2K) ⇐⇒ G2(t 1)−G2(ω?) = F (t 1)−F (ω?)

1+F (t 1)

Deriving on both sides, we get a necessary condition on the probability functions:

(E 1
J1,2K) =⇒ p2(ω?) f (ω?) = − f (ω?)

1+F (t 1)

=⇒


p2(ω?) = 1

1+F (t 1)

p1(ω) = F (t 1)

1+F (t 1)
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We now need to check that those constant probability functions indeed verify equation (E 1
J1,2K):

(1+F (t 1))
∫ t 1

ω?

1

1+F (t 1)
f (ω)dω= F (t 1)−F (ω?)

⇐⇒ (1+F (t 1))

(1+F (t 1))
(F (t 1)−F (ω?)) = F (t 1)−F (ω?) X

• Set k ∈ {2, . . . ,m −1}, and suppose H(1), . . . , H(k) hold. Let us locate on the interval (t k+1, t k ). The
strong indifference principle applied at a score ω? ∈ (t k+1, t k ) delivers a system of k differential
equations with k +1 unknowns. We denote those equations (E l

J1,k+1K), j ∈ {1, . . . ,k}. Each of them
is given by:

(E j
J1,k+1K) : E[ui (A j

i (ω),σ−i ([ω?,1]))|ω?] = E[ui (Ak+1
i (ω),σ−i ([ω?,1]))|ω?]

⇐⇒
(
1−

∫ t k

ω?
p j (ω) f (ω)dω−

t k∑
l= j

∫ t l−1

t l
p j (ω) f (ω)dω

)n−1
a j − c

=
(
1−

∫ t k

ω?
pk+1(ω) f (ω)dω

)n−1
ak+1 − c

If we replace p1(ω?) by 1−∑k+1
j=2 pk (ω?), we end up with only k unknowns, hence a Cramer

system. We can use the substitution method, to get in the end a relation between (for instance)
only

∫ t k

ω? pk+1(ω) f (ω)dω and pk
J1,kK

∫ t k−1

t k f (ω)dω. Posing primitives and deriving the whole gives

constant probabilities p j
J1,k+1K.

3. Probability levels:
Set k ∈ {2, . . . ,m −1}, and further exploit the differential equations:

(E j
J1,k+1K) : E[ui (A j

i (ω),σ−i ([ω?,1]))|ω?] = E[ui (Ak+1
i (ω),σ−i ([ω?,1]))|ω?]

⇐⇒
(
1−

∫ t k

ω?
p j (ω) f (ω)dω−

t k∑
l= j

∫ t l−1

t l
p j (ω) f (ω)dω

)n−1
a j − c

=
(
1−

∫ t k

ω?
pk+1(ω) f (ω)dω

)n−1
ak+1 − c

⇐⇒
(
1−

∫ t k

ω?
p j (ω) f (ω)dω−

t k∑
l= j

∫ t l−1

t l
p j (ω) f (ω)dω

)
=

( ak+1

a j

) 1
n−1

(
1−

∫ t k

ω?
pk+1(ω) f (ω)dω

)
⇐⇒

(
1−p j

J1,k+1K(F (ω?)−F (t k ))−
t k∑

l= j
p j

J1,lK((F (t l )−F (t l−1))
)

=
( ak+1

a j

) 1
n−1

(
1−pk+1

J1,k+1K(F (ω?)−F (t k ))
)

Deriving on both sides, we get:

(E j
J1,k+1K) =⇒ −p j

J1,k+1K f (ω?) =−
( ak+1

a j

) 1
n−1

pk+1
J1,k+1K f (ω?)

=⇒ p j
J1,k+1K =

( ak+1

a j

) 1
n−1

pk+1
J1,k+1K

This is a recursive formula for the probability levels within class (t k+1, t k ). To find the explicit formulas,
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we use the fact that the k +1 probability levels sum up to one:

k+1∑
j=1

p j
J1,k+1K = 1 =⇒ pk+1

J1,k+1K

k+1∑
l=1

( ak+1

al

) 1
n−1 = 1

=⇒ pk+1
J1,k+1K =

(
(ak+1)

1
n−1

k+1∑
l=1

(al )
−1

n−1

)−1

=⇒ p j
J1,k+1K =

(
(a j )

1
n−1

k+1∑
l=1

(al )
−1

n−1

)−1

=⇒ p j
J1,k+1K =

(k+1∑
l=1

( a j

al

) 1
n−1

)−1

Finally, on the bottom interval (0, t m), it cannot be that players apply to j ∈ {1, . . . ,m}. Otherwise, by
lemma 2. (i i ), ω 7→ E[u|A j ,σ,ω] would be increasing so strictly negative at some score ∈ (0, t m), hence
a profitable deviation to action N . So: pm+1 is constant equal to 1 on (0, t m).

4. Thresholds:
The remaining task is to characterize the thresholds t k , k ∈ {2, . . . ,m}.

• t k , k ∈ {2, . . . ,m −1} By definition:

t k := inf
{
ω? ∈ [0,1]| ∀ ω>ω?, min

l∈{1,...,k}
E[ui (Al

i (ω),σ−i ([ω,1]))|ω] ≥ E[ui (Ak+1
i (ω),σ−i ([ω,1]))|ω]

}
By the strong indifference principle, we have that all E[ui (Al

i (ω),σ−i ([ω,1]))|ω], l ∈ {1, . . . ,k} are
equal on (t k , t k−1). So:

t k = inf
{
ω? ∈ [0,1]| ∀ ω>ω?, E[ui (Ak

i (ω),σ−i ([ω,1]))|ω] ≥ E[ui (Ak+1
i (ω),σ−i ([ω,1]))|ω]

}
=⇒ E[ui (Ak

i t k ),σ−i ([t k ,1]))|t k ] = E[ui (Ak+1
i (t k+1),σ−i ([t k+1,1]))|t k+1]

=⇒
(
1−

∫ t k−1

t k
pk (ω) f (ω)dω

)n−1
ak − c = ak+1 − c

=⇒ (
1−pk

J1,kK(F (t k−1)−F (t k )
)n−1ak − c = ak+1 − c

=⇒ pk
J1,kK(F (t k−1)−F (t k )) = 1−

( ak+1

ak

) 1
n−1

=⇒ F (t k ) = F (t k−1)+ 1

pk
J1,kK

(
−1+

( ak+1

ak

) 1
n−1

)
Plugging in the formula for the probability levels, we get:

F (t k ) = F (t k−1)+ (ak )
1

n−1

k∑
l=1

(al )
−1

n−1

(
−1+

( ak+1

ak

) 1
n−1

)
F (t k ) = F (t k−1)+ ((ak+1)

1
n−1 − (ak )

1
n−1 )

k∑
l=1

(al )
−1

n−1

This is a recursive formula characterising the thresholds. The explicit formula is therefore:

F (t k ) = F (t 0)+
k∑

j=1
((a j+1)

1
n−1 − (a j )

1
n−1 )

k∑
l=1

(al )
−1

n−1

The second term is close to be a telescopic sum. The second part is
∑k

j=1α j (a j )
1

n−1 where we
compute the terms below:

– j = 1: α1(a1)
1

n−1 =−(a1)
1

n−1 (a1)
−1

n−1 =−1
– 2 ≤ j ≤ k:

α j (a j )
1

n−1 =
( j−1∑

l=1
(al )

1
n−1 −

j∑
l=1

(al )
−1

n−1

)
(a j )

−1
n−1 =−(a j )

1
n−1 (a j )

−1
n−1 =−1

– j = k +1: αk+1(ak+1)
1

n−1 =
k∑

l=1
(al )

−1
n−1 (ak+1)

1
n−1 =

k∑
l=1

( ak+1

al

) 1
n−1
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In the end, we get:

F (t k ) = 1−k +
k∑

l=1

( ak+1

al

) 1
n−1

• k = m

E[ui (Am
i (t m),σ−i ([t m ,1]))|t m)] = E[ui (N (t m),σ−i ([t m ,1]))|t m)]

⇐⇒ (
1−pm

J1,mK(F (t m)−F (t m−1))
)n−1am − c = 0

⇐⇒ F (t m) = F (t m−1)+ 1

pm
J1,mK

(
−1+ ( c

am

) 1
n−1

)
⇐⇒ F (t m) = 2−m +

m−1∑
l=1

( am

al

) 1
n−1 +

m∑
l=1

( am

al

) 1
n−1

(
−1+ ( c

am

) 1
n−1

)
⇐⇒ F (t m) = 1−m +

m∑
l=1

( c

al

) 1
n−1

5. Number of classes

k0(p?) = k ∈ {1, . . . ,m} ⇐⇒ F (t k ) ≤ 0 < F (t k−1)

⇐⇒ 1−k +
k∑

l=1

( ak+1

al

) 1
n−1 ≤ 0 < 2−k +

k−1∑
l=1

( ak

al

) 1
n−1

⇐⇒ 1+
k∑

l=1

( ak+1

al

) 1
n−1 ≤ k < 2+

k−1∑
l=1

( ak

al

) 1
n−1

k0(p?) = m +1 ⇐⇒ F (t m) > 0

⇐⇒ 2−m +
m∑

l=1

( c

al

) 1
n−1 > 0

⇐⇒ 2+
m∑

l=1

( c

al

) 1
n−1 > m

Proof of corollary 1.

(i) Probability level variations

– Within classe
By the block structure, we immediately have that for ω, ω′ ∈ [t k , t k−1] : p j (ω) = p j

J1,kK = p j (ω′).

– Between classes
From theorem 1., probability levels write as:

p j
J1,kK =

(
(a j )

1
n−1

k∑
l=1

(al )
−1

n−1

)−1

k 7→ ∑k
l=1(al )

−1
n−1 is a sum with positive terms, hence increasing in k. Going to the inverse, we

find that p j
J1,kK is decreasing in k.

(ii) First Order Stochastic Dominance
Denote: σ(ω) the distribution with support {A1, . . . , Am} and probabilities: P(σ(ω) = A j ) = p j (ω), j ∈
{1, . . . ,m}.
Using the formulas for probability levels in theorem1., we find for ω ∈ (t k , t k−1):

j∑
l=1

p l (ω) =
j∑

l=1
p l

J1,kK =
{ ∑ j

l=1

(
(a j )

1
n−1

∑k
l=1(al )

−1
n−1

)−1
if j < k

1 if j ≥ k

=


∑ j

l=1(al )
−1

n−1∑k
l=1(al )

−1
n−1

if j < k

1 if j ≥ k
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Set 0 ≤ω′ <ω≤ 1.
We seek to demonstrate ∀ j ∈ {1, . . . ,m}:

(?) j :
j∑

l=1
p l (ω′) ≤

j∑
l=1

p l (ω)

– If ω′,ω belong to the same class C k , then because of the block structure:

j∑
l=1

p l (ω′) =
j∑

l=1
p l (ω)

So (?) j , j ∈ {1, . . . ,m} trivially holds.

– If ω′,ω belong to different classes, ω′ ∈C k ′
, ω ∈C k , k < k ′, then there are two subcases:

* If k ′ = m +1 then ∀ j ∈ {1, . . . ,m},
∑ j

l=1 p l (ω′) = 0 and (?) j is trivially verified.

* If k ′ ≤ m then:
For j ≤ k, then:

∑ j
l=1 p l (ω) = 1 and (?) j is trivially verified.

For j < k < k ′, then: ∑ j
l=1 p l (ω)∑ j
l=1 p l (ω′)

=
∑k ′

l=1(al )
−1

n−1∑k
l=1(al )

−1
n−1

> 1 =⇒ (?) j

(iii) From the proof of theorem 1., we have the following recursive formula:

p j
J1,kK =

( ak

a j

) 1
n−1

pk
J1,kK

And a j 7→
(

ak

a j

) 1
n−1 is decreasing in j , equivalently increasing in j . So, p j

J1,kK is increasing in j .

(iv) ex ante probability of applying to object j :

p j : =
m+1∑
k= j

(F (t k−1)−F (t k ))p j
J1,kK

For 1 ≤ k ≤ m −1, from theorem 1. we have:

(F (t k−1)−F (t k ))p j
J1,kK =

1

pk
J1,kK

(
1− ( ak+1

ak

) 1
n−1

)
p j

J1,kK

=
k∑

l=1

( ak

al

) 1
n−1

1
k∑

l=1

( a j

al

) 1
n−1

(
1− ( ak+1

ak

) 1
n−1

)

= ( ak

a j

) 1
n−1

(
1− ( ak+1

ak

) 1
n−1

)
= (ak )

1
n−1 − (ak+1)

1
n−1

(a j )
1

n−1

(?)

Summing up, we recognize a telescopic sum and we get:

p j = (a j )
1

n−1 − (am+1)
1

n−1

(a j )
1

n−1

p j = 1− ( c

a j

) 1
n−1

Proof of corollary 2.

(i) All agents participate iff there are at most m classes. By theorem 1. (i ), this happens iff:

m ≥ 1+
m∑

l=1

( c

al

) 1
n−1
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(ii) By proposition 0., at the Nash equilibrium of the Application Game with perfect information, the
expected participation is m

n .
By theorem 1., at the symmetric BNE of the Application Game with imperfect information, expected
participation is:

1−F (t m) = m −
m∑

l=1

( c

al

) 1
n−1 =

m∑
l=1

1− ( c

al

) 1
n−1 =

m∑
l=1

p l

Participation is therefore higher at BNE iff:

m −
m∑

l=1

( c

al

) 1
n−1 ≥ m

n

1− 1

n
≥ 1

m

m∑
l=1

( c

al

) 1
n−1

m ≥ n

n −1

m∑
l=1

( c

al

) 1
n−1

Proof of proposition 2.

(B) By proposition 0., the welfare on the benchmark market is given by:

W B := E[u(σ∗)] = 1

n

m∑
k=1

(ak − c)

Since ∀ k ∈ {1, . . . ,m}, ak − c > 0, this is the maximum welfare attainable in the Application Game.

(F) We use the formula of the interim welfare, t k < w < t k−1 (see section §5.2):

W F (ω) =
k∑

j=1
p j

J1,kK.
(( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK

)n−1
a j − c

The ex ante welfare aggregates all interim welfare (k = m) taking into acount the distribution of
scores:

W F =
∫ 1

0
W F (ω) f (ω)dω

=
m∑

k=1

[∫ t k−1

t k

k∑
j=1

p j
J1,kK.

(( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK

)n−1
a j f (ω)dω− c(F (t k−1)−F (t k )

]

We denote:

Ik :=
∫ t k−1

t k

k∑
j=1

p j
J1,kK.

(( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK

)n−1
a j f (ω)dω

=
k∑

j=1
p j

J1,kKa j .
∫ t k−1

t k

(( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK

)n−1
f (ω)dω

33



We denote:

Lk j :=
∫ t k−1

t k

(( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK

)n−1
f (ω)dω

=
[ 1

np j
J1,kK

(( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK

)n]t k

t k−1

= 1

np j
J1,kK

[( ak

a j

) n
n−1 −

(( ak

a j

) 1
n−1 − (F (t k−1)−F (t k ))p j

J1,kK

)n]
(?)= 1

np j
J1,kK

[( ak

a j

) n
n−1 −

(( ak

a j

) 1
n−1 − (ak )

1
n−1 − (ak+1)

1
n−1

(a j )
1

n−1

)n]

= 1

np j
J1,kK

[( ak

a j

) n
n−1 −

(( ak+1

a j

) 1
n−1

)n]

= 1

np j
J1,kK

[ (ak )
n

n−1 − (ak+1)
n

n−1

(a j )
n

n−1

]
Substituting in Ik , we get:

Ik =
k∑

j=1
p j

J1,kKa j .
1

np j
J1,kK

[ (ak )
n

n−1 − (ak+1)
n

n−1

(a j )
n

n−1

]

= 1

n
((ak )

n
n−1 − (ak+1)

n
n−1 )

k∑
j=1

(a j )
−1

n−1

Substituting in W F , we get:

W F = 1

n

( m∑
k=1

((ak )
n

n−1 − (ak+1)
n

n−1 )
k∑

j=1
(a j )

−1
n−1

)
− c

m∑
k=1

(F (t k−1)−F (t k ))

The second term is a telescopic sum and the first term is close tot be a telescopic sum.

– k = 1: (a1)
n

n−1 .(a1)
−1

n−1 = a1

– 2 ≤ k ≤ m: (ak ) n
n−1

(∑k
j=1(a j ) −1

n−1 −
∑k−1

j=1 (a j ) −1
n−1

)= (ak )
n

n−1 (ak )
−1

n−1 = ak

– k = m +1: −(am+1)
n

n−1
∑m

j=1(a j ) −1
n−1

In total, we get:

W F = 1

n

( m∑
k=1

ak − (am+1)
n

n−1

m∑
j=1

(a j )
−1

n−1
)− c(1−F (t m))

= 1

n

( m∑
k=1

ak − c
n

n−1

m∑
j=1

(a j )
−1

n−1
)− c

(
m −

m∑
l=1

( c

al

) 1
n−1

)
= 1

n

( m∑
k=1

ak)− 1

n
c

m∑
l=1

( c

al

) 1
n−1 − c

(
m −

m∑
l=1

( c

al

) 1
n−1

)
= 1

n

( m∑
k=1

ak)− c
(
m − n

n −1

m∑
l=1

( c

al

) 1
n−1

)
The welfare gap is given by:

W B −W F = 1

n

m∑
j=1

(a j − c)−
[ 1

n

m∑
k=1

ak + c
(
m − n −1

n

m∑
l=1

( c

al

) 1
n−1

)]
= c

(
− m

n
+m − n −1

n

m∑
l=1

( c

al

) 1
n−1

)
= c

n −1

n

(
m −

m∑
l=1

( c

al

) 1
n−1

)
∀l ∈ {1, . . . ,m},c < al ⇒ ( c

al

) 1
n−1 < 1 ⇒ m >

m∑
l=1

( c

al

) 1
n−1 ⇒W B >W F
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Proof of lemma 3.

(B) By proposition 0., on at the Nash equilibrium of the benchmark market, and agent receives utility
(ai − c) iff he is ranked i th in priority. For an agent with score ω, this happens with probability:

P(ω ranked i ) = (1−F (ω))i−1F (ω)n−i

(
n −1

i −1

)

In total, we have:

W B (ω) =
m∑

i=1

(
n −1

i −1

)
(1−F (ω))i−1F (ω)n−i (ai − c)

F cdf hence continuous ⇒ W B continuous.
By definition (or by computation, using the binomial theorem):

n∑
i=1

(
n −1

i −1

)
(1−F (ω))i−1F (ω)n−i = 1

When ω increases, P(ω ranked i ) increases (decreases) for small (large) i - associated to high (low)
utilities (ai − c). So W B (ω) strictly increasing with ω.

(F) By theorem 1., for t k <ω< t k −1:

W F (ω) := E[u(p?)|ω] =
k∑

j=1
p j

J1,kKP(S|A j ,ω)a j − c

P(S|A j ,ω) =
(
1−

k−1∑
l= j

(F (t l−1)−F (t l ))p j
J1,lK− (F (t k−1)−F (ω))p j

J1,kK

)n−1

From the proof of corollary 1., we know:

(F (t l−1)−F (t l ))p j
J1,lK =

(al )
1

n−1 − (al+1)
1

n−1

(a j )
1

n−1

(?)

Summing up, we recognize a telescopic sum and we get:

k−1∑
l= j

(F (t l−1)−F (t l ))p j
J1,lK =

(a j )
1

n−1 − (ak )
1

n−1

(a j )
1

n−1

= 1− ( ak

a j

) 1
n−1

Substituting, we get:

P(S|A j ,ω) =
(( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK

)n−1)

W F (ω) := E[u(p∗)|ω] =
k∑

j=1
p j

J1,kKa j
(( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK

)n−1 − c

By theorem 1. again, for 0 ≤ω≤ t m , we trivially get W F (ω) = 0 (constant).
F cdf hence continuous ⇒ W F continuous.
For the monotonicity, we derive:

∂P(S|A j ,ω)

∂ω
= f ′(ω)(F (t k−1)−F (ω))p j

J1,kK(n −1)
(( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK

)n−2 > 0

This immediately proves the monotonicity within class.
When combined with corollary 1. (i i ), it also proves the monotonicity across classes.
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Proof of proposition 3.

We define the interim welfare gap: g (ω) =W B (ω)−W F (ω).
By theorem 1.:

m > 1+
k∑

l=1

( c

al

) 1
n−1 ⇐⇒ W F (0) > 0 ⇐⇒ g (0) > 0

By proposition 2. (continuity), we get existence of the threshold ω′.

Proof of proposition 4.

The proof is similar to the proof of theorem 1..
• On class 1 to m, the endogenous cost simplifies in the differential equations, and we get the same

system than with exogenous cost.

• In the equation for the threshold t m differs, the cost does not simplify:

E[ui (Am
i (t m),σ−i ([t m ,1]))|t m)] = E[ui (N (t m),σ−i ([t m ,1]))|t m)]

⇐⇒ (
1−pm

J1,mK(F (t m)−F (t m−1))
)n−1am − c(t m) = 0

⇐⇒ F (t m) = 1−m +
m∑

l=1

(c(t m)

al

) 1
n−1

The difference in F (t m) in the endogenous cost model vs exogenous cost model is given by:

(c(t m)− c)
m∑

l=1

( 1

al

) 1
n−1 > 0 ⇐⇒ c(t m) > c

Proof of corollary 3.

The interim expected payoff with endogenous cost is given by (,ω ∈ [t k , t k−1], k ∈ {1, . . . ,m}):

W F
e (ω) :=

k∑
j=1

p j
J1,kK.

(( ak

a j

) 1
n−1 − (F (t k−1)−F (ω))p j

J1,kK

)n−1 − c(ω)

∂W F
e (ω)

∂ω
= ∂W F (ω)

∂ω
− dc(ω)

dω

c() decreasing with ω ( dc(ω)
dω < 0) implies ∂W F

e (ω)
∂ω > ∂W F (ω)

∂ω .

Proof of proposition 5.

The interim expected payoffs at score 1 write:

E[ui (A1
i (1))|1] = a1 − c

E[ui (A2
i (1))|1] = a2 − c

E[ui (Bi (1))|1] = a1 −2c

E[ui (Ni (1))|1] = 0

So σ?i (1) = A1. By continuity, ∃ω1 < 1 s.t. σ?i ((ω1,1]) = A1.
The interim payoffs at lower scores write:

E[ui (A1
i (ω),σ?−i [ω,1])|ω] =ω2a1 − c

E[ui (A2
i (ω),σ?−i [ω,1])|ω] = a2 − c

E[ui (Bi (ω),σ?−i [ω,1])|ω] =ω2a1 + (1−ω2)a2 −2c

E[ui (Ni (ω),σ?−i [ω,1])|ω] = 0
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We solve indifference equations:

E[ui (A1
i (ω),σ?−i [ω,1])|ω] = E[ui (A2

i (ω),σ?−i [ω,1])|ω] ⇐⇒ ω=
√

a2

a1

E[ui (A1
i (ω),σ?−i [ω,1])|ω] = E[ui (Bi (ω),σ?−i [ω,1])|ω] ⇐⇒ ω=

√
1− c

a1√
a2

a1 <
√

1− c

a1 ⇐⇒ a2

a1 + c

a2 > 1

We get two cases:

• a2

a1 + c
a2 > 1: Below a threshold t 1 =

√
a2

a1 , players switch to playing A1 and A2 with indifference.
Just below t 1 and similarly to the case with truncation, the agents plays A2 with probability p2

J1,2K =
1

1+t 1 .
At a score ω< t 1, interim payoffs write:

E[ui (A1
i (ω),σ?−i ([ω,1]))|ω] = E[ui (A2

i (ω),σ?−i ([ω,1]))|ω] = (1− (t 1 −ω)p2
J1,2K)2a2 − c = (

1− (1− t 1)− (t 1 −ω)p1
J1,2K

)2a1 − c

E[ui (B(ω),σ?−i ([ω,1]))|ω] = (
1− (1− t 1)− (t 1 −ω)p1

J1,2K
)2a1 + (

1− (t 1 −ω)p2
J1,2K

)
a2 −2c

∆(ω) := E[ui (A1
i (ω),σ?−i ([ω,1]))|ω]−E[ui (B(ω),σ?−i ([ω,1]))|ω] = c − (

1− (t 1 −ω)p2
J1,2K

)2a2

∂∆

∂ω
=−2p2

J1,2K
(
1− (t 1 −ω)p2

J1,2K
)2a2 < 0

So ∆ is decreasing until t 1. And by definition of this case: ∆(t 1) = 0. So on the left of t 1, ∆(ω) > 0. The
agent does not switch to B . Just as in the model with truncation, he randomizes between A1 and A2

potentially until a threshold t 2 where he starts playing N . Below t 2 all interim payoffs stay constant,
so the agent keeps on playing N until score 0.

• a2

a1 + c
a2 < 1: Below a threshold r 1 =

√
1− c

a2 , players switch to playing B .

At a score ω< r 1, interim payoffs write:

E[ui (A1
i (ω),σ?−i ([ω,1]))|ω] =ω2a1 − c

E[ui (B(ω),σ?−i ([ω,1]))|ω] =ω2a1 + (
(1− r 1)2 +2ω(1−ω)

)
a2 −2c

∆(ω) := E[ui (B(ω),σ?−i ([ω,1]))|ω]−E[ui (A1
i (ω),σ?−i ([ω,1]))|ω] := (

(1− r 1)2 +2ω(1−ω)
)
a2 − c

∂∆

∂ω
= 2(1−2ω)a2 > 0 ⇐⇒ ω< 1

2

So ∆ is decreasing on the left neighborhood of r 1. And by definition of this case: ∆(r 1) = 0. So on the
left neighborhood of r 1, ∆(ω) > 0, and the agent does not immediately switch to another action.

Proof of proposition 6.

The interim expected payoffs at score 1 write:

E[ui (⊕(1)i )|1] = v − c

E[ui (ª(1)i )|1] = u − c

So σ?(1) =⊕. By continuity: ∃t 1 < 1 s.t. σ?((t 1,1]) =⊕
The interim expected payoffs at score ω< 1 write:

E[ui (⊕i (ω),σ?−i )|ω] = (1− (1−ω)θ)v − c

E[ui (ªi (ω),σ?−i )|ω] = (1− (1−ω)(1−θ))u − c

We characterize the threshold point t 1 where the agent start being indifferent between the two actions:

E[ui (⊕i (t 1),σ?−i )|t 1] = E[ui (ªi (t 1),σ?−i )|t 1] ⇐⇒ (1− (1− t 1)θ)v = (1− (1− t 1)(1−θ))

⇐⇒ t 1 = θu − (1−θ)v

θv + (1−θ)u
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We find t 1 > 0 ⇐⇒ θ > v
v+u , and v

v+u > 1
2 so the condition is non trivial.

The interim expected payoffs at score ω< t 1 write:

E[ui (⊕i (ω),σ?−i )|ω] = [ω+ ((1− t 1)+ (t 1 −ω)p(⊕))(1−θ)+ (t 1 −ω)(1−p(⊕))θ]v − c

E[ui (⊕i (ω),σ?−i )|ω] = [ω+ ((1− t 1)+ (t 1 −ω)p(⊕))θ+ (t 1 −ω)(1−p(⊕))(1−θ)]u − c

The probability level p(⊕) making the agent indifferent between the two actions is characterized by:

E[ui (⊕i (ω),σ?−i )|ω] = E[ui (ªi (ω),σ?−i )|ω]

⇐⇒ [ω+ ((1− t 1)+ (t 1 −ω)p(⊕))(1−θ)+ (t 1 −ω)(1−p(⊕))θ]v = [ω+ ((1− t 1)+ (t 1 −ω)p(⊕))θ+ (t 1 −ω)(1−p(⊕))(1−θ)]u

We derive this equation and get:

[1−p(⊕)(1−θ)− (1−p)θ]v = [1−pθ− (1−p)(1−θ)]u

⇐⇒ p(⊕) = θu − (1−θ)v

(2θ−1)(u + v)

We check that this level indeed verifies the indifference equation.
The interim payoff at scores below t 1 strictly decreases and may hit the zero bound at some lower score t 2,
where the agent with lower score would decide not to apply.

***** Proofs of toy examples (§4.2) *****

Proof of example n = 3 > m = 2,F ∼U for (asymmetric) pure BNE

• Top class (s1,1):
By lemma 4., ∀ i ∈ {1, . . . ,3},σi ((s1,1)) = A1.

• Middle class (s2, s1):
By lemma 4.:
∃ i ∈ {1,2,3}, si ((s2, s1)) = A1 (set i=1).
∃ i ′ ∈ {1,2,3}, si ((s2, s1)) = A2 (set i ′=2).
Let us characterize the action of player 3 on [s2, s1]. The interim payoffs of player 3 at ω′ < s1 write:

E[u3(A1
3(ω′), p([ω′, s1])|ω′] =ω′s1a1 − c

E[u3(A2
3(ω′), p([ω′, s1])|ω′] = (1− (s1 −ω′))a2 − c

The difference between the two is:

∆(ω′) = [ω′s1a1 − c]− [(1− (s1 −ω′))a2 − c] =ω′s1a1 − (1− s1 +ω′))a2

We differentiate with respect to ω′:

∂∆(ω′)
∂ω′ = s1a1 −a2 =

√
a1a2 −a2 =

√
a2(

√
a1 −

√
a2) > 0

So ∆ is strictly increasing. We know, by indifference at s1: ∆(s1) = 0. So: ∆(ω′) < 0.
Conclusion: s3([s2, s1]) = A2.

• Bottom interval (0, s2):
By lemma 4.: ∃ i ∈ {1,2,3} s.t. si ([0, s2]) = N .
By lemma 2. (i i ): ω 7→ E[u1(A1(ω), s([ω, ])|ω] is constant..
So s1([0, s2]) = A1 and i 6= 1.
Fix i = 2.

By lemma 2. (i ) and (i i ):


ω 7→ E[u2(N (ω), s([ω, ])|ω] is constant.
ω 7→ E[u3(A2(ω), s([ω,1])|ω] = E[u3(N (ω), s([ω,1])|ω] is constant.
ω 7→ E[u1(A1(ω), s([ω,1])|ω] is constant.

So: s2([0, s2]) = N or A2.

Proof of example n = 3 > m = 2,F ∼U for symmetric (interior) BNE
Included in theorem 1..
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B Supplements

B.1 Pure (asymmetric) Bayes-Nash equilibrium - Partial characterization

The next theorem only partially characterizes the pure BNE of the AG:

Theorem 2. [Pure (asymmetric) BNE]
A pure strategy BNE of the AG:

(i) exists and is unique up to strategies on the (0, sm) interval, and payoff-unique.
(ii) exhibits finite number of intervals of scores where the interim action sets are constant.

The proof is in two steps. First, we use lemma 4 characterizing the interim action sets. Second, for each
interval of score with constant interim action set, we characterize the number of agents playing each action
in the interim action set. For example, on the interval [s2, s1], we determine the pair(s) of two integers
(k1,k2), k1 + k2 = n, where k1 (k2) of agents playing A1 (A2). We find that the no profitable deviation
inequalities between payoffs always defines a (unique) pair (k1,k2). We proceed similarly at lower scores.

The theorem still allows many different patterns within the intervals where the interim action set is
constant. Whenever we introduce n ≥ 4 agents, the equilibrium patterns depends finely on the parameters
of the AG, hence a low robustness.30 We illustrate this lack of robustness below with an example:

n = 4,F ∼U

• Case 1: a1 > 8a2 +7c → (k1,k2) = (1,3)

• Case 2: a1 < 8a2 +7c → (k1,k2) = (2,2)

1

1
A2 A1

A1

s1s2

×k1

×k2

In general, the pure BNE can support quite odd strategy profiles, where some strategies exhibit no
sorting (an agent plays higher value objects at lower scores), or sorting with jumps (an agent plays high
value objects at high scores, low value objects at intermediate scores but never plays the intermediary value
objects). In these profiles, each strategy is virtually unique and highly sophisticated. The profiles are “very
assymmetric”. This questions the ability of players to coordinate on these equilibria.

B.2 Symmetric (interior) equilibrium - Comparative statics

In this section, we describe how a change in the parameters of the AG affects the symmetric BNE of the
AG.

Values and cost
The coming proposition emphasizes that the symmetric equilibrium is invariant to a rescaling of all

object values and the application cost.

Proposition 7. [Invariance to rescaling]
In an Application Game, if we multiply all object values and the cost by a given constant, the symmetric (interior)
Bayes-Nash equilibrium remains unchanged.

Proposition 7 implies that any non-trivial comparative static analysis must first keep the cost fixed as
object values fluctuate, and second, normalize the object values while varying the cost.

The relative position of values affects the equilibrium structure in an intuitive way. If objects are highly
homogeneous in values, agents almost perfectly randomize between available objects. There is close to
a single class, the lowest one, plus the no application class. Coordination is horizontal. When, on the
contrary, the values are heterogeneous, people sort by levels of scores, the strategy is close to being pure.
Coordination is vertical.

30In this respect, the robustness of the pure equilibrium in section §4.2 was a special feature of the toy example.
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When the cost is high, agents even with intermediate scores resort to the safe no application action, and
agents with the highest score coordinate. When the cost is low, incentives to play the no application action
disappear, and incentives to coordinate on different objects are reduced.

We provide below a graphical representation of the discussion in the toy example.

Homogeneous values

A2

A1

A1N

High cost

A2

A1

A1N

Heterogeneous values

A2

A1

A1N

Low cost

A2

A1

A1

FIGURE 17: Comparative statics: Symmetric (interior) BNE for various values and cost - m = 2

Market balance
An increase in the number of agents n increases all thresholds, decreases class sizes. The effect is

especially strong on bottom classes. It increases (decreases) probability levels for low (high) value objects.
In net effect, introducing more agents decreases the ex ante probability with which any action is played,
except for the no application action, which is played more frequently. The rationale is that more numerous
agents generate competition via an increase in the probability of crowding, hence in the occurrence of
failure. This pushes agents to be more cautious: high score agents mix with lower value objects, and low
score agents more often decide not to apply.

Due to the recursive structure of the AG, the introduction of an additional object has a very clean effect
on the equilibrium structure, described in the coming proposition.

Proposition 8. [Effect of additional object]
In an Application Game, the addition of an object with a given value ak0+1 < anew < ak0 :

- Only affects equilibrium thresholds t k and levels p j
J1,kK on the adjacent higher class and on lower classes

(k ∈ {k0, . . . ,m}).
- Does not affect the equilibrium application probabilities for all application actions A j , j ∈ {1, . . . ,m} that

were already available before the addition.

In other words, the addition of an object does not affect individual behavior at levels of scores where
agents were all applying to higher-value objects. It does affect individual behavior at levels of scores where
some were applying to lower value objects. The collective behavior remains unchanged in the sense that
each lower value object is played as often as before the addition: only the identities of the applicants are
modified, not the mass. Playing the new object only happens at the detriment of the no application strategy.

Priority score distribution
Another key property of the equilibrium is that the whole effect of the distribution is captured in the

thresholds hence in the class sizes. The next proposition formalizes this remark.

Proposition 9. [Effect of priority score distribution]
In an Application Game, the priority score distribution:

- Does not affect equilibrium levels.
- Only affects the equilibrium thresholds, in a way that keeps the mass of each class fixed.

In summary, we expect a narrow (wide) class at score levels featuring a high (low) concentration of
agents. Whether narrow with many agents or wide with few agents, an equilibrium class always features
the same mass. In particular, if we change the priority score distribution to a mean-preserving spread
distribution, we will get that extreme (middle) classes become narrower (wider). In expectation, the number
of agents playing each possible mixture will remain unchanged.
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