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Abstract

This paper considers linear panel data models with a grouped pattern of heterogeneity

when the latent group membership structure and/or the values of slope coefficients change

at a break point. We propose a least squares approach to jointly estimate the break point,

group membership structure, and coefficients. The proposed estimators are consistent,

and the asymptotic distribution of the coefficient estimators is identical to that under

known break point and group structure even when the cross-sectional sample size is much

larger than the length of time series. Monte Carlo simulations and an empirical example

illustrate the use of the approach and associated inference.
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1 Introduction

When conducting economic analyses using panel data, it is often important to take into ac-

count the time-varying and cross-sectionally heterogeneous nature of economic relationships.

The functional relationship between economic variables is frequently influenced by various

exogenous shocks, such as financial crises, technology changes, policy implementation, etc.

The impacts of these shocks are often modelled by structural breaks of the slope coefficients in

a regression model, and they can differ remarkably across individual units. Two examples of

such heterogeneity are the impacts of the implementation of the U.S. Sarbanes-Oxley (SOX)

Act in 2002 and the European sovereign debt crisis. SOX created new rules and imposed more

stringent requirements for US public company boards, management and public accounting

firms. A number of studies have shown that the effects of SOX on corporate governance vary

remarkably across firms (see, e.g., Heron and Lie, 2007; Chhaochharia and Grinstein, 2007;

Banerjee et al., 2015, among others). For the European debt crisis, the economic structure of

southern European countries was affected to a larger extent than that of the central European

countries (Claeys and Vaš́ıček, 2014), and its global impact also varied significantly across

countries (Stracca, 2015).

A salient empirical finding is that such cross-sectional impact tends to be common within a

group of units but varies across groups (see, e.g., Mitton, 2002; Linck et al., 2009; Duchin et al.,

2010; Thakor, 2015, among many others). Thus, imposing a group pattern is a plausible yet

parsimonious way of modelling cross-sectional heterogeneity. Many studies have considered

clustering individual units in panel data (Sun, 2015; Hahn and Moon, 2010; Lin and Ng, 2012;

Bonhomme and Manresa, 2015; Su et al., 2016; Ando and Bai, 2016; Vogt and Linton, 2016;

Wang et al., 2018, among others), all assuming that the group structure does not change over

time. On the other hand, while there is a vast volume of literature on structural breaks in

panel data models (Bai, 2010; Wachter and Tzavalis, 2012; Kim, 2011; Baltagi et al., 2017;

Qian and Su, 2016; Li et al., 2016, among others), most studies assume that coefficients are

homogeneous across units or structural breaks are common to all units. Recently, Okui and

Wang (2021) proposed a new model that allows researchers to capture a group pattern of

heterogeneity in structural breaks. Although their model allows that the break point, the size

of break, and slope coefficients can differ across groups in any arbitrary manner, the group

structure is required to be time invariant, or in other words, the group membership structure

is not affected by the shock.

The time-invariant group structure is sometimes a strong assumption. A macroeconomic

shock, such as a financial crisis, may restructure the functional relations between economic

variables for all units, such that some units become highly heterogeneous (homogeneous) after
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the shock even though their behaviour is similar (different) before the shock. For example,

Germany and France shared a similar debt-to-GDP ratio before the European debt crisis

(64–69% in 2007 and 2008), but the time series paths of the ratio of the two countries diverge

dramatically after 2008, with that of France increasing from 83% to 98.4% until 2018 and that

of Germany fluctuating around 75% in 2009–2014 and decreasing to 61.9% in 2018.1 A similar

situation may apply with the introduction of regulatory policies, such as SOX, which likely

reshaped the heterogeneity pattern of firms according to their observable and unobservable

time-varying management practices and firm characteristics (Engel et al., 2007; Heron and

Lie, 2007; Linck et al., 2009). Hence, it is of great empirical interest to develop a method that

allows the group structure to change after the break, in addition to allowing for a coefficient

break. In practice, it is also possible that the shock only affects the group membership, but

the functional relationship remains the same within each group. It is additionally possible

that the number of groups changes. These scenarios raise several challenges. How do we

model and estimate a time-varying group structure with an unknown break date? How do

we determine the potentially varying number of groups? How do we identify whether a break

occurs to only the group structure, the coefficient, or both?

To address these challenges, this paper proposes a new model and a new estimation ap-

proach that allows us to capture a structural break in the slope coefficients and/or group

structure. We propose a least squares approach that estimates the break point, group mem-

bership, and regression coefficients simultaneously. To solve this least squares problem, we

employ an iterative estimation approach that first iterates between coefficient and group es-

timation given a fixed break point, and then searches for the optimal break point given the

estimated coefficients and group memberships. We show that the estimators of the break

point and group memberships are both consistent. The consistent estimation of breaks and

group structure further allows us to estimate the coefficients consistently, and the asymptotic

behaviour of the coefficient estimator is equivalent to that obtained under known break point

and group memberships. One of our theoretical contributions is to formally establish condi-

tions under which the break detection error does not affect the asymptotic behaviour of the

group membership and coefficient estimators.

An alternative empirical strategy is to examine each unit separately. Baltagi et al. (2016)

propose detection of a common break point based on individual estimation of each unit.

Compared with their approach, we impose a grouped pattern of heterogeneity. While group

heterogeneity is more restrictive than individual heterogeneity, it brings various advantages

over their approach. First, we can make use of the cross-sectional information. This allows

1Source of Data: Eurostat, general government gross debt - annual data (downloaded in January 2020).

URL: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=teina225
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us to estimate a model with a relatively short time dimension compared to the number

of explanatory variables (or even when the time dimension is smaller than the number of

explanatory variables), and yields efficiency gain. The efficiency gains further translate into

a more precise detection of the break point. Such comparison is confirmed via an extensive

simulation study, where we find that imposing a group pattern leads to more accurate break

point estimates. Increasing both time and cross-section dimensions helps improve the accuracy

of break detection for our method, but the cross-section dimension plays less role in individual-

based break detection. This is because the group structure allows us to make use of cross-

sectional variation, which typically leads to more efficient estimation. Second, the grouped

pattern of heterogeneity enables us to investigate common patterns across units, which is

difficult when looking at each unit completely separately, while maintaining heterogenous

effects in our model.

A related approach in terms of motivation, yet different in terms of technique, is to com-

bine factor models with structural breaks; see, e.g., Cheng et al. (2016). This approach

captures heterogeneity by factors, while our approach employs group structure. Both factor

structure (also called interactive effects) and grouped pattern are useful in modeling hetero-

geneity but from different perspectives. Which approach is more appropriate depends on

the specific application and also the empirical objective. Our work is also related to Miao

et al. (2020) which considered slope coefficients and thresholds varying over groups in a panel

threshold regression. While both studies examine latent group structures and thresholding, a

key difference is that Miao et al. (2020) assumed a constant group structure over the regimes

(segmented by a threshold variable), but we allow the memberships to change across regimes.

We apply the proposed method to study the determinants of sales growth of US firms. We

find that both the group structure of heterogeneity and the functional relationship between

firms’ variables and sales growth exhibit a significant break in the year of the Asian financial

crisis. More groups emerge after the break, suggesting a larger degree of heterogeneity after

the crisis. Our data-driven clustering results also suggest that the group structure is only

moderately related to the industry classification that is widely used in corporate finance to

capture heterogeneity.

The reminder of the paper is organized as follows. In Section 2, we explain the setting in

Subsection 2.1 and the estimation method in Subsection 2.2. Subsection 2.3.1 explains how to

choose the number of groups, and Subsection 2.3.2 provides some specification tests. Section

3 presents the asymptotic results. Section 4 discusses two extensions: models with individual

fixed effects and multiple breaks. Finite sample results from Monte Carlo simulations are

discussed in Section 5. An empirical example demonstrates how these tests and estimation

methods can be used in practice in Section 6. Section 7 concludes. The proofs of the theorems
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and additional theoretical results are included in the technical appendix. An online supple-

ment contains an additional algorithm, theoretical analyses for models with fixed effects, and

additional simulation results.2

2 Model setup and estimation method

2.1 Model setup

Suppose that we have panel data (yit, xit) for i = 1, . . . , N and t = 1, . . . , T , where yit is a

scalar outcome variable of interest, xit is a vector of exogenous explanatory variables, and

indexes i and t denote cross-sectional unit and time period, respectively. We are interested in

the effects of xit on yit, and allow such effects to be (potentially) heterogeneous across units

and vary over time. We model cross-sectional heterogeneity via a latent group pattern and

the time-varying feature via a structural break. Importantly, we allow the structural break

to change not only the effects of xit but also the latent group pattern.

In particular, consider the following linear panel data model:

yit = x′itβgit,t + uit, (1)

where uit is an error term which may be heteroskedastic and weakly dependent in both time

series and cross-sectional dimensions. We assume that xit is exogenous such that E(uit | xit) =

0, and thus a predetermined regressor is allowed. βgit,t is the coefficient that depends on time

period t and the group membership of i at time t, and it captures the effect of a change of

its associated regressor holding other regressors constant. The current proof technique does

not allow time effects and time trends to be parts of xit, but their presence may be justified

under alternative proof techniques. The assumptions are stated formally in Section 3.

Here the cross-sectional heterogeneity in the slope coefficients is featured by a group

pattern, such that units in the same group share the same values of coefficients. Both the

group membership structure (i.e. to which group each unit belongs) and the coefficient vector

itself may change over time, and we consider the cases where the time-varying pattern can

be characterized by structural breaks.

We assume that there is one structural break at time k0. This implies that the group

structure and the value of coefficients for each group do not change until k0, and also remain

stable after k0 once the break happens. Let GB and GA denote the number of groups before

and after the break, respectively. Note that superscripts B and A stand for “before the break”

and “after the break”, respectively. GB and GA may or may not be the same; that is, we

2The online supplement is available at https://drive.google.com/file/d/

1ZvNs3Zoc6FyT0zt4Mj1RB7EvWTm0rJ-H/view?usp=sharing
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allow the break to change the number of groups. Before the break, each unit belongs to one of

the elements of GB = {1, . . . , GB}. After the break, the set of groups potentially changes and

becomes GA = {1, . . . , GA}. Note that, because group memberships are unobserved, group

labels are arbitrary and there may not be any natural correspondence between groups before

and after the break. For example, group 1 before the break may not be related to group 1

after the break. The coefficient vector takes the form:

βgit,t =

βgi(B),B if t < k0

βgi(A),A if t ≥ k0
,

where gi(B) ∈ GB and gi(A) ∈ GA denote unit i’s group membership before and after

the break, respectively. Both the break point k0 and group membership allocations, gi(B)

and gi(A), are unknown and need to be estimated together with the slope coefficients. We

first propose estimation methods for model (1) assuming that GB and GA are known. This

knowledge is, of course, unavailable in many applications, and we discuss how to determine

the number of groups in both regimes in Section 2.3.1.

As discussed in Okui and Wang (2021), a grouped pattern provides a sensible and conve-

nient way to model individual heterogeneity, especially if there is also time instability, because

it allows us to flexibly capture heterogeneity while maintaining the parsimony of the model,

so that we can still take advantage of cross-sectional variation in coefficient estimation. No-

tably, the structural break may change the values of the coefficients, the group membership

structure, or both. In some situations, it is of practical interest to identify these three cases,

and we shall discuss this issue in Section 2.3.2. Also notice that our notation here implies

that the group structure and slope coefficients experience a break at the same time point.

This is, however, not essential as long as the method can be extended to multiple breaks

since then these two different changes can be modelled as two breaks, one only changing the

group structure and the other only changing the coefficients; see more detailed discussions in

Section 4.2.

Several important models are nested in model (1). For example, the panel models with

common structural breaks (Qian and Su, 2016; Baltagi et al., 2017) can be regarded as a

special case of (1) by imposing cross-sectional homogeneity of βgit,t. If the parameter βgit,t is

constant over time, the model boils down to that considered in Su et al. (2016) and Lin and Ng

(2012). By including a constant as one of the elements in xit, the model can incorporate time-

varying group specific fixed effects, and thus is related to Bonhomme and Manresa (2015).

The extension of model (1) to allow for individual-specific fixed effects will be discussed in

Section 4.1. Our model also extends Okui and Wang (2021) to allow not only the slope

coefficients but also the group membership structure to change at the break point.

6

Electronic copy available at: https://ssrn.com/abstract=3617416



2.2 Estimation method

There are three types of parameters to estimate in model (1): the break point k, the group

membership variable in pre- and post-break regimes gi(B) and gi(A) for all i ∈ {1, . . . , N},
and the slope coefficients βg(B),B for all g(B) ∈ GB and βg(A),A for all g(A) ∈ GA. We propose

jointly estimating these three types of parameters by minimizing the quadratic loss function.

Let β be a vector stacking βg,B for g ∈ GB and βg,A for g ∈ GA. The parameter space for β

is B which is a subset of Rp(GB+GA). Let Γ = (GB ×GA)N be the parameter space for group

memberships. We denote an element of Γ as γ, and further denote γB = (g1(B), . . . , gN (B))

and γA = (g1(A), . . . , gN (A)) as the group membership vector before and after the break,

respectively. Let K = {2, . . . , T} be the parameter space for the break date k. We estimate

(k, γ, β) by minimizing the least squares criterion:

(k̂, γ̂, β̂) = argmin
k∈K,γ∈Γ,β∈B

[
k−1∑
t=1

N∑
i=1

(yit − x′itβgi(B),B)2 +

T∑
t=k

N∑
i=1

(yit − x′itβgi(A),A)2

]
. (2)

The least squares objective function offers a unified estimation framework for the three

types of parameters and thus facilitates the theory. Least squares estimation of the group

structure also guarantees that all units are categorized into one of the groups. Since the group

membership structure may potentially change at the break point, we cannot employ the entire

set of time periods to estimate this structure. The group membership structures before and

after the break are estimated using only the corresponding samples of the two regimes. This

is in sharp contrast to the Grouped Adaptive Group Fused Lasso (GAGFL) proposed by Okui

and Wang (2021) for heterogeneous break estimation, where only coefficients have breaks and

the full sample of time observations is used to estimate the time-invariant group structure.

Moreover, we employ a least squares method to detect the break date, which fundamentally

differs from the lasso break-detection techniques used in Okui and Wang (2021) and thus

requires different theoretical analysis. Our estimation strategy also differs from Baltagi et al.

(2017), who proposed estimating the break point based on the sum of squared residuals of

each unit. Imposing a group structure allows us to take advantage of cross-sectional variation

for coefficient estimation, and thus deliver more accurate estimated coefficients and further

a more accurate break point estimate, especially when the error in each time series is large

and the number of regressors is sizeable compared to the length of the time series. We shall

compare these competing methods in simulation to confirm this discussion.

Clearly, a complete search of the parameter space for the three types of parameters is com-

putationally infeasible. To solve this objective function, we propose the following algorithm

that estimates the break point through concentration and estimates the group structure and

coefficients through iteration.
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Algorithm 1.

Let s denote the iteration number.

Step 1: Set s = 0. For each k ∈ {2, . . . , T − 1}, initialize group structures in both

regimes as γ
(0)
B and γ

(0)
A .

Step 2: For given γ(s) and k, estimate the slope coefficient β(s) in the two regimes by

β(s) = argmin
β∈B

[
k−1∑
t=1

N∑
i=1

(yit − x′itβg(s)i (B),B
)2 +

T∑
t=k

N∑
i=1

(yit − x′itβg(s)i (A),A
)2

]
.

Step 3: Given β(s), find the optimal group for individual i in each regime, respectively,

by

gi(B)(s+1) = argmin
γ∈Γ

k−1∑
t=1

(yit−x′itβ
(s)
gi(B),B)2, and gi(A)(s+1) = argmin

γ∈Γ

T∑
t=k

(yit−x′itβ
(s)
gi(A),A)2.

Step 4: Iterate Steps 2 and 3 until numerical convergence, and obtain γ̂B(k), γ̂A(k),

and β̂(k).

Step 5: Let k vary from 2 to T , and estimate the break point by

k̂ = argmin
k∈K

[
k−1∑
t=1

N∑
i=1

(yit − x′itβ̂ĝi(B,k),B(k))2 +

T∑
t=k

N∑
i=1

(yit − x′itβ̂ĝi(A,k),A(k))2

]
,

where ĝi(B, k) and ĝi(A, k) are the i-th coordinates of γ̂B(k) and γ̂A(k), respectively.

Step 1 is an initialization. In Step 2, we estimate the coefficient vector given the group

membership structure and the break date. It is just an OLS estimation applied to each group

at each regime. Step 3 in turn estimates the group membership structure given coefficients

and the break date. The iteration described in Step 4 is essentially the Kmeans algorithm

discussed in Bonhomme and Manresa (2015). Because the objective function for a given k is

non-increasing in the number of iterations, numerical convergence typically can be achieved

quickly. However, the convergence is not theoretically guaranteed to be the global optimum

in general, a common drawback of this type of iterative algorithms. Hence, different (random)

initial values need to be tried and the one that yields the lowest objective is selected. The

number of trial initial values depends on the computational capacity and the features of

data, e.g., the scale of data set, the signal-to-noise ratio, the number of groups, etc. Finally,

the break point is estimated in Step 5 by minimizing the sum of squared residuals over all

k ∈ {2, . . . , T}, a popular technique in the break detection literature (see, e.g. Bai, 1997).
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The computational burden of this algorithm mainly comes from trying many initial values

in the Kmeans part. Nonetheless, when the numbers of groups, GB and GA, are small, the

algorithm is sufficiently fast and operational.

2.3 Empirical implementations

So far we have discussed estimation assuming that the number of groups is given and both

the group structure and slope coefficients have a break. In practice, the number of groups is

often unknown, and may also vary across regimes. Moreover, it is possible that the structural

break affects only the slope coefficients, only the group memberships, or both, and it is often

of empirical interest to identify which parameters are subject to the break. In this section,

we propose to address both issues using the information criterion (IC), generally defined as

IC = log Q̂+ npf(N,T ), (3)

where Q̂ is the average sum of squared errors, and np is the total number of parameters,

both of which depend on model specifications. f(N,T ) is a tuning parameter, and we find

that f(N,T ) = 3 ln(NT )/NT works fairly well based on a large number of experiments with

many alternatives. The following subsections will discuss how to obtain Q̂ and np in different

situations.

2.3.1 Determining the number of groups

We first discuss how to determine the number of groups. Unlike Bonhomme and Manresa

(2015) and Okui and Wang (2021), the complication here is that the number of groups may

change after the structural break and thus we need to determine the number in each regime

separately. The split-sample determination naturally requires the knowledge of the break

point, which conversely depends on the number of groups. To address this challenge, we

propose selecting the number of groups in the pre- and post-break regimes by minimizing the

IC defined in (3), where

Q̂(GB, GA) =
1

NT

k̂−1∑
t=1

N∑
i=1

(yit − x′itβ̂ĝi(B),B)2 +

T∑
t=k̂

N∑
i=1

(yit − x′itβ̂ĝi(A),A)2

 ,

with k̂, γ̂, and β̂ obtained from (2) for a given set of (GB, GA). The total number of parameters

np(G
B, GA) also depends on GB and GA, which sums the number of slope parameters over

groups and regimes and the number of membership parameters to be estimated in the two

regimes, namely 2N .

To implement the proposed procedure, we first fixGB andGA and estimate the break point

and the slope coefficients using the proposed algorithm, and then vary GA = 1, . . . , GAmax and

9
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GB = 1, . . . , GBmax to compute the IC under each possible combination of GB and GA, where

GAmax and GBmax are the (pre-specified) maximum numbers of groups. The selected numbers

of groups thus minimize the IC defined in (3).3 Since the standard IC can consistently select

the number of groups within each regime given the true break date (Su et al., 2016; Liu

et al., 2020), the proposed IC in (3) that essentially aggregates the standard IC across the

two regimes is also expected to select the correct number of groups asymptotically.

2.3.2 Diagnosing the presence of structural breaks

This subsection discusses how to identify which parameters are subject to the break. We

first consider selecting between the specifications of time-varying and time-invariant group

structures. We propose using the IC as defined in (3), but the calculation of Q̂ and np needs to

be tailored for these two specific alternatives. Let g̃i be the time-invariant group membership

parameter of unit i. Denote by ˆ̃gi the estimator of g̃i for i = 1, . . . , N , and ˆ̃γ = (ˆ̃g1, . . . , ˆ̃gN )

the estimator of γ̃ = (g̃1, . . . , g̃N ) ∈ GN . The associated estimator of k and β under the

restriction of time-invariant group memberships is denoted by
ˆ̃
k and

ˆ̃
β, respectively. We

can obtain the estimated break point, group memberships, and slope coefficients under the

restriction of time-invariant memberships by solving the following optimization:

(
ˆ̃
k, ˆ̃γ,

ˆ̃
β) = argmin

k∈K,γ̃∈GN ,β∈B

[
k−1∑
t=1

N∑
i=1

(yit − x′itβg̃i,B)2 +
T∑
t=k

N∑
i=1

(yit − x′itβg̃i,A)2

]
,

where βg̃i is the group-specific slope parameter under the restriction of time-invariant mem-

berships. To solve this optimization, we employ an iterative algorithm similar to the one in

Section 2.2 but impose a restriction of time-invariant group memberships in initialization and

the third step. The online supplement to this paper presents an algorithm for this model

(Algorithm S.1).

With the group and regime specific coefficient estimates readily there, we can obtain

the associated sum of squared residuals and compute the IC by (3) with the number of

parameters np = N + 2pG under time-invariant group structures and np = 2N + p(GA +GB)

under time-varying group structures. This IC works because if both slopes and memberships

experience a break but one estimates a model assuming a time-invariant group structure, then

neither group memberships nor the slope coefficients can be consistently estimated, leading

to a poor fit captured by a high log Q̂. In contrast, if the break only affects coefficients

(but not memberships and thus of course not the number of groups), then the log Q̂ estimates

3This method searches the optimal number of groups over all possible combinations of k, GB , and GA.

Alternatively, one may consider incomplete search that only examines a subset of the parameter space, e.g.

iterating between determination of the number of groups and break-point detection. Incomplete search can

potentially reduce computational efforts, but at the cost of ending up with a local optimum.
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obtained under time-varying and time-invariant group structures are close and thus one tends

to choose the time-invariant group specification due to the difference in the penalty. Note

that a Hausman-type of test is not applicable in this case because the coefficient estimators

obtained under time-varying and time-invariant group structures share the same first order

asymptotic behaviour, i.e., both are consistent and have the same asymptotic variance when

the group structure is time invariant, due to the super-consistency of the group membership

estimates.

Next, we consider selecting between the specifications of time-varying and time-invariant

slope coefficients, i.e., whether a break only occurs in the group structures. In this case,

a similar IC can be employed as above except that the number of parameters under time-

invariant coefficient (but varying group structures) is np = 2N + pG. To estimate the time-

invariant coefficients, we can modify Step 2 in Algorithm 1 and estimate the slope coefficient

with the restriction that they are constant over time.

Finally, note that model diagnosis is implemented prior to estimation, a common proce-

dure in frequentist econometrics. Once the model is specified, one can jointly estimate the

structural break, group memberships, and slope coefficients as discussed in Section 2.2.

3 Theoretical results

This section presents the asymptotic properties of the proposed estimation method. In par-

ticular, we show that the estimated break point, group structure, and slope coefficients are

consistent and that the asymptotic distribution of the coefficient estimator is identical to that

under a known break point and group membership structure.

We use the following notation. Superscript 0, such as k0, indicates the true value. βB is

the vector stacking βg,B for g ∈ GB. Similarly, βA is the vector stacking βg,A for g ∈ GA. ‖ · ‖
denotes the Euclidean norm.

Assumption 1.

(i) For any L ⊆ {1, . . . , N} and t′′ ≥ t′, there exists M which does not depend on L, t′′

nor t′ such that the following equality holds

E

∥∥∥∥∥ 1

NT

t′′∑
t=t′

∑
i∈L

xituit

∥∥∥∥∥
2
 ≤M |L|(t′′ − t′)

N2T 2
,

where |L| denotes the cardinality of L.

(ii) B is compact.
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(iii) Let ρN,t(γ
t, g, g̃) be the minimum eigenvalue of

∑N
i=1 1{g0

it = g}{git = g̃}xitx′it/N ,

where γt is either γB (when t < k) or γA (when t ≥ k). For any g ∈ GB,

min
1≤t<k0

min
γB∈(GB)N

max
g̃∈GB

ρN,t(γB, g, g̃) > ρ̂,

and for any g ∈ GA,

min
k0<t≤T

min
γA∈(GA)N

max
g̃∈GA

ρN,t(γA, g, g̃) > ρ̂,

where ρ̂→p ρ as N,T →∞ and ρ > 0 does not depend on N and g.

(iv) There exists ρ̂∗ such that for any i and for s such that s and T −s sufficiently large,

λmin

(
1

s

s∑
t=1

xitx
′
it

)
≥ ρ̂∗ and λmin

(
1

T − s

T∑
t=s+1

xitx
′
it

)
≥ ρ̂∗,

and ρ̂∗ →p ρ
∗ > 0 as N,T → ∞, where λmin gives the minimum eigenvalue of its

argument.

(v) max1≤t≤T
∑N

i=1‖xit‖2/N = Op(1).

(vi) There exists a fixed constant m > 0 (which, in particular, does not depend on T

and N) such that for any t,

1

N

N∑
i=1

(x′it(β
0
g0i (A),A − β

0
g0i (B),B))2 > m.

(vii) k0/T → τ ∈ (ε, 1− ε) for ε > 0 as T →∞.

(viii) There exists a constant c > 0 such that for any g 6= g̃ where g, g̃ ∈ GB and

g′, ǧ ∈ GA, it holds that ‖β0
g,B − β0

g̃,B‖ > c and ‖β0
g′,A − β0

ǧ,A‖ > c.

(ix) Let zit be x′itxit, ‖uitxit‖, 2uitx
′
it(β

0
g0
i(l)

,l
− β0

g,l), or (x′it(β
0
g0
i(l)

,l
− β0

g,l))
2 for g ∈ Gl

and l = A,B. Assume the following holds for any choice of zit: 1) zit is a strong mixing

sequence over t whose mixing coefficients ai[t] are bounded by a[t] ≤ e−at
d1 such that

max1≤i≤N ai[t] ≤ a[t] and has tail probabilities max1≤i≤N Pr(|zit| > z) ≤ e1−(z/b)d2 for

any t, where a, b, d1 and d2 are positive constants. 2) There exists ai, i = 1, . . . , N

such that for any ε > 0, it holds that max1≤i≤N |ai−
∑T

t=1E(zit)/T | < ε for sufficiently

large T .

(x) max1≤t≤T E(‖
∑N

i=1 xituit/
√
N‖2+δ) is bounded for some δ > 0.
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Assumption 1(i) concerns the degree of dependence. For example, this assumption is

satisfied when (xit, uit) is independently and identically distributed (i.i.d.) and possesses

fourth moments; it also allows for weak serial correlation and weak cross-sectional dependence.

Assumption 1(ii) requires the compactness of the parameter space, a standard condition for

asymptotic analysis of extremum estimators.

Assumptions 1(iii) and 1(iv) resemble the rank condition in ordinary least squares estima-

tion that, roughly speaking, rules out cross-sectional multicollinearity in any group structure

(Assumption 1(iii)) and over time periods for each unit (Assumption 1(iv)), and thus guar-

antees the identification of βg,A and βg,B.4 Note that Assumption 1(iii) requires that each

group includes sufficiently many observations, so that
∑N

i=1 1{g0
it = g}/N does not degener-

ate. Empirically, this rules out the case where a group consists of only a few units. Moreover,

this assumption also requires that there is no cross-sectional multicollinearity among units in

each group. Assumption 1(v) excludes the presence of outliers in xit.

Assumption 1(vi) ensures the identification of the break point. It implies that the value of

the coefficient vector and/or the group membership structure changes sufficiently at the break

point. Importantly, this assumption allows the situations in which the group membership

structure changes while the coefficient vector for each group does not change, which has not

been considered previously in the literature, to our knowledge. This assumption also covers

the cases where only the coefficient vector changes but not group memberships as considered

in Okui and Wang (2021). Assumption 1(vii) rules out the possibility that the break occurs

in the very beginning or the very end of the sample period, so that there are sufficiently long

(at least asymptotically) time series both before and after the break. This condition is often

imposed for detecting breaks with time series data, but not with panel data (see, e.g. Bai,

2010; Qian and Su, 2016; Okui and Wang, 2021). It is required here in order to identify

time-varying group membership structures, which requires a sufficiently large time dimension

in both regimes.

Assumption 1(viii) states that the coefficients in the two different groups are sufficiently

different, often called the “group separation” condition. It is used to identify the group

membership structure. Assumption 1(ix ) contains technical conditions on the mixing and

tail properties of various random objects appearing in the theorems. It is used to show the

consistency of the group membership assignments. Technically, we can relax Assumptions

1(vi), 1(viii) and 1(ix ) and still obtain the consistency of break date, group membership, and

4We make the assumptions on ρ rather than on ρ̂ (and on ρ∗ rather than on ρ̂∗) for a technical reason that

there are practically relevant cases in which ρ̂ > 0 may not hold while ρ > 0 does. For example, when xit is a

binary random variable, there exists a tiny yet positive probability that xit’s are identical for all i and t. Thus

ρ̂ > 0 does not hold but ρ > 0 may be assumed.
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coefficient estimators as well as the asymptotic distribution of coefficient estimator. However,

the current assumptions allow us to obtain the asymptotic results under a weak and easy-to-

understand condition on the relative magnitude of N and T . In Appendix A.3, we consider

cases in which the break size shrinks (i.e., m tends to 0 asymptotically), group separation is

not perfect asymptotically (i.e., c tends to 0 asymptotically), and the variables satisfy weaker

mixing and moment conditions than those in Assumption 1(ix ) but under strict stationarity

of regressors and the error term (but not stationarity of the dependent variable).

Assumption 1(x ) imposes a condition on the existence of the moments of xituit, which is

used to bound mixingale sequences.

Theorem 1. Suppose that Assumption 1 holds. As N,T → ∞ with NT−δ → 0 for some

δ > 0, Pr(k̂ = k0)→ 1.

This theorem establishes the consistency of the break point estimator. Note that this

is a “super” consistency result in the sense that the probability of the break point estimate

exactly equals the true break point with probability approaching one. Next, we examine the

the properties of group membership and slope coefficient estimators.

Corollary 1. Suppose that Assumption 1 holds. As N,T → ∞ with NT−δ → 0 for some

δ > 0,

(1) Pr(γ̂ = γ0)→ 1,

(2) β̂ = β̃ + op(1/
√
NT ), where β̃ is the estimator of β under k = k0 and γ = γ0.

The first statement of this corollary shows that the group membership structure can be

estimated consistently.5 This is also a super consistency result as in the case of break point.

These two super-consistency results imply the second conclusion of the corollary that the

coefficient estimator asymptotically behaves as if the break point and the group membership

structure were known. Because β̃ is the ordinary least squares estimator applied to each

regime and each group, its asymptotic distribution is well-known and standard statistical

inference applies.

5The super-consistency of group membership estimators is a strong result that guarantees asymptotic

equivalence of estimated coefficients under unknown and true memberships. In fact, it is possible to derive

the asymptotic distribution of β̂ under a weaker set of assumptions. Dzemski and Okui (2020) prove the

asymptotic normality of the coefficient estimator without the uniform super-consistency of group membership

estimators in a simple model that contains only an intercept and no structural breaks. However, the proof

becomes much more involved even in that simple setting. Thus, to avoid complicating the theories and stay

focus on our goal of detecting membership breaks, we keep our assumptions strong enough to achieve the

super-consistency of γ̂.
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Note that T →∞ and a sufficient number of time periods in each of the regimes are requi-

site to identify the group membership structure and to achieve the consistency of clustering,

based on which the consistency of the break date and coefficient estimators is established.

This implies that the estimation technique in (2) does not allow for consecutive or end-of-

sample breaks, a restriction that is common to much of the structural break literature. While

sufficient time series observations are required, we allow N to be much larger than T since our

theoretical results hold under NT−δ → 0 with δ being any arbitrary positive constant. As

observed in Bonhomme and Manresa (2015), such a weak condition on the relative magnitude

of N and T is an advantage of imposing a group pattern of heterogeneity. It is much weaker

than those used in other papers on heterogenous panel data, such as N/T → 0 and N/T 2 → 0

as used in Okui and Yanagi (2019).

4 Extensions

4.1 Models with individual-specific fixed effects

So far we have considered the model with group-specific fixed effects. In many cases, it is

desirable to capture individual unobserved heterogeneity, and thus we consider the following

model:

yit = αi + x′itβgit,t + uit, (4)

where αi are individual effects that can be arbitrarily correlated with covariates; the speci-

fication of other quantities remains mostly identical to model (1), but we primarily consider

cases of strict exogeneity E(uit | αi, {xit}Tt=1) = 0. In this subsection, we suppose that the

panel data starts at t = 0 for notational convenience.

4.1.1 Estimation method

To eliminate the fixed effects, we take the first difference. The transformed variables satisfy:

∆yit =x′itβgit,t − x′i,t−1βgi,t−1,t−1 + ∆uit

=


∆x′itβgi(B),B + ∆uit if t < k0

x′itβgi(A),A − x′i,t−1βgi(B),B + ∆uit if t = k0

∆x′itβgi(A),A + ∆uit if t > k0

,

where ∆ is the first difference operator, for example, ∆yit = yit − yi,t−1. First differencing is

convenient in our setting because ∆yit depends on the coefficients in both regimes, namely

βgi(B),B and βgi(A),A, only at t = k0. In contrast, within transformation, an alternative

15

Electronic copy available at: https://ssrn.com/abstract=3617416



method to remove fixed effects, yields dependent variables that depend on coefficients of both

regimes at all time periods, rendering the transformed model more difficult to analyze.

As above, we estimate the coefficients, group membership structure, and the break date

by minimizing the quadratic loss function. In particular, we estimate (k, γ, β) by minimizing

the least squares criterion:

(k̂, γ̂, β̂) = argmin
k∈K,γ∈Γ,β∈B

[ k−1∑
t=1

N∑
i=1

(∆yit −∆x′itβgi(B),B)2

+

N∑
i=1

(∆yik − x′ikβgi(A),A + x′i,k−1βgi(B),B)2 (5)

+

T∑
t=k+1

N∑
i=1

(∆yit −∆x′itβgi(A),A)2

]
.

To solve the optimization problem, we can employ a similar algorithm as in Section 2 but

replace the objective function with (5).

4.1.2 Asymptotic properties

To show the asymptotic properties of the estimators in the presence of fixed effects, a similar

set of assumptions to those in Section 3 is needed, but some of the assumptions need to be

adjusted to incorporate the first-differenced data. Specifically, we keep Assumptions 1(ii),

1(vii) and 1(viii) and the other parts of Assumption 1 are modified as follows:

Assumption 2.

(i) For any L ⊆ {1, . . . , N} and t′′ ≥ t′, there exists M which does not depend on L, t′′

nor t′ such that the following equality holds

E


∥∥∥∥∥∥ 1

NT

t
′′∑

t=t′

∑
i∈L

xit+luit+j

∥∥∥∥∥∥
2
 = M

|L|(t′′ − t′)
NT 2

. (6)

for l, j = 0,−1, where |L| is the cardinality of L.

(iii) Let ρD,N,t(γ
t, g, g̃) be the minimum eigenvalue of

∑N
i=1 1{g0

it = g}{git = g̃}∆xit∆x′it/N ,

where γt is either γB (when t < k) or γA (when t ≥ k). For any g ∈ GB,

min
1≤t<k0

min
γB

max
g̃∈GB

ρD,N,t(γB, g, g̃) > ρ̂D,

and for any g ∈ GA,

min
k0<t≤T

min
γA

max
g̃∈GA

ρD,N,t(γA, g, g̃) > ρ̂D,

where ρ̂D →p ρD and ρD > 0 does not depend on N and g.
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(iv) There exists ρ̂∗D such that for any i and for s such that s and T − s sufficiently

large,

λmin

(
1

s

s∑
t=1

∆xit∆x
′
it

)
≥ ρ̂∗D and λmin

(
1

T − s

T∑
t=s+1

∆xit∆x
′
it

)
≥ ρ̂∗D,

and ρ̂∗D →p ρ
∗
D > 0.

(v) max1≤t≤T
∑N

i=1‖xit‖2/N = Op(1) and max1≤t≤T
∑N

i=1‖∆xit‖2/N = Op(1).

(vi) There exists a fixed constant m > 0 independent on T and N , such that for any t,

1

N

N∑
i=1

(∆x′it(β
0
g0i (A),A − β

0
g0i (B),B))2 > m.

(ix) Let zit be ∆x′it∆xit, ‖∆uit∆xit‖, 2∆uit∆x
′
it(β

0
g0
i(l)

,l
− β0

g,l) or (∆x′it(β
0
g0
i(l)

,l
− β0

g,l))
2,

for g ∈ Gl and l = A,B. Assume the following holds for any choice of zit: 1) zit is a

strong mixing sequence over t whose mixing coefficients ai[t] are bounded by a[t] ≤ e−atd1

such that max1≤i≤N ai[t] ≤ a[t] and has tail probabilities max1≤i≤N Pr(|zit| > z) ≤
e1−(z/b)d2 for any t where a, b, d1 and d2 are positive constants. 2) There exists ai,

i = 1, . . . , N such that for any ε > 0, it holds that max1≤i≤N |ai −
∑T

t=1E(zit)/T | < ε

for T sufficiently large.

(x) max1≤t≤T E(‖
∑N

i=1 xituit+l/
√
N‖2+δ) is bounded for some δ > 0 where l = 0,−1.

With these modified assumptions, we can establish exactly the same asymptotic properties

of the estimators of the break point, group memberships, and slope coefficients as stated in

Theorem 1 and Corollary 1. Note that Assumption 2(i) excludes predetermined regressors

such as lagged dependent variables in model (4). If xit contains predetermined regressors,

then E(xitui,t−1) 6= 0 and the order of the left side of (6) would be at least O(1), violating

the order required in the assumption. In contrast, this assumption would be satisfied, for

example, if xit is strictly exogenous.

4.2 Multiple breaks

Our framework can allow the group structure and slope coefficients to experience a break

at different time points when the method is extended to multiple breaks, because these two

different changes can be modelled by two breaks. When we have m structural breaks at time
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points k0
1, . . . , k

0
m, the coefficient vector can be written as:

βgit,t =



βgi(1),1 if t < k0
1,

βgi(2),2 if k0
1 ≤ t < k0

2,
...

βgi(m),m if t ≥ k0
m.

To estimate multiple breaks, we can consider either the simultaneous approach (Bai and

Perron, 1998) or the sequential approach discussed by Bai (2010) and Baltagi et al. (2016) in

the panel data context. Both approaches are based on the least squares objective function,

with the former simultaneously estimating all break points and the latter estimating the break

points one at a time. More specifically, assuming that the number of breaks is known, the

simultaneous approach first computes the sums of squared residuals of the relevant segments of

the time periods, and then searches for the partition that achieves a global minimization of the

overall sum of squared residuals using dynamic programming. Because the estimation of latent

group structures requires a sufficiently large number of time observations, some partitions with

short time periods in a regime need to be excluded, rendering this simultaneous approach

computationally more difficult. In contrast, the sequential approach is computationally more

attractive because it proceeds as if there were only one break each time. It detects the first

break point k̂1 (not necessarily corresponding to k0
1) by solving (2) over the entire time period.

Then it splits the time period into two regimes at k̂1, and estimates a break point, again by

estimating a similar objective function as (2), in each of the two regimes respectively. The

second break point k̂2 is the one (out of the two newly estimated points within the two

regimes) that leads to a larger reduction in the sum of squared residuals. One can repeat

such a procedure until m breaks are obtained. Our preliminary study suggests that this

sequential procedure will work in detecting multiple break points and identifying the latent

group structures in each regime, but a comprehensive theoretical analysis is reserved for future

investigation.

4.3 Models with partially homogeneous and time-invariant coefficients

Model (1) can be extended to allow a subvector of coefficients to be time-invariant and

homogeneous. Without loss of generality, let the first k1 explanatory variables x1,it have time-

invariant and homogeneous coefficients β1, and the remaining covariates x2,it correspond to

heterogeneous time-varying coefficients β2,git,t. The objective function in this case becomes

(k̂, γ̂, β̂) = argmin
k∈K,γ∈Γ,β∈B

[
k−1∑
t=1

N∑
i=1

(yit − x′1,itβ1 − x′2,itβ2,gi(B),B)2
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+

T∑
t=k

N∑
i=1

(yit − x′1,itβ1 − x′2,itβ2,gi(A),A)2

]
. (7)

To find a minimizer of this objective function, we adjust the iterative algorithm by separating

the estimation of β1 and β2,g,t such that an estimate of β1 is estimated using all the observa-

tions in Step 2 of Algorithm 1, and the group membership update in Step 3 is based on the

adjusted objective function (7).

5 Simulation study

This section evaluates the finite sample performance of the proposed method. First, we

compare three methods of detecting heterogeneous breaks when the number of groups in each

regime is known. The first method is what we propose in this paper which simultaneously

estimates the group and break points using (2). The second method first detects break points

based on individual estimation as in Baltagi et al. (2016) and then classifies units given the

estimated breaks. The final method is GAGFL proposed by Okui and Wang (2021). Next, we

examine the performance of the proposed procedure in determining the numbers of groups,

and in this part of the simulation study we explicitly allow that the number of groups and

hence group membership may change after the structural break.

5.1 Estimation under a given number of groups

In this section, we first evaluate the performance of the three methods when the number

of groups in each regime is given. Our benchmark designs consist of four data generation

processes (DGPs), each of which contains three sub-cases that differ in the type of breaks:

(1) a structural break only in the magnitude of the group-specific slope coefficients, (2) a

structural break only in the group memberships, and (3) a structural break (at the same

point in time) in both the coefficients and group memberships. We also consider various

extensions from the benchmark to examine how the performance of the methods varies in

different situations, and the details are provided in the online supplement.

5.1.1 Data generation processes

The four benchmark DGPs are as follow:

DGP 1 [Static panel]: Our baseline case considers the following model

yit = x′itβgit,t + uit,
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where xit is a p×1 vector that contains as its first element a constant and the other p−1

nonconstant regressors generated from N(0, Ip−1) with Ip−1 being an identity matrix

of dimension p − 1. We set p = 6 to illustrate the case where the length of time series

is not dominantly larger than the number of parameters for each individual unit. We

consider two groups. Let Nj , j = 1, 2, denote the number of units in group j with

N = N1 +N2. The group membership and slope coefficients are both allowed to change

after a structural break at time k0 = b0.7T c, where b·c takes the integer part. The error

term uit follows a standard normal distribution.

DGP 2 [AR error]: The same as DGP 1 except that the error term is autoregressive

as uit = ρuit−1 + εit, where ρ = 0.6 and εit follows a standard normal distribution.

DGP 3 [Individual FE]: We consider the model

yit = αi + x′itβgit,t + uit,

where αi follows a standard normal distribution, and xit = αi + zit with zit being a

p× 1 vector of standard normally distributed variables. The remaining specification is

the same as DGP 1.

DGP 4 [Dynamic panel]: The same as DGP 1 except that the regressors contain a

lagged dependent variable yit−1.

For each of these four DGPs, we consider three sub-cases, depending on which parameters

contain structural breaks.

DGP X.1 This case permits a structural break only in the slope coefficients. We fix

the ratio of units among groups as N1 : N2 = 0.4 : 0.6, and the group membership

does not change after the structural break. The coefficients in the first group exhibit a

structural break as

β1,t =

β1,B = ιp if t < k0

β1,A = 2ιp if t ≥ k0
,

where ιp is a p× 1 vector of ones. Units in the second group do not exhibit breaks, and

the slope coefficient in this group is given by β2,t = 0.5ιp.

DGP X.2: In this case, group memberships change after the break but the slope

coefficients do not. The ratio of units among groups is N1 : N2 = 0.4 : 0.6 before the

break, and N1 : N2 = 0.6 : 0.4 after the break. We generate the group memberships

before and after the break independently. For simplicity and clarity, we assign the first
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40% of units to Group 1 before the break and the first 60% to the same group after the

break, such that 20% of units change their group memberships. This way of generating

memberships allows us to easily vary the proportion of units that change memberships

by changing the ratio of units among groups. The slope coefficients are β1,t = ιp in

Group 1 and β2,t = 0.5ιp in Group 2.

DGP X.3: In this case, both the slope coefficients of each group and the group structure

change after the break. The slope coefficients are the same as in DGP X.1, while the

group structure is the same as DGP X.2.

We therefore have 12 cases in total. We further consider the cross sectional dimensions

N = (100, 200) and the time series dimensions T = (10, 20), leading to four combinations of

sample sizes. In all cases, the simulation is conducted based on 1000 replications.

5.1.2 Implementation and evaluation

We compare the proposed method with GAGFL (Okui and Wang, 2021) and break detection

methods based on individual estimation, denoted as BFK (Baltagi et al., 2016). We call

our proposed method the Least Squares estimator for models with Group structure and

structural Break (LSGB). The LSGB method detects the break point and cluster units jointly

by minimizing the objective function (2).

GAGFL assumes that the group memberships do not change after structural breaks.

It estimates the group memberships, break points, and slope coefficients simultaneously by

minimizing the following objective function

(β̂, γ̂) = argmin
(β,γ)∈BGT×GN

 1

NT

N∑
i=1

T∑
t=1

(yit − x′itβgi,t)2 + λ
∑
g∈G

T∑
t=2

ẇg,t ‖βg,t − βg,t−1‖

 ,
where λ is a tuning parameter typically chosen by an IC (see, e.g., Qian and Su, 2016) and ẇg,t

is a data-driven weight constructed based on a preliminary consistent estimate of β (see Okui

and Wang (2021) for details). To apply this method when group membership is allowed to

change after the break, we need to segment a homogeneous group if some of its members shift

to another group in a different regime, such that each group only contains units that do not

change memberships in all regimes. Particularly, in our DGP X.2 and DGP X.3, X = 1, . . . , 4,

we need to impose 3 groups for GAGFL to assure no units change memberships.6

6Since we generate the memberships with the first 40% of units in Group 1 before the break and the first

60% in the same group after the break, we have the first 40% and last 40% of units who do not change

memberships while the middle 20% do change. The number of groups needed for GAGFL to assure time-

invariant memberships depends on the minimum number of groups in each regime and how units change

memberships.

21

Electronic copy available at: https://ssrn.com/abstract=3617416



Unlike the other two methods, BFK first detects the break point by estimating

k̂ = arg min
k

min
βi,δi

N∑
i=1

T∑
t=1

[
yit − x′itβi − x′itδi1(t ≥ k)

]2
,

and then for each stable regime estimates the group membership structure γA and γB using

least squares estimation, and obtains group-specific slope coefficients. Note that (Baltagi

et al., 2016) do not consider group structure and strictly speaking, the BFK method we

consider is a combination of the break detection by (Baltagi et al., 2016) and the group fixed

effect method by Bonhomme and Manresa (2015).

We evaluate the three methods based on the accuracy of break point detection, group

assignment, and coefficient estimates. First, we measure the accuracy of break point estimates

based on their Hausdorff distance (HD), which collapses to the absolute distance between the

true and estimated break points in the case of one break as

HD(k̂, k0) ≡ |k − k0|.

We report the distance as a percentage of the sample, that is, multiplied by 100 and divided

by T , i.e. 100×HD(k̂, k0)/T , averaged across the replications. We also report the average es-

timated break points across replications, k̄. For GAGFL, we report the HD and k̄ conditional

on the correct estimation of the number of breaks.

Second, the clustering accuracy is measured by the average of the misclustering frequency

(ĝi 6= g0
i ) across replications. Let I(·) be the indicator function. The misclustering frequency

(MF) is the ratio of misclustered units to the total number of units, i.e.

MF =
1

N

N∑
i=1

I(ĝi 6= g0
i ).

The average misclustering frequency (across replications) before and after the break is re-

ported separately, denoted by MFB and MFA for the three methods.

Finally we evaluate the accuracy of coefficient estimates by overall mean square error

(MSE) averaged across replications as

MSE(β̂it) =
1

NT

N∑
i=1

T∑
t=1

(β̂it − βit)2,

where β̂it and βit are the estimated and true values of β for unit i at period t. Since the MSE

here is computed based on coefficient estimates for each unit at each time, this measure also

reflects the error of clustering and break point detection.
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5.1.3 Results

We first examine the accuracy of break point detection of the three methods. Table 1 presents

the Hausdorff distance and average estimated break point. In almost all cases, the proposed

LSGB produces more accurate break point estimates than GAGFL and BFK. LSGB out-

performs GAGFL because the latters segmentation into homogenous groups (to ensure time

invariant memberships) leads to rather inefficient coefficient estimates, and further produces

less accurate break point estimates. The degree of efficiency loss depends on the amount of

“unnecessary” separation. In these benchmark cases, GAGFL only segments three groups,

while the true number of groups in both regimes is two. When the cross-section dimension

is large, GAGFL often performs as equally well as LSGB. The advantage of LSGB is demon-

strated when N is not large, especially when only group memberships change after the break

(DGP X.2). We also consider the case with more groups, and the results (see the online

supplement) show that the efficiency loss of GAGFL can be quite substantial if the number of

groups increases. Although GAGFL performs worse than LSGB in some cases, it still has its

own advantages. For example, it can handle multiple breaks more conveniently than LSGB

and can incorporate end-of-sample or consecutive breaks which cannot be accommodated by

LSGB since consistent group membership estimation of LSGB requires a sufficiently long time

series dimension.7 Moreover, we find that GAGFL also outperforms BFK in all DGPs since

it makes use of cross-sectional variation, in line with the findings of Okui and Wang (2021).

Comparing LSGB with BFK, the former performs significantly better because it imposes

a group structure, making use of cross-sectional variation, and therefore produces more effi-

cient estimation than individual time series estimation. Moreover, the poor performance of

BFK is also due to the fact that not all individuals have structural breaks (see also Baltagi

et al., 2016; Okui and Wang, 2021). As N increases, the accuracy of the LSGB break point

estimates improves remarkably because there are more units in each group, providing more

cross-sectional variation for estimation. In contrast, the accuracy of the BFK break point

estimate is hardly affected by an increase of N since it is based on separate individual estima-

tion. As T increases, we find that the performance of both methods improves. The Hausdorff

distance of the BFK break point estimates is roughly halved when T is doubled, while that

of LSGB is reduced even more dramatically, confirming the super-consistency of the group

membership estimators. The average break point estimates show that the BFK approach

tends to estimate the break point in the middle of the time period. This is expected be-

cause individual time series estimation can be highly inefficient. Splitting the sample roughly

equally provides sufficient samples for both regimes, and therefore leads to a smaller sum of

7GAGFL can incorporate end-of-sample breaks because it employs the entire time period for group mem-

bership estimation; see Okui and Wang (2021) for details.

23

Electronic copy available at: https://ssrn.com/abstract=3617416



squared residuals than splitting at the true break point which leads to too small a post-break

sample. In contrast, LSGB makes use of the cross section samples, and thus avoids the prob-

lem caused by an insufficient number of time observations after the break. More results on

how the performance of BFK and LSGB depends on the sample sizes in the two regimes are

provided in the online supplement.

We further examine the performance of LSGB in each DGP in detail. In DGP 1, LSGB

produces highly accurate break point estimates with the Hausdorff distance close to zero in

all cases. When the error is serially correlated as in DGP 2, the performance of LSGB is

slightly affected, but the method can still detect break points fairly accurately. In DGP 3

with individual fixed effects, first differencing largely reduces the accuracy of LSGB, but it

improves quickly as T increases. Including predetermined lagged dependent variables does

not seem to deteriorate the performance of LSGB at all. Interestingly, it appears that breaks

only in group memberships are more difficult to detect than breaks in the slope coefficients.

A possible reason is that breaks in group membership with 20% of the units changing their

memberships correspond to a moderate size of coefficient breaks in a fixed-group context.

This is partly confirmed by increasing the percentage of units that change memberships, and

we indeed obtain more accurate break point estimates.

INSERT TABLE 1 HERE

Next, we compare the group membership estimates of the three methods and present

the misclustering frequency in Table 2. GAGFL often produces the lowest misclustering fre-

quency when slope coefficients exhibit a break, because it employs the entire time period for

clustering, while LSGB and BFK estimate memberships only using time observations in each

regime. However, when only group memberships exhibit a break (DGP X.2), GAGFL is out-

performed by LSGB. Comparing LSGB with BFK, the clustering produced by LSGB is more

accurate than that by BFK in most cases due to more accurate break point estimation. This

is expected because the slope estimates of BFK are contaminated by incorrect break point

estimation, which further affects the clustering. In DGP 1.1, LSGB leads to much lower

misclustering frequency than BFK before the break, but not after the break. The poorer

performance of LSGB after the break is because LSGB correctly detects the break point that

lies close to the end of the time period, leaving only a short time dimension after the break

for group identification. On the contrary, BFK incorrectly estimates the break point around

the middle of the time period, leading to a longer post-break time dimension. In DGP 1.2,

LSGB again produces more accurate clustering than BFK before the break. The performance

of the two methods is similar after the break, and LSGB even slightly outperforms BFK when
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T = 20. In DGP 1.3, LSGB dominates BFK both before and after the break for all sam-

ple sizes. This suggests that the incorrect break point estimation contaminates the group

membership estimates to a larger extent when group memberships exhibit a break. When we

allow for serial correlation in errors in DGP 2, all methods produce less accurate clustering

as expected. Like in DGP 1, we find that when only the coefficients exhibit a break, LSGB

clustering is more accurate than BFK in the pre-break regime. When the group memberships

exhibit a break, LSGB performs equally well or better in both regimes. Similar results appear

in DGP 3 where we allow for individual fixed effects and estimate using first-differenced data.

In DGP 4 where lagged dependent variables are included, the impact of incorrect break point

estimates on clustering is larger, and thus LSGB outperforms BFK in clustering in all cases,

regardless of the type of break and sample sizes. To better appreciate the super-consistency

of group membership estimates, we also compute the percentage of perfect clustering across

replications (results available upon request). We find that the percentage indeed improves

exponentially as T increases, providing strong evidence of super-consistency.

INSERT TABLE 2 HERE

Finally, we compare the average MSE of the coefficient estimates (across replications) pro-

duced by the three methods in Table 3. Despite accurate group assignment, the average MSE

of GAGFL is generally larger than that of LSGB except in a few cases of DGP X.1 (where

only the coefficients break). The efficiency loss of GAGFL is particularly sizeable when group

memberships change after the break (DGP X.2 and X.3) and in the models with individual

fixed effects (DGP 3) or lagged dependent variables (DGP 4). BFK performs even worse

than GAGFL. Its MSE is at least twice as large as that of LSGB in all cases, and sometimes

(i.e., DGP 4.1 and 4.3) even explodes due to incorrect break point and group membership

estimation as in some cases of dynamic panels.

INSERT TABLE 3 HERE

We also consider alternative settings of coefficients to generate lower signal-to-noise ratios,

less sizeable breaks, and more alike groups. Our method can still correctly detect the break

point and cluster units under reasonably low signal-to-noise ratios (see the online supplement).

The accuracy of break point estimates and clustering mainly depends on the size of break and

the degree of group separation, while the signal-to-noise ratio mainly affects the accuracy of

the coefficient estimates.
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5.2 Determining the number of groups

So far, the simulation study focused on the cases when the number of groups is known.

When this number is not a priori knowledge, as in most applications, we propose an IC-based

method to determine the number in each regime (see Section 2.3.1). Here we investigate the

performance of this approach in finite samples. We primarily focus on the case when the

number of groups changes after the structural break.8

We consider four data generating processes similar to DGPs 1–4 as above except that we

set the number of groups before the break to GB = 2 and after the break to GA = 3. In each

DGP, we modify DGP X.2 and X.3 to allow the number of groups to change after the break

as follows

DGP X.2’: Only the group membership changes. The size of groups before the break

is N1 : N2 = 0.4 : 0.6 as above, but after the break and N1 : N2 : N3 = 0.3 : 0.3 : 0.4.

The slope coefficients before the break are β1,B = ιp in Group 1 and β2,B = 0.5ιp in

Group 2, and those after the break are β1,A = ιp in Group 1, β2,A = 0.5ιp in Group 2,

and β3,A = 2ιp in Group 3.

DGP X.3’: Both the slope coefficient of each group and the group structure change

after the break. The group structure is the same as DGP X.2’ above. The slope

coefficients before the break are β1,B = 1.5ιp in Group 1 and β2,B = 0.5ιp in Group 2,

and those after the break are β1,A = 2.5ιp in Group 1, β2,A = 0.5ιp in Group 2, and

β3,A = 3.5ιp in Group 3.

Table 4 presents the empirical probability of selecting a particular number of groups in

each regime with the possible number ranging from 1 to 4.9 Recall that the true number

is GB = 2 before the break and GA = 3 after the break. The proposed method generally

performs well in determining the number of groups in the two regimes except when T is

particularly small. Unsurprisingly, when the groups are not well separated (DGP X.2’) and

the sample is small (N = 100 and T = 10), the method tends to underestimate the number

of groups. Otherwise, it can identify the correct number of groups with a high probability

in most of cases, though it sometimes slightly overestimates the number (e.g., DGP 3.2 and

8The case of time invariant number of groups is a special case of the current setup, and the performance

of IC when the number of groups is time invariant has been studied in other papers, e.g. Bonhomme and

Manresa (2015) and Okui and Wang (2021).
9Allowing for a larger set of possible numbers hardly affects the results for almost all cases. The only

exception occurs in the post-break regime in DGP 3, where the length of time span after the break is short

and first-differencing is applied. In that case, increasing the maximum number of groups leads to more severe

overspecification with the probability on each selected number being more dispersed.
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3.3 after the break). Since overspecification only lowers the efficiency but does not affect

the consistency of the coefficient estimates, our IC-based method provides a satisfactory tool

to guarantee consistent coefficient estimates in most cases. More specifically, in DGP X.2’

where only the group membership changes, our method can guarantee not to underestimate

the number of groups as long as T is not too small. When the groups are relatively well

separated as in DGP X.3’, the IC-based method can correctly identify the group number in

both regimes with a high probability in 10 out of 16 cases. In the remaining 6 cases (2 of

DGP 2.3’ and 4 of DGP 3.3’), it selects a slightly inflated number. As expected, the presence

of serially correlated errors and first differencing (to deal with individual fixed effects) both

deteriorate the performance of the method.

INSERT TABLE 4 HERE

6 Empirical Example

6.1 Sales growth determinants in US firms

Our empirical application examines the relationship between the sales growth (SG) of US

firms. Sales growth is one of central interests in corporate finance as it serves as an important

measure of corporate performance (Opler and Titman, 1994; Geroski et al., 1997; Beck et al.,

2005; Barrot and Sauvagnat, 2016). Financial economists, investors, and decision makers have

exhibited a keen interest in understanding which determinants affect sales growth and how.

We are particularly interested in the relationship between leverage (LEV) and corporate

performance as this association largely affects corporate investment strategy. On one side

of this relationship, high leverage is of concern because it reduces a firm’s ability to finance

growth through a liquidity effect (Myers, 1977). On the other side are researchers who believe

that the capital structure of a firm is essentially irrelevant because firms with good projects

can always achieve funding and grow regardless of their leverage level. For example, Miller

(1991) regarded financial leveraging as a second-order or largely self-correcting issue and thus

argued that it should not be over-emphasized. We examine the relationship between sales

growth and leverage, controlling for a number of determinants that are generally regarded

as relevant for sales as in Barrot and Sauvagnat (2016) and Sojli et al. (2019), namely the

logarithm of total assets (TA), Tobin’s q (TQ), cash flow (CF), property, plant and equipment

(PPE), and return on assets (ROA).

Thus, we examine the determinants of sales growth by allowing a structural break which
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induces time-varying group memberships:

yit = αi + x′i,t−1βgi(B),B1(t < k) + x′i,t−1βgi(A),A1(t ≥ k) + uit,

where yit is sales growth, xit = (LEVit,TAit,TQit,CFit,PPEit,ROAit), gi(B) = 1, . . . , GB,

and gi(A) = 1, . . . , GA. Lagged regressors are used to alleviate possible endogeneity following

Sojli et al. (2019). Our modelling strategy of specifying time-varying coefficients and group

memberships is motivated by the ample evidence of heterogenous responses to market-wide

shocks in the literature. In particular, firms are exposed to various shocks from the market.

Some shocks may reshape the structural relationship between firms’ variables, leading to a

structural change in the slope coefficients of the sales growth regression. A salient empirical

finding in the literature on market-wide shocks is that firms’ responses to such shocks have a

group pattern of heterogeneity, i.e., firms in the same group respond similarly to the shocks,

while the responses differ across groups (see, e.g., Banerjee et al., 2015; Duchin et al., 2010;

Joh, 2003; Sojli et al., 2019, among others). Such heterogeneity of response is due to differences

in observable and unobservable firm and managerial characteristics, such as profitability,

industry, corporate culture, business strategies, managerial qualities, etc. Therefore, when

firms are affected by market-wide shocks, not only do the relationships between firms’ variables

change, the group structure also may be reshaped because both the firm and managerial

characteristics are changed.

We collect all variables from Compustat. To maximize the sample size of a balanced

panel, we employ a sample of 740 firms from 1981 to 2013. Prior to our estimation, we follow

the literature in dropping firms that contain outlying observations of sales growth (see, e.g.

Adams et al., 2019), where the outliers are defined as sales growth at least 10 times larger

than that in neighbouring years.10 This leads to a sample of 703 firms.

To estimate the sales growth regression, we first determine the number of groups before

and after the breaks, i.e. GB and GA, respectively. We allow GB and GA to potentially

differ, and apply the IC proposed in Section 2.3.1 to select from the range of 1 to 10. The

IC suggests GB = 5 and GA = 7; that is, two extra groups emerge after the structural break.

Given the number of groups in both regimes, the LSGB estimation reports a break point in

the year of 1997 (k̂ = 16), which precisely matches the onset of the Asian financial crisis.

Our diagnostic analysis as proposed in Section 2.3.2 confirms that both slope coefficients and

group memberships are affected by the financial crisis.

Our break point estimate of 1997 is an interesting result. The Asian financial crisis was

triggered by the dramatic devaluation of the Thai baht in the summer of 1997, and then

10We also tried other definitions of outliers, e.g. larger than 3 times standard error, and the results are

qualitatively similar.
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spread to Indonesia, South Korea, Malaysia, and other Asian countries, causing abrupt and

severe economic slowdowns in the region. The serious turbulence also influenced US firms due

to the strong ties between the US and Asia in international trade, money lending, etc., and the

reverberations of the Asian crisis on US firms have been multifaceted (Emmons and Schmid,

2000). On one hand, the severe recession in Asian countries inevitably caused a shortfall in

both demand and supply from this region and hence a deterioration of exports and imports

of US firms. On the other hand, the uncertain financial environment of Asia brought in cash

flows to the US, and together with lower interest rates and lower commodity prices, facili-

tated the growth of the US economy and further positively influenced the performance of local

firms. Therefore, it is not surprising that the relationship between the financial variables of

US firms would significantly change, and firms response to this crisis differed depending on

their relations with the Asian market, the type of firms they were, their strategies under risky

and uncertain environments, etc. To examine the effects of the determinants for each group

in both regimes in detail, we label the groups in the two regimes according to the strength

of the leverage effect.11 The groups before the break are denoted as Groups 1.B–5.B, and

groups after the break as Groups 1.A–7.A. We examine the effect of the determinants of sales

growth and the group structure in turn.

INSERT TABLE 5 HERE

Table 5 reports the estimated slope coefficients of sales growth determinants for each group

in both regimes. In general, we find the effect of leverage on sales growth to be highly hetero-

geneous both across groups and across regimes. A small group of 32 firms before the break,

i.e., Group 5.B, is characterized by an insignificant effect of leverage, and most of these firms

stay in the same group after the break (Group 7.A), with the relationship between leverage

and sales growth still insignificant. Nonetheless, the majority of firms are characterized by

a significant association between leverage and sales growth but with highly heterogeneous

magnitude and differing directional effect. Among these firms, a small group in each regime

(Group 1.B with 27 firms and 1.A with 10 firms) exhibits a particularly strong and positive

effect of leverage (larger than 3), but the members of the two groups show little overlap. For

the remaining firms with a significant effect of leverage, the magnitude is much smaller, rang-

ing between −1.7 and 0.5. Such heterogeneous effect of leverage is in line with Lang et al.

(1996) who also found that the association between leverage and various measures of firm

growth can be either positive or negative, depending on firm characteristics. Interestingly,

11Because groups are invariant to relabeling, for ease of exposition and examination, we order the groups

according to the strength of the leverage effect.
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we find that the variation of the leverage effect across groups is enlarged after the structural

break, suggesting that the financial crisis made firms more diversified in their investment and

sales performance. To better understand these results, we further examine the dynamics of

the composition and characteristics of each group.

INSERT TABLE 6 HERE

Table 6 provides the descriptive statistics of sales growth and all other regressors, by

group.12 We investigate each group in turn. As noted above, the members in Groups 1.B and

1.A with extraordinarily strong positive leverage effects show little overlap. The majority of

firms in Group 1.B are in the transportation & public utilities industry, while those in Group

1.A are mostly related to housing and energy. Despite these diversified industries, firms of

both groups generally require high investment in fixed assets but relatively low liquidity, and

thus we find high total assets and low cash flow as common features of these two groups.

Another group with a significant and positive leverage effect before the break is Group

2.B containing 201 firms. The majority of this group are manufacturing firms, with roughly

20% and 35% in light and heavy manufacturing industry, respectively. These firms generally

operate well with reasonably good sales growth. They are also characterized by a relatively

high Tobin’s q and low PPE, explaining the strongly positive effect of Tobin’s q and negative

effect of PPE on sales growth. The characteristics of this group are in line with Lang et al.

(1996) that found a positive relationship between leverage and corporate growth for firms

with high Tobin’s q. After the structural break, a large number of manufacturing firms stay

in the same group and form Group 2.A.13 The estimated coefficients of most sales growth

determinants remain similar after the break except that the positive effect of leverage and

Tobin’s q and the negative effect of return on asset both become much stronger. Further

examination of the descriptive statistics shows that sales growth and leverage in Groups 2.B

and 2.A do not differ much, while it is mainly the sizeable decrease of Tobin’s q that causes

these effects to change after the break. Although Groups 2.B and 2.A share largely the same

members, a large portion of electronic & electric firms from Group 2.B, e.g., Advanced Micro

Devices, Allied Motion Technologies, Analog Devices, and Eaton Corporation, move to other

groups, mainly Groups 4.A and 5.A. As will be discussed shortly, Groups 4.A and 5.A are

characterized by poor sales performance. These electronic & electric firms performed worse

after the financial crisis partly because they were closely tied to related industries in East

12We also evaluate the appearance frequency of each industry (specified by the two-digit Standard Industrial

Classification (SIC) code) in each group for both regimes;see the summary figure in the online supplement.
13Overall, almost 40% of units in Group 2.A come from Group 2.B.
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and South Asia, such as the production of semiconductors and chips in South Korea, Japan,

Taiwan, Singapore, and Malaysia, which were highly affected by the financial crisis.

Group 3.B is characterized by a significantly negative leverage effect, in contrast to Groups

1.B and 2.B. It contains 290 firms with a large proportion in the heavy industry and energy-

related industries, i.e. 24 firms in chemical and allied products (SIC=28), 65 firms in indus-

trial machinery equipment, electronic equipment, transportation equipment, and instruments

(SIC=35–38), and 29 firms in electric, gas, and sanitary services (SIC=49). These firms

perform moderately in terms of sales growth (median 0.067), but are characterized by low

leverage (the lowest at the median and 95% quantile), explaining the slightly negative associ-

ation between leverage and sales growth. Most members of Group 3.B also stay as one group

after the break, Group 4.A, with most financial variables remaining at a similar level as in the

pre-break regime, except for a decrease in PPE.14 Interestingly, several energy-related firms,

e.g. Prime Energy and EQT, move from Group 3.B to Group 2.A after the break. Further

examination reveals that these switching firms experienced significant growth in sales, total

assets, and leverage, among other firm financial variables, and their leverage effect turns from

negative to strongly positive after the break.

Another group with an even more negative effect of leverage before the break is Group 4.B.

This group covers a wide range of industries, and is featured by particular poor performance

of sales growth and low total assets (lowest median sales growth and total assets across the

five groups). Thus, we may interpret this group as poorly performing small firms in each

industry. This group is further divided into Groups 5.A and 6.A after the financial crisis,

both of which continue to struggle in their sales performance. Groups 5.A and 6.A differ in

their cash flow, PPE and return on assets, leading to heterogeneous coefficient estimates of

these determinants.

Overall, we find that the effects of the determinants of sales growth are highly heteroge-

neous across groups, and also vary significantly after the structural break. The group pattern

is also restructured to a certain extent after the break. Importantly, our data-driven clustering

suggests that the group structure is related but clearly does not coincide with the industry

classification delineations. Hence, the industry-based grouping that most financial studies

use cannot fully capture cross-sectional heterogeneity, at least in sales growth regressions. In

contrast, our method allows us to capture both observed and unobserved heterogeneity and

at the same time detect potential structural changes in the slope coefficients and/or the group

structure.

14More than 42% of units in Group 4.A are from Group 3.B.
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7 Conclusion

This paper proposes an estimation method that enables detection of a structural break in

either group membership structure or slope coefficients, or both. We establish the consistency

of estimated break dates, time-varying group memberships and slope coefficients. We derive

the asymptotic distribution of our slope coefficient estimates, which is equivalent to those

obtained under the known break date and group memberships. Compared with individual

time series estimation, we show that the proposed method provides more accurate break point

estimates, because our approach makes use of cross-sectional variation. The more accurate

break point estimates further lead to more accurate clustering.

There are at least three possible directions for future research. First, a comprehensive

analysis of multiple break points is of practical interest. Second, how to estimate break

points and time-varying group memberships in nonlinear models remains an interesting but

challenging question. Finally, extending the current approach to non-stationary data is de-

sirable in certain applications.
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Table 1: Accuracy of break point estimates

k0 = 7 k0 = 14

N = 100, T = 10 N = 200, T = 10 N = 100, T = 20 N = 200, T = 20

HD k̄ HD k̄ HD k̄ HD k̄

DGP 1.1 LSGB 0.000 7.000 0.000 7.000 0.000 14.000 0.000 14.000

BFK 0.247 4.523 0.247 4.528 0.125 11.490 0.112 11.747

GAGFL 0.020 6.820 0.005 6.989 0.029 13.876 0.004 14.000

DGP 1.2 LSGB 0.019 6.915 0.003 6.977 0.002 14.012 0.000 14.002

BFK 0.252 4.480 0.250 4.499 0.158 10.840 0.141 11.172

GAGFL 0.071 6.657 0.062 6.825 0.061 14.000 0.047 13.648

DGP 1.3 LSGB 0.000 7.000 0.000 7.000 0.000 14.000 0.000 14.000

BFK 0.247 4.529 0.246 4.539 0.100 11.998 0.100 12.000

GAGFL 0.010 7.005 0.001 7.010 0.008 13.969 0.002 13.970

DGP 2.1 LSGB 0.002 6.993 0.000 7.000 0.000 14.000 0.000 14.000

BFK 0.253 4.465 0.248 4.513 0.151 10.966 0.145 11.092

GAGFL 0.011 6.907 0.001 7.010 0.036 13.448 0.002 14.000

DGP 2.2 LSGB 0.087 6.173 0.071 6.302 0.030 13.867 0.009 14.004

BFK 0.246 4.535 0.248 4.517 0.178 10.438 0.172 10.547

GAGFL 0.126 6.340 0.178 5.382 0.137 11.926 0.128 11.875

DGP 2.3 LSGB 0.000 7.000 0.000 7.000 0.000 14.000 0.000 14.000

BFK 0.241 4.587 0.245 4.547 0.102 11.950 0.100 11.995

GAGFL 0.014 6.963 0.000 7.000 0.005 13.926 0.000 14.000

DGP 3.1 LSGB 0.012 7.125 0.007 7.079 0.019 14.390 0.018 14.369

BFK 0.240 4.595 0.242 4.571 0.100 12.000 0.100 12.000

GAGFL 0.008 6.911 0.000 7.000 0.000 13.984 0.000 14.000

DGP 3.2 LSGB 0.035 6.848 0.015 6.975 0.021 14.258 0.013 14.257

BFK 0.247 4.521 0.243 4.565 0.101 11.963 0.100 11.995

GAGFL 0.169 5.384 0.022 6.877 0.014 13.844 0.007 13.852

DGP 3.3 LSGB 0.008 7.080 0.004 7.046 0.016 14.326 0.012 14.247

BFK 0.226 4.736 0.223 4.761 0.100 12.000 0.100 12.000

GAGFL 0.021 6.793 0.000 7.000 0.000 14.000 0.000 14.000

DGP 4.1 LSGB 0.000 7.000 0.000 7.000 0.000 14.000 0.000 14.000

BFK 0.214 4.857 0.222 4.772 0.100 12.000 0.100 12.000

GAGFL 0.000 7.000 0.000 7.000 0.000 14.000 0.000 14.000

DGP 4.2 LSGB 0.015 6.936 0.000 6.993 0.001 13.974 0.000 13.997

BFK 0.241 4.585 0.240 4.600 0.128 11.433 0.114 11.704

GAGFL 0.072 6.795 0.036 7.027 0.092 13.113 0.036 14.118

DGP 4.3 LSGB 0.000 7.000 0.000 7.000 0.000 14.000 0.000 14.000

BFK 0.212 4.873 0.216 4.840 0.100 12.000 0.100 12.000

GAGFL 0.003 7.037 0.000 7.000 0.013 14.272 0.000 14.000

Notes: HD denotes Hausdorff distance and k̄ is the average break point estimate. LSGB is the proposed Least

Squares estimator for models with Group structure and structural Break. BFK stands for the method by

Baltagi et al. (2016), and GAGFL is the method by Okui and Wang (2021). Each simulation is based on 1000

replications.
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Table 2: Misclustering frequency before and after the structural break

N = 100, T = 10 N = 200, T = 10 N = 100, T = 20 N = 200, T = 20

MFB MFA MFB MFA MFB MFA MFB MFA

DGP 1.1 LSGB 0.006 0.022 0.005 0.021 0.000 0.002 0.000 0.001

BFK 0.025 0.006 0.024 0.006 0.001 0.001 0.000 0.001

GAGFL 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

DGP 1.2 LSGB 0.071 0.195 0.066 0.180 0.014 0.088 0.014 0.083

BFK 0.130 0.170 0.124 0.168 0.031 0.098 0.027 0.094

GAGFL 0.268 0.268 0.238 0.238 0.157 0.157 0.123 0.123

DGP 1.3 LSGB 0.005 0.022 0.005 0.021 0.000 0.002 0.000 0.001

BFK 0.026 0.074 0.024 0.074 0.000 0.022 0.000 0.021

GAGFL 0.031 0.031 0.017 0.017 0.002 0.002 0.001 0.001

DGP 2.1 LSGB 0.018 0.040 0.017 0.039 0.002 0.006 0.002 0.006

BFK 0.045 0.018 0.043 0.018 0.006 0.003 0.005 0.003

GAGFL 0.003 0.003 0.004 0.004 0.000 0.000 0.000 0.000

DGP 2.2 LSGB 0.239 0.375 0.236 0.379 0.075 0.298 0.064 0.291

BFK 0.287 0.351 0.293 0.356 0.123 0.248 0.112 0.244

GAGFL 0.397 0.397 0.388 0.388 0.297 0.297 0.286 0.286

DGP 2.3 LSGB 0.017 0.040 0.017 0.039 0.002 0.006 0.002 0.006

BFK 0.043 0.085 0.042 0.086 0.004 0.028 0.004 0.027

GAGFL 0.094 0.094 0.038 0.038 0.007 0.007 0.006 0.006

DGP 3.1 LSGB 0.020 0.064 0.020 0.062 0.001 0.010 0.001 0.010

BFK 0.039 0.039 0.039 0.037 0.002 0.008 0.002 0.008

GAGFL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DGP 3.2 LSGB 0.132 0.270 0.120 0.248 0.041 0.149 0.038 0.141

BFK 0.169 0.239 0.156 0.224 0.047 0.144 0.044 0.137

GAGFL 0.170 0.170 0.186 0.186 0.090 0.090 0.060 0.060

DGP 3.3 LSGB 0.021 0.123 0.020 0.119 0.004 0.027 0.003 0.029

BFK 0.037 0.123 0.036 0.120 0.002 0.045 0.004 0.046

GAGFL 0.008 0.008 0.005 0.005 0.000 0.000 0.000 0.000

DGP 4.1 LSGB 0.002 0.012 0.002 0.009 0.000 0.000 0.000 0.000

BFK 0.014 0.245 0.015 0.247 0.000 0.225 0.000 0.216

GAGFL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DGP 4.2 LSGB 0.034 0.101 0.032 0.090 0.003 0.027 0.003 0.025

BFK 0.087 0.106 0.081 0.104 0.007 0.039 0.007 0.035

GAGFL 0.198 0.198 0.124 0.124 0.075 0.075 0.040 0.040

DGP 4.3 LSGB 0.002 0.012 0.002 0.013 0.000 0.000 0.000 0.000

BFK 0.014 0.438 0.014 0.444 0.000 0.423 0.000 0.414

GAGFL 0.031 0.031 0.009 0.009 0.025 0.025 0.000 0.000

Notes: MFB is the misclustering frequency before the break, and MFA denotes the frequency after the break.

LSGB is the proposed Least Squares estimator for models with Group structure and structural Break. BFK

stands for the method by Baltagi et al. (2016). GAGFL is the method by Okui and Wang (2021) which assumes

time-invariant group structures, and thus its MFB = MFA. Each simulation is based on 1000 replications.
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Table 5: Estimates of sales growth regression

Pre-break

Group 1.B Group 2.B Group 3.B Group 4.B Group 5.B

LEV 3.249∗∗∗ 0.193∗∗∗ −0.107∗∗∗ −0.961∗∗∗ −0.004

(0.719) (0.073) (0.025) (0.110) (0.272)

TA −0.243∗ −0.343∗∗∗ −0.083∗∗∗ −0.446∗∗∗ −0.265∗∗∗

(0.142) (0.036) (0.029) (0.044) (0.107)

TQ 0.313∗ 0.152∗∗∗ −0.007∗∗ 0.022∗∗∗ 0.396∗∗∗

(0.167) (0.020) (0.003) (0.004) (0.096)

CF −0.594 −0.485∗∗∗ −0.107 0.108 7.077∗∗∗

(0.553) (0.144) (0.108) (0.146) (0.923)

PPE −0.485 −2.062∗∗∗ 0.180∗∗ 0.484∗∗∗ 1.774∗∗∗

(0.507) (0.165) (0.087) (0.150) (0.401)

ROA −10.79∗∗∗ −1.583∗∗∗ −2.112∗∗∗ −0.286∗∗∗ 0.472

(1.442) (0.140) (0.113) (0.058) (0.430)

No. firms 27 201 290 153 32

Post-break

Group 1.A Group 2.A Group 3.A Group 4.A Group 5.A Group 6.A Group 7.A

LEV 3.483∗∗ 0.435∗∗∗ 0.420∗∗ −0.117∗∗∗ −0.794∗∗∗ −1.695∗∗∗ −0.021

(1.604) (0.105) (0.194) (0.038) (0.126) (0.225) (0.046)

TA −0.730∗∗∗ −0.348∗∗∗ 0.080 −0.147∗∗∗ 0.044 −0.710∗∗∗ −1.403∗∗∗

(0.273) (0.032) (0.082) (0.033) (0.049) (0.070 (0.119)

TQ 1.362∗∗∗ 0.286∗∗∗ 0.002 0.025∗∗∗ 0.110∗∗∗ 0.105∗∗∗ 0.013

(0.471) (0.018) (0.011) (0.004) (0.015) (0.023) (0.048)

CF 1.967 0.138 1.446∗∗∗ 0.076 −0.543∗∗ −0.087 −2.355∗∗∗

(1.769) (0.098) (0.232) (0.070) (0.242) (0.246) (0.689)

PPE −11.001∗∗∗ −0.878∗∗∗ 2.646∗∗∗ −0.316∗∗∗ −1.440∗∗∗ 1.023∗∗∗ −2.561∗∗∗

(2.735) (0.117) (0.427) (0.124) (0.359) (0.313) (0.446)

ROA −17.781∗∗∗ −2.739∗∗∗ −1.861∗∗∗ −0.350∗∗∗ −5.313∗∗∗ −2.987∗∗∗ 0.466∗∗∗

(3.990) (0.130) (0.154) (0.049) (0.295) (0.330) (0.118)

No. firms 10 167 77 247 105 67 30

Notes: LEV is leverage, TA is logarithm of total assets, TQ is Tobin’s q, CF is cash flow, PPE is the ratio of

property plant and equipment over total assets, ROA is return on assets.
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Supplementary appendix to
Estimation of panel group structure models with structural breaks in group

memberships and coefficients

This technical appendix includes the proof of the theorem. First, Section A.1 presents the

lemmas. The proofs of the theorem and the corollary are included in Section A.2. Section A.3

discusses possible relaxation of some assumptions in the paper and provides an alternative

proof of the theorems under a different set of conditions.

A.1 Lemmas

Let

Q(k, γ, β) =
1

NT

(
k−1∑
t=1

N∑
i=1

(yit − x′itβgi(B),B)2 +

T∑
t=k

N∑
i=1

(yit − x′itβgi(A),A)2

)
,

and

Q̃(k, γ, β) =
1

NT

T∑
t=1

N∑
i=1

(x′it(β
0
g0it,t
− βgit,t))2 +

1

NT

T∑
t=1

N∑
i=1

u2
it.

Lemma 1. Suppose that Assumptions 1(i) and 1(ii) hold. Then we have that

sup
k∈K,γ∈G,β∈B

∣∣∣Q̃(k, γ, β)−Q(k, γ, β)
∣∣∣ = Op

(
1√
T

)
.

Proof. The proof is almost identical to the proof of Lemma S.3 of Bonhomme and Manresa

(2015), and thus we keep it brief here. First, we consider the case in which k ≥ k0, and we

have that

Q̃(k, γ, β)−Q(k, γ, β) =− 2
1

NT

k0−1∑
t=1

N∑
i=1

x′it(β
0
g0i (B),B − βgi(B),B)uit

− 2
1

NT

k−1∑
t=k0

N∑
i=1

x′it(β
0
g0i (A),A − βgi(B),B)uit

− 2
1

NT

T∑
t=k

N∑
i=1

x′it(β
0
g0i (A),A − βgi(A),A)uit.

Observe that

1

NT

k0−1∑
t=1

N∑
i=1

x′itβ
0
g0i (B),Buit =

1

NT

∑
g∈GB

k0−1∑
t=1

N∑
i=1

1(gi(B) = g)x′itβ
0
g0i (B),Buit.

1
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For each g ∈ GB, by the Cauchy-Schwarz inequality we have that

E

 1

NT

k0−1∑
t=1

N∑
i=1

1(gi(B) = g)x′itβ
0
g0i (B),Buit

2

≤ CE

∥∥∥∥∥∥ 1

NT

k0−1∑
t=1

∑
gi(B)=g

xituit

∥∥∥∥∥∥
2

= O

(
k0

NT 2

)
,

where C satisfies ‖βgit,t‖
2 < C for any β ∈ B and the existence of such C is guaranteed by

Assumption 1(ii), the inequality follows by the definition of C, and the equality follows by

Assumption 1(i). Next, we consider 1

NT

k0−1∑
t=1

N∑
i=1

x′itβgi(B),Buit

2

≤

 1

NT

N∑
i=1

βgi(B),B

k0−1∑
t=1

xituit

2

≤

(
1

N

N∑
i=1

||βgi(B),B||2
) 1

NT 2

N∑
i=1

∥∥∥∥∥∥
k0−1∑
t=1

xituit

∥∥∥∥∥∥
2

=Op

(
k0

T 2

)
,

where the first inequality uses the Cauchy-Schwarz inequality and the second inequality follows

by that Assumption 1(ii) implies
∑N

i=1 ||βgi(B),B||2/N < C for some C, and that Assumption

1(i) together with the Markov inequality implies
∑N

i=1

∥∥∥∑k0−1
t=1 xituit

∥∥∥2
/(NT 2) = Op(k

0/T 2).

The other terms in the expression for Q̃(k, γ, β) − Q(k, γ, β) can be analyzed similarly. It

therefore holds that

Q̃(k, γ, β)−Q(k, γ, β) =O

( √
k0

√
NT

)
+O

(√
k0

T

)
+O

(√
k − k0

√
NT

)
+O

(√
k − k0

T

)

+O

(√
T − k√
NT

)
+O

(√
T − k
T

)
,

uniformly over β and γ. The argument for k < k0 is similar. Because k ≤ T by construction,

we have that

sup
k∈K,γ∈G,β∈B

∣∣∣Q̃(k, γ, β)−Q(k, γ, β)
∣∣∣ = Op

(
1√
T

)
.

Lemma 2. Suppose that Assumptions 1(i)–1(vii) hold. Then we have that

(1) maxg∈GB ming̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
= Op(1/

√
T ),

(2) maxg∈GA ming̃∈GA

∥∥∥β0
g,A − β̂g̃,A

∥∥∥2
= Op(1/

√
T ),

(3) (k̂ − k0)/T = Op(1/
√
T ).

2
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Proof. From Lemma 1, we have that

Q̃(k̂, γ̂, β̂) =Q(k̂, γ̂, β̂) +Op

(
1√
T

)
≤Q(k0, γ0, β0) +Op

(
1√
T

)
= Q̃(k0, γ0, β0) +Op

(
1√
T

)
.

Because Q̃(k, γ, β) is minimized at (k0, γ0, β0), we have that

Q̃(k̂, γ̂, β̂)− Q̃(k0, γ0, β0) = Op

(
1√
T

)
.

Let aNT = Q̃(k̂, γ̂, β̂)− Q̃(k0, γ0, β0), and note that aNT = Op

(
1/
√
T
)

.

We first consider the case in which k ≥ k0, and observe that

Q̃(k, γ, β)− Q̃(k0, γ0, β0) =
1

NT

k0−1∑
t=1

N∑
i=1

(x′it(β
0
g0i (B),B − βgi(B),B))2

+
1

NT

k−1∑
t=k0

N∑
i=1

(x′it(β
0
g0i (A),A − βgi(B),B))2

+
1

NT

T∑
t=k

N∑
i=1

(x′it(β
0
g0i (A),A − βgi(A),A))2. (A.8)

We study the three terms on the right side of (A.8) separately. For first term, it holds that

1

NT

k0−1∑
t=1

N∑
i=1

(x′it(β
0
g0i (B),B − βgi(B),B))2

=
1

NT

k0−1∑
t=1

GB∑
g=1

GB∑
g̃=1

N∑
i=1

1{g0
i (B) = g}{gi(B) = g̃}(x′it(β0

g,B − βg̃,B))2

≥ 1

T

k0−1∑
t=1

GB∑
g=1

GB∑
g̃=1

ρN,t(γ, g, g̃)
∥∥β0

g,B − βg̃,B
∥∥2 ≥ k0 − 1

T
ρ̂ max
g∈GB

min
g̃∈GB

∥∥β0
g,B − βg̃,B

∥∥2
,

where the last inequality follows by Assumption 1(iv). This further implies (k0−1)/T ρ̂maxg∈GB

ming̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
≤ aNT . Moreover, Assumption 1(iv) implies that

1

NT

k0−1∑
t=1

N∑
i=1

(x′it(β
0
g0i (B),B − βgi(B),B))2 ≥ k0 − 1

T
ρ̂∗

1

N

N∑
i=1

‖β0
g0i (B),B − βgi(B),B‖2. (A.9)

Thus we have

1

N

N∑
i=1

‖β0
g0i (B),B − β̂ĝi(B),B‖2 < CaNT .

3
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With similar reasoning, we have, for the third term, that

1

NT

T∑
t=k

N∑
i=1

(x′it(β
0
g0i (A),A − βgi(A),A))2 ≥ T − k

T
ρ̂ max
g∈GA

min
g̃∈GA

∥∥β0
g,A − βg̃,A

∥∥2
,

and that (T − k̂)/T ρ̂maxg∈GA ming̃∈GA

∥∥∥β0
g,A − β̂g̃,A

∥∥∥2
≤ aNT . Finally, for the second term,

we observe that

1

NT

k̂−1∑
t=k0

N∑
i=1

(x′it(β
0
g0i (A),A − β̂ĝi(B),B))2

=
1

NT

k̂−1∑
t=k0

N∑
i=1

(x′it(β
0
g0i (A),A − β

0
g0i (B),B + β0

g0i (B),B − β̂ĝi(B),B))2

≥ 1

NT

k̂−1∑
t=k0

N∑
i=1

(x′it(β
0
g0i (A),A − β

0
g0i (B),B))2 +

1

NT

k̂−1∑
t=k0

N∑
i=1

(x′it(β
0
g0i (B),B − β̂ĝi(B),B))2

− 2
1

NT

k̂−1∑
t=k0

N∑
i=1

∣∣∣x′it(β0
g0i (A),A − β

0
g0i (B),B)

∣∣∣ · ∣∣∣x′it(β0
g0i (B),B − β̂ĝi(B),B))

∣∣∣
≥ 1

NT

k̂−1∑
t=k0

N∑
i=1

(x′it(β
0
g0i (A),A − β

0
g0i (B),B))2 +

1

NT

k̂−1∑
t=k0

N∑
i=1

(x′it(β
0
g0i (B),B − β̂ĝi(B),B))2

− 2
1

T

k̂−1∑
t=k0

(
1

N

N∑
i=1

(x′it(β
0
g0i (A),A − β

0
g0i (B),B))2

)1/2(
1

N

N∑
i=1

(x′it(β
0
g0i (B),B − β̂ĝi(B),B))2

)1/2

.

Assumptions 1(ii) and 1(v) imply that
∑N

i=1(x′it(β
0
g0i (A),A

−β0
g0i (B),B

))2/N < C. Assumptions

1(v) and (A.9) imply that 1
N

∑N
i=1(x′it(β

0
g0i (B),B

− β̂ĝi(B),B))2 < CaNT . Hence, we have, by

Assumption 1(vi),

1

NT

k̂−1∑
t=k0

N∑
i=1

(x′it(β
0
g0i (A),A − β̂ĝi(B),B))2 ≥ k̂ − k

T
(m− C

√
aNT ) ,

which further implies that

k̂ − k
T

(m− C
√
aNT ) < aNT .

It therefore follows that for k̂ ≥ k0,

k0 − 1

T
ρ̂ max
g∈GB

min
g̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
≤aNT ,

k̂ − k0

T
(m− C

√
aNT ) ≤aNT ,

T − k̂
T

ρ̂ max
g∈GA

min
g̃∈GA

∥∥∥β0
g,A − β̂g̃,A

∥∥∥2
≤aNT .

4
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Next, we consider the case in which k̂ ≤ k0. We can follow similar arguments to those in

the case of k̂ ≥ k0 and obtain that

k̂ − 1

T
ρ̂ max
g∈GB

min
g̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
≤aNT ,

k0 − k̂
T

(m− C
√
aNT ) ≤aNT ,

T − k0

T
ρ̂ max
g∈GA

min
g̃∈GA

∥∥∥β0
g,A − β̂g̃,A

∥∥∥2
≤aNT .

In either case, we must have that

k̂ − k0

T
= Op(aNT ) = Op

(
1√
T

)
.

because of Assumption 1(vii). It also follows that

ρ̂ max
g∈GB

min
g̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
= Op(aNT ) = Op

(
1√
T

)
,

and that

ρ̂ max
g∈GA

min
g̃∈GA

∥∥∥β0
g,A − β̂g̃,A

∥∥∥2
= Op

(
1√
T

)
.

The desired result holds by Assumption 1(iv).

Lemma 3. Suppose that Assumptions 1(i)–1(viii) are satisfied. Then there exist permutations

σB : GB 7→ GB and σA : GA 7→ GA such that
∥∥∥β0

g,B − β̂σB(g),B

∥∥∥2
= Op(1/

√
T ) for any g ∈ GB

and
∥∥∥β0

g,A − β̂σA(g),A

∥∥∥2
= Op(1/

√
T ) for any g ∈ GA.

Proof. The proof is constructive. Let

σB(g) = min
g̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
, and σA(g) = min

g̃∈GA

∥∥∥β0
g,B − β̂g̃,A

∥∥∥2
.

We show that σB(g) is a permutation that satisfies the requirement in the statement of the

lemma. We only present the argument for σB and omit that for σA because the arguments

in the two cases are very similar.

By Lemma 2, it follows that

max
g∈GB

min
g̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
= Op(1/

√
T ).

Thus, by the definition of σB, it holds that
∥∥∥β0

g,B − β̂σB(g),B

∥∥∥2
= Op(1/

√
T ) for any g ∈ GB.

Next, we show that σB is a permutation. Let g 6= g̃, and then by the triangular inequality,

we have that∥∥∥β̂σB(g),B − β̂σB(g̃),B

∥∥∥ ≥ ∥∥β0
g,B − β0

g̃,B

∥∥− ∥∥∥β0
g,B − β̂σB(g),B

∥∥∥− ∥∥∥β0
g̃,B − β̂σB(g̃),B

∥∥∥ .
5

Electronic copy available at: https://ssrn.com/abstract=3617416



Recall that we have already shown that
∥∥∥β0

g,B − β̂σB(g),B

∥∥∥ = op(1) and
∥∥∥β0

g̃,B − β̂σB(g̃),B

∥∥∥ =

op(1). Besides, Assumption 1(viii) states that
∥∥∥β0

g,B − β0
g̃,B

∥∥∥ > c. This means that σB(g) 6=
σB(g̃) for g 6= g̃ with probability approaching one, which further implies that σB admits a

well defined inverse and is bijective. Hence, σB is a permutation that satisfies the requirement

in the statement of Lemma 3, implying that ming∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
= Op(1/

√
T ) for any g̃.

Thus the Hausdorff distance between β0
B and β̂B is of order Op(1/

√
T ).

Define the Hausdorff distance between β0
B and β̂B to be

max

(
max
g∈GB

min
g̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
, max
g̃∈GB

min
g∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
)
.

By Lemmas 2 and 3, this Hausdorff distance converges to 0 at the rate of
√
T . Using the

similar arguments, we can show that β̂ is consistent under the Hausdorff distance and its rate

of convergence is
√
T . By relabeling, we can set σB(g) = g and σA(g) = g, the convention

that we adopt throughout the paper, such that
∥∥∥β0

g,B − β̂g,B
∥∥∥2

= Op(1/
√
T ) for any g ∈ GB

and
∥∥∥β0

g,A − β̂g,A
∥∥∥2

= Op(1/
√
T ) for any g ∈ GA.

Let N be a neighborhood of β0 such that
∥∥∥β0

g,C − βg,C
∥∥∥ < η for η > 0 for any g ∈ GC and

C = B,A. Note that we will take η small enough by considering large N and T by Lemma

3. Let k̄ =
√
T log T + k0 and k = −

√
T log T + k0. Define K = {k : k ≤ k ≤ k̄}.

Lemma 4. Suppose that Assumptions 1(ii), 1(iv), 1(vii), 1(viii), and 1(ix) hold. As N,T →
∞ with NT−δ → 0, it holds that

Pr
{
γ̂(k, β) 6= γ0 for some k ∈ K and β ∈ N

}
→ 0.

Proof. To show this probability converges to zero, it is equivalent to show that

max
1≤i≤N

sup
β∈N

max
k∈K

1{ĝi(B)(k, β) 6= g0
i (B)}+ max

1≤i≤N
sup
β∈N

max
k∈K

1{ĝi(A)(k, β) 6= g0
i (A)} = op(1),

where we observe that

1
{
ĝi(B)(k, β) 6= g0

i (B)
}

= max
g∈GB\{g0i (B)}

1

(
k−1∑
t=1

(yit − x′itβg,B)2 <
k−1∑
t=1

(yit − x′itβg0i (B),B)2

)
,

(A.10)

and a similar equality holds for 1{ĝi(A)(k, β) 6= g0
i (A)}. We analyze the probability of each

of these two indicators being one. To this end, we first evaluate how the deviation of k from

k0 plays a role, while the situation of k = k0 can be analysed using the same arguments as in

Bonhomme and Manresa (2015) and Okui and Wang (2021).

6
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We first examine the difference between the two summations in the argument of the

indicator function in (A.10), and show that this difference evaluated at any k ∈ K and that

evaluated at k = k0 are not very different. Let

D =
k−1∑
t=1

(
(yit − x′itβg,B)2 − (yit − x′itβg0i (B),B)2

)
−
k0−1∑
t=1

(
(yit − x′itβg,B)2 − (yit − x′itβg0i (B),B)2

)
.

First, considering the case of k < k0, we have that

|D| =

∣∣∣∣∣∣
k0−1∑
t=k

2uitxit(βg0i (B),B − βg,B) +

k0−1∑
t=k

(βg0i (B),B − βg,B)′xitx
′
it(2β

0
g0i (B),B − βg0i (B),B − βg,B)

∣∣∣∣∣∣
≤M1

∥∥∥∥∥∥
k0−1∑
t=k

uitxit

∥∥∥∥∥∥+M2

∥∥∥∥∥∥
k0−1∑
t=k

xitx
′
it

∥∥∥∥∥∥
≤M1(k0 − k)

1

k0 − k

k0−1∑
t=k

‖uitxit‖+M2(k0 − k)

∥∥∥∥∥∥ 1

k0 − k

k0−1∑
t=k

xitx
′
it

∥∥∥∥∥∥ ,
where M1 and M2 are constants independent of (i, g, k, β). Let MT = T 1/4/ log T . Under

Assumption 1(ix ), we can apply inequality (1.8) in Merlevède et al. (2011) which is based

on Theorem 6.2 of Rio (2017), translated from a French version published in 2000, with

λ = (k0 − k)MT = T 3/4 and obtain that

Pr

 1

k0 − k

∣∣∣∣∣∣
k0−1∑
t=k

(‖uitxit‖ − E(‖uitxit‖)

∣∣∣∣∣∣ > MT


≤4 exp

(
−λ

d/(d+1) log 2

2

)
+ 16CM−1

T exp

(
−aλ

d/(d+1)

bd

)
= o(T−δ),

where d = d1d2/(d1 + d2), (a, b, d1, d2) are defined in Assumption 1(ix ). Noting that (k0 −
k)−1

∑k0−1
t=k E(‖uitxit‖) converges andMT →∞, we have that Pr

(
(k0 − k)−1

∑k0−1
t=k ‖uitxit‖ > MT

)
=

o(T−δ). Similarly, it holds Pr(‖(k0 − k)−1
∑k0−1

t=k xitx
′
it‖ > MT ) = o(T−δ). These imply that

there exists a sequence that satisfies CT = O(MT ) and CT →∞ as T →∞, such that

Pr

(
1

k0
|D| > k0 − k

k0
CT

)
= o(T−δ).

Using a similar argument, we can show that for k ≥ k0,

Pr

(
1

k0
|D| > k̄ − k0

k0
CT

)
= o(T−δ).

Next, we consider
∑k0−1

t=1

(
(yit − x′itβg,B)2 − (yit − x′itβg0i (B),B)2

)
. This term can be con-

sidered in a similar way to Bonhomme and Manresa (2015) and Okui and Wang (2021). We
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have

k0−1∑
t=1

(
(yit − x′itβg,B)2 − (yit − x′itβg0i (B),B)2

)

=

k0−1∑
t=1

2uitxit(βg0i (B),B − βg,B) +

k0−1∑
t=1

(βg0i (B),B − βg,B)′xitx
′
it(2β

0
g0i (B),B − βg0i (B),B − βg,B)

=

k0−1∑
t=1

2uitxit(β
0
g0i (B),B − β

0
g,B) +

k0−1∑
t=1

(x′it(β
0
g0i (B),B − β

0
g,B))2 + Ψ,

where

Ψ =
k0−1∑
t=1

2uitxit(βg0i (B),B − βg,B − β0
g0i (B),B + β0

g,B)

+

k0−1∑
t=1

(βg0i (B),B − βg,B − β0
g0i (B),B + β0

g,B)′xitx
′
it(2β

0
g0i (B),B − βg0i (B),B − βg,B)

+

k0−1∑
t=1

(β0
g0i (B),B − β

0
g,B)′xitx

′
it(β

0
g0i (B),B − βg0i (B),B − βg,B + β0

g,B).

By the Cauchy-Schwarz inequality, Assumption 1(ii) and the definition of N imply that

|Ψ| ≤ ηC1

∥∥∥∥∥∥
k0−1∑
t=1

uitxit

∥∥∥∥∥∥+ ηC2

∥∥∥∥∥∥
k0−1∑
t=1

xitx
′
it

∥∥∥∥∥∥ ,
where C1 and C2 are constants independent of η and T . We then have that

1

(
k−1∑
t=1

(yit − x′itβg,B)2 <
k−1∑
t=1

(yit − x′itβg0i (B),B)2

)

≤1

(
k0−1∑
t=1

2uitx
′
it(β

0
g0i (B),B − β

0
g,B)

−
k0−1∑
t=1

(x′it(β
0
g0i (B),B − β

0
g,B))2 + ηC1

∥∥∥∥∥∥
k0−1∑
t=1

uitxit

∥∥∥∥∥∥+ ηC2

∥∥∥∥∥∥
k0−1∑
t=1

xitx
′
it

∥∥∥∥∥∥+ |D|

)
.

Note that the right hand side does not depend on β. Thus, we have

Pr

(
sup
β∈N

max
k∈K

1(ĝi(B)(k, β) 6= g0
i (B)) 6= 0

)

= Pr

(
sup
β∈N

max
k∈K

max
g∈GB\{g0i (B)}

1

(
k−1∑
t=1

(yit − x′itβg,B)2 <

k−1∑
t=1

(yit − x′itβg0i (B),B)2

)
6= 0

)

≤
∑

g∈GB\{g0i (B)}

Pr

(
k0−1∑
t=1

2uitx
′
it(β

0
g0i (B),B − β

0
g,B)
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< −
k0−1∑
t=1

(x′it(β
0
g0i (B),B − β

0
g,B))2 + ηC1

∥∥∥∥∥∥
k0−1∑
t=1

uitxit

∥∥∥∥∥∥+ ηC2

∥∥∥∥∥∥
k0−1∑
t=1

xitx
′
it

∥∥∥∥∥∥+ |D|

)

≤
∑

g∈GB\{g0i (B)}

(
Pr

 1

k0

k0−1∑
t=1

(x′it(β
0
g0i (B),B − β

0
g,B))2 ≤ c′′

2

+ Pr

∥∥∥∥∥∥ 1

k0

k0−1∑
t=1

uitxit

∥∥∥∥∥∥ ≥M


+ Pr

∥∥∥∥∥∥ 1

k0

k0−1∑
t=1

xitx
′
it

∥∥∥∥∥∥ ≥M
+ Pr

(
1

k0
|D| > k0 − k

k0
CT

)

+ Pr

(
1

k0

k0−1∑
t=1

2uitx
′
it(β

0
g0i (B),B − β

0
g,B) < −c

′′

2
+ ηC1M + ηC2M +

k0 − k
k0

CT

))
,

where we take c′′ = c× ρ∗ for c in Assumption 1(viii) and ρ∗ in Assumption 1(iv).

We use the following lemma by Bonhomme and Manresa (2015) which is based on Rio

(2017).

Lemma 5 (Lemma B.5 in Bonhomme and Manresa (2015)). Let zt be a strongly mixing

process with zero mean, with strong mixing coefficients a[t] ≤ e−atd1 and with tail probabilities

Pr(|zt| > z) ≤ e1−(z/b)d2 , where a, b, d1, and d2 are positive constants. Then for all z > 0,

we have for all δ > 0, as T →∞,

T δ Pr

(∣∣∣∣∣ 1

T

T∑
t=1

zt

∣∣∣∣∣ ≥ z
)
→ 0.

Note that this lemma holds uniformly over i as long as the bounds for mixing coefficients and

tail probabilities hold uniformly over i.

We observe that

Pr

∥∥∥∥∥∥ 1

k0

k0−1∑
t=1

xitx
′
it

∥∥∥∥∥∥ ≥M
 ≤ Pr

 1

k0

k0−1∑
t=1

∥∥xitx′it∥∥ ≥M
 = Pr

 1

k0

k0−1∑
t=1

x′itxit ≥M

 .

We then apply Lemma 5, regarding x′itxit − E(x′itxit) as zt in the lemma, and Assump-

tion 1(ix ) yields that Pr
(∥∥∥(k0)−1

∑k0−1
t=1 xitx

′
it

∥∥∥ ≥M) = o
(
(k0)−δ

)
= o

(
T−δ

)
, where the

last equality holds by Assumption 1(vii). Similarly, Assumption 1(ix ) also implies that

Pr
(∥∥∥(k0)−1

∑k0−1
t=1 uitxit

∥∥∥ ≥M) = o
(
T−δ

)
. Moreover, a similar argument shows that under

Assumption 1(ix ), Lemma 5 implies that

Pr

∣∣∣∣∣∣ 1

k0

k0−1∑
t=1

(x′it(β
0
g0i (B),B − β

0
g,B))2 − 1

k0

k0−1∑
t=1

E((x′it(β
0
g0i (B),B − β

0
g,B))2)

∣∣∣∣∣∣ ≥ c′′

2

 = o(T−δ),

which in turn implies that under Assumptions 1(iv) and 1(viii),

Pr

 1

k0

k0−1∑
t=1

(x′it(β
0
g0i (B),B − β

0
g,B))2 ≤ c′′

2

 = o(T−δ)
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uniformly over g. Now we have shown that Pr{(k0)−1|D| > ((k0−k)/k0)CT } = o(T−δ). Note

that ((k0−k)/k0)CT → 0 because MT = o(
√
T/ log T ), k0 = O(T ) and k0−k = O(

√
T log T ).

Moreover, by similar arguments as above that use Lemma 5, we can take η small enough and

also T large enough such that

Pr

(
1

k0

k0−1∑
t=1

2uitx
′
it(β

0
g0i (B),B − β

0
g,B) < −c

′′

2
+ ηC1M + ηC2M +

k0 − k
k0

CT

)

≤Pr

(
1

k0

k0−1∑
t=1

2uitx
′
it(β

0
g0i (B),B − β

0
g,B) < −c

′′

4

)
= o(T−δ).

uniformly over g under Assumption 1(ix ). It thus follows that

Pr

(
max

1≤i≤N
sup
β∈N

max
k∈K

1(ĝi(B)(k, β) 6= g0
i (B)) 6= 0

)

≤
N∑
i=1

Pr

(
sup
β∈N

max
k∈K

1(ĝi(B)(k, β) 6= g0
i (B)) 6= 0

)
= o(NT−δ).

Similarly, we can show that Pr
(
max1≤i≤N supβ∈N maxk∈K 1(ĝi(A)(k, β) 6= g0

i (A)) 6= 0
)

=

o(NT−δ). This completes the proof.

A.2 Proof of theorem and corollary

Proof of Theorem 1

Proof. We observe that

Pr(k̂ 6= k0) ≤Pr(k̂ 6= k0, β̂ ∈ N ) + Pr(β̂ /∈ N )

≤Pr(k̂ 6= k0, γ̂ = γ0, β̂ ∈ N ) + Pr(γ̂ 6= γ0, β̂ ∈ N ) + Pr(β̂ /∈ N ).

We analyze the three terms in the right hand side of the above display. First, for the third

term, Lemma 3 and the discussion below it imply that Pr(β̂ /∈ N )→ 0. For the second term,

by Lemmas 2, 3 and 4, we have that

Pr(γ̂ 6= γ0, β̂ ∈ N ) ≤Pr{γ̂(k, β) 6= γ0 for some k ∈ K and β ∈ N , β̂ ∈ N}+ Pr(k̂ /∈ K)

≤Pr{γ̂(k, β) 6= γ0 for some k ∈ K and β ∈ N}+ Pr(k̂ /∈ K)→ 0.

Finally, we consider the first term. We observe that

Pr(k̂ 6= k0, γ̂ = γ0, β̂ ∈ N ) ≤Pr(k̂ 6= k0, γ̂ = γ0, β̂ ∈ N , k̂ ∈ K) + Pr(k̂ /∈ K)
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≤Pr{k̂(γ0, β) 6= k0 for some β ∈ N , γ̂ = γ0, β̂ ∈ N}+ Pr(k̂ /∈ K)

≤Pr{k̂(γ0, β) 6= k0 for some β ∈ N}+ Pr(k̂ /∈ K),

where k̂(γ0, β) = argmink∈K Q(k, γ, β). Note that Pr(k̂ /∈ K)→ 0 by Lemma 2, and also that

k̂(γ0, β) 6= k0 is equivalent to

Q(k0, γ0, β) > min
k∈K\{k0}

Q(k, γ0, β) = min

(
min
k>k0

Q(k, γ0, β), min
k<k0

Q(k, γ0, β)

)
.

Thus, we have

Pr(k̂(γ0, β) 6= k0 for some β ∈ N )

≤Pr

(
Q(k0, γ0, β) > min

k0<k≤k̄
Q(k, γ0, β) for some β ∈ N

)
+ Pr

(
Q(k0, γ0, β) > min

k≤k<k0
Q(k, γ0, β) for some β ∈ N

)
.

Suppose for the moment that k0 < k ≤ k̄. Using yit = x′itβ
0
g0
i(C)

,C
+ uit where C = B if

t < k0 and C = A if t ≥ k0, then we have that

Q(k0, γ0, β)−Q(k, γ0, β)

=− 1

NT

k−1∑
t=k0

N∑
i=1

(x′it(βg0i (A),A − βg0i (B),B))2 +
2

NT

k−1∑
t=k0

N∑
i=1

(x′it(β
0
g0i (A),A − βg0i (A),A))2

− 2

NT

k−1∑
t=k0

N∑
i=1

x′it(βg0i (A),A − βg0i (B),B)uit.

Let d0
i = β0

g0i (A),A
− β0

g0i (B),B
and di = βg0i (A),A − βg0i (B),B. It holds that

1

NT

k−1∑
t=k0

N∑
i=1

(x′it(βg0i (A),A − βg0i (B),B))2 =
1

NT

k−1∑
t=k0

N∑
i=1

(x′it(d
0
i + di − d0

i ))
2

≥ 1

NT

k−1∑
t=k0

N∑
i=1

(x′itd
0
i )

2 +
1

NT

k−1∑
t=k0

N∑
i=1

(x′it(di − d0
i ))

2 − 2
1

NT

k−1∑
t=k0

N∑
i=1

∣∣x′itd0
i

∣∣ · ∣∣x′it(di − d0
i )
∣∣

≥ 1

NT

k−1∑
t=k0

N∑
i=1

(x′itd
0
i )

2 +
1

NT

k−1∑
t=k0

N∑
i=1

(x′it(di − d0
i ))

2

− 2
1

T

k−1∑
t=k0

(
1

N

N∑
i=1

(x′itd
0
i )

2

)1/2(
1

N

N∑
i=1

(x′it(di − d0
i ))

2

)1/2

.

Assumptions 1(ii) and 1(v) imply that
∑N

i=1(x′itd
0
i )

2/N < (k−k0)C/T . Similarly, Assumption

1(v) and the condition that β ∈ Nη imply that
∑N

i=1(x′it(di − d0
i ))

2/N < (k − k0)η2C/T .
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We thus have that
∑k−1

t=k0
∑N

i=1(x′it(βg0i (A),A − βg0i (B),B))2/(NT ) ≥ (k − k0) (m− Cη) /T , by

Assumption 1(vi). Then by taking η small enough, we have that

1

NT

k−1∑
t=k0

N∑
i=1

(x′it(βg0i (A),A − βg0i (B),B))2 ≥ k − k0

2T
m.

And therefore

2

NT

k−1∑
t=k0

N∑
i=1

(x′it(β
0
g0i (A),A − βg0i (A),A))2 > 0.

It follows that

Pr

(
Q(k0, γ0, β) > min

k0<k≤k̄
Q(k, γ0, β) for some β ∈ N

)
= Pr

(
sup
β∈N

max
k0<k≤k̄

(
Q(k0, γ0, β)−Q(k, γ0, β)

)
> 0

)

≤Pr

(
sup
β∈N

max
k0<k≤k̄

(
−2

1

NT

k−1∑
t=k0

N∑
i=1

x′it(βg0i (A),A − βg0i (B),B)uit −
k − k0

2T
m

)
> 0

)

= Pr

(
sup
β∈N

max
k0<k≤k̄

(
−2

1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

x′it(βg0i (A),A − βg0i (B),B)uit −
m

2

)
> 0

)

≤Pr

(
sup
β∈N

max
k0<k≤k̄

(
−2

1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

x′it(βg0i (A),A − βg0i (B),B)uit

)
>
m

2

)
.

Observing that

− 2
1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

x′it(βg0i (A),A − βg0i (B),B)uit

=− 2
1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

x′it(β
0
g0i (A),A − β

0
g0i (B),B)uit

+ 2
1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

x′it(β
0
g0i (A),A − βg0i (A),A − βg0i (B),B + β0

g0i (B),B)uit,

and∣∣∣∣∣2 1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

x′it(β
0
g0i (A),A − βg0i (A),A − βg0i (B),B + β0

g0i (B),B)uit

∣∣∣∣∣ ≤ ηC
∥∥∥∥∥ 1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

xituit

∥∥∥∥∥ ,
we thus have that

Pr

(
sup
β∈N

max
k0<k≤k̄

(
−2

1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

x′it(βg0i (A),A − βg0i (B),B)uit

)
>
m

2

)
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≤Pr

(
max
k0<k≤k̄

(
−2

1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

x′it(β
0
g0i (A),A − β

0
g0i (B),B)uit

)
>
m

4

)

+ Pr

(
ηC max

k0<k≤k̄

∥∥∥∥∥ 1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

xituit

∥∥∥∥∥ > m

4

)
= O

(
1

N

)
,

where the last equality follows by applying Bai and Perron (1998, Lemma A.6) which is an

extension of Hájek and Rényi (1955). Here we use the observation that an Lr-bounded mixing

sequence is an Lp mixingale sequence for 1 ≤ p < r as discussed in (Davidson, 1994, page

248). Thus, under Assumptions 1(ix ) and 1(x ), xituit is an L2 mixingale and we can apply

Bai and Perron (1998, Lemma A.6).

A similar argument shows that

Pr

(
Q(k0, γ0, β) > min

k<k<k0
Q(k, γ0, β) for some β ∈ N

)
= O

(
1

N

)
.

To sum up, we have that Pr(k̂ 6= k0, γ̂ = γ0, β̂ ∈ N )→ 0.

Proof of Corollary 1

Proof. We first show result (1) of the corollary. We observe that

Pr(γ̂ 6= γ0) ≤ Pr(γ̂ 6= γ0, β̂ ∈ N ) + Pr(β̂ /∈ N ).

The second paragraph of the proof of Theorem 1 shows that Pr(γ̂ 6= γ0, β̂ ∈ N )→ 0. Lemma

3 and the discussion below imply that Pr(β̂ /∈ N )→ 0. Hence, the desired result holds.

Next, we show result (2) of the corollary. We have that

Pr
(∥∥∥β̂ − β̃∥∥∥ > a/

√
NT

)
≤Pr

(∥∥∥β̂ − β̃∥∥∥ > a
√
NT, γ̂ = γ0, k̂ = k0

)
+ Pr(γ 6= γ0) + Pr(k̂ 6= k0)

≤0 + Pr(γ 6= γ0) + Pr(k̂ 6= k0)→ 0

for any a > 0, where the second inequality follows because β̂ = β̃ holds under γ = γ0 and

k̂ = k0, and the third inequality holds by result (1) of this corollary and Theorem 1. We thus

have the desired result.

A.3 Proofs under alternative conditions

In this section, we relax the break size condition in Assumption 1(vi), the group separation

assumption in Assumption 1(viii) as well as the mixing and moment conditions in Assump-

tion 1(ix ). In exchange for this, however, we have to impose strict stationarity. Formally, we

make the following assumption as an alternative to Assumptions 1(vi), 1(viii) and 1(ix ).
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Assumption 3.

(vi) There exists a fixed constant M > 0 such that for any t, m = MT−q for some q > 0

satisfies

1

N

N∑
i=1

(x′it(β
0
g0i (A),A − β

0
g0i (B),B))2 > m.

(viii) There exists a nonrandom sequence cT > T−1/2+e for some e > 0 such that for

any g 6= g̃ where g, g̃ ∈ GB and g′, ǧ ∈ GA, it holds that ‖β0
g,B − β0

g̃,B‖ > cT and

‖β0
g′,A − β0

ǧ,A‖ > cT .

(ix) Let zit be x′itxit, ‖uitxit‖, 2uitx
′
it(β

0
g0
i(l)

,l
−β0

g,l), or (x′it(β
0
g0
i(l)

,l
−β0

g,l))
2 for g ∈ Gl and

l = A,B. Assume the following holds for any choice of zit: 1) zit is a strictly stationary

and strong mixing sequence over t whose mixing coefficients ai[t] are bounded by a[t]

such that max1≤i≤N ai[t] ≤ a[t] and
∑∞

t=0(t+ 1)r/2−1a[t]b/r+b <∞ for some b > 0, and

max1≤i≤N E(|zit|r+b) < ∞ for some b > 0; 2) There exists ai, i = 1, . . . , N , such that

for any ε > 0, it holds that max1≤i≤N |ai −
∑T

t=1E(zit)/T | < ε for T sufficiently large.

Assumption 3(vi) allows the break size to shrink as T → ∞. In Theorem A.1 below, we

impose a concrete condition on q. A fixed break size corresponds to q = 0.

Assumption 3(viii) allows a pair of groups to be identical in the limit. However, in finite

samples, they are separated and the magnitude of the difference between coefficients of two

groups is bounded from below by an order slower than 1/
√
T . This specification captures

situations in which groups are different but the difference is not large compared with the

length of time series.

Assumption 3(ix ) imposes weaker mixing and moment conditions than those in Assump-

tion 1(ix ). In exchange for this relaxation on the mixing and moment conditions, we need to

impose strict stationarity, which is a relatively strong assumption here given that we consider

structural breaks. Note that Assumption 3(ix ) only imposes stationarity on the regressors

and error terms but not the dependent variable, and thus it can still be satisfied in some

applications.

Under this alternative set of assumptions, we obtain the consistency of the estimator and

asymptotic distribution of the coefficients estimator. However, the required condition on the

relative magnitude of N and T becomes stronger.

Theorem A.1. Suppose that Assumptions 1(i)-1(v), 3(vi), 1(vii), 3(viii), 3(ix) and 1(x)

hold. For q defined in Assumption 3(vi) and e defined in Assumption 3(viii), suppose that

q < min(1/4, e). As N,T → ∞ with NT−er → 0 and T 2q/N → 0, where r is defined in

Assumption 3(ix), Pr(k̂ = k0)→ 1.
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Corollary A.1. Suppose that Assumptions 1(i)-1(v), 3(vi), 1(vii), 3(viii), 3(ix) and 1(x)

hold. For q defined in Assumption 3(vi) and e defined in Assumption 3(viii), suppose that

q < min(1/4, e). As N,T → ∞ with NT−er → 0 and T 2q/N → 0, where r is defined in

Assumption 3(ix),

(1) Pr(γ̂ = γ0)→ 1,

(2) β̂ = β̃ + op(1/
√
NT ), where β̃ is the estimator of β under k = k0 and γ = γ0.

We now prove Theorem A.1 and Corollary A.1. We note that Lemma 1 holds under

Assumptions 1(i) and 1(ii) and it can be used without modification even under the alternative

set of assumptions. However, Lemmas 2, 3, and 4 and their proofs need to be modified as

follows.

Lemma 6. Suppose that Assumptions 1(i)-1(v), 3(vi) and 1(vii) hold. Also assume that

q < 1/4 where q is defined in Assumption 3(vi). Then we have that

(1) maxg∈GB ming̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
= Op(1/

√
T ),

(2) maxg∈GA ming̃∈GA

∥∥∥β0
g,A − β̂g̃,A

∥∥∥2
= Op(1/

√
T ),

(3) (k̂ − k0)/T = Op(T
−1/2+q).

Proof. The proof is identical to that of Lemma 2 until we arrive at the following step. It

follows that for k̂ ≥ k0, we have

k0 − 1

T
ρ̂ max
g∈GB

min
g̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
≤ aNT ,

k̂ − k0

T
(m− C

√
aNT ) ≤ aNT ,

T − k̂
T

ρ̂ max
g∈GA

min
g̃∈GA

∥∥∥β0
g,A − β̂g̃,A

∥∥∥2
≤ aNT .

Similarly, for k̂ ≤ k0, we have

k̂ − 1

T
ρ̂ max
g∈GB

min
g̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
≤ aNT ,

k0 − k̂
T

(m− C
√
aNT ) ≤ aNT ,

T − k0

T
ρ̂ max
g∈GA

min
g̃∈GA

∥∥∥β0
g,A − β̂g̃,A

∥∥∥2
≤ aNT .

Noting that m > C
√
aNT for sufficiently large T because q < 1/4, in either case (k̂ ≥ k0 or

k̂ ≤ k0), we must have that (k̂ − k0)/T = Op(aNT ) = Op
(
T−1/2+q

)
because of Assumption

1(vii). This result and Assumption 1(iv) imply that

max
g∈GB

min
g̃∈GB

∥∥∥β0
g,B − β̂g̃,B

∥∥∥2
= Op(aNT ) = Op

(
1√
T

)
, and max

g∈GA
min
g̃∈GA

∥∥∥β0
g,A − β̂g̃,A

∥∥∥2
= Op

(
1√
T

)
.
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Lemma 7. Suppose that Assumptions 1(i)-1(v), 3(vi), 1(vii) and 3(viii) are satisfied. Suppose

that q < 1/4 where q is defined in Assumption 3(vi). Then there exist permutations σB :

GB 7→ GB and σA : GA 7→ GA such that
∥∥∥β0

g,B − β̂σB(g),B

∥∥∥2
= Op(1/

√
T ) for any g ∈ GB and∥∥∥β0

g,A − β̂σA(g),A

∥∥∥2
= Op(1/

√
T ) for any g ∈ GA.

Proof. The proof is identical to that of Lemma 3 until we observe that∥∥∥β̂σB(g),B − β̂σB(g̃),B

∥∥∥ ≥ ∥∥β0
g,B − β0

g̃,B

∥∥− ∥∥∥β0
g,B − β̂σB(g),B

∥∥∥− ∥∥∥β0
g̃,B − β̂σB(g̃),B

∥∥∥ .
Recall that we have already shown that

∥∥∥β0
g,B − β̂σB(g),B

∥∥∥ = Op(1/
√
T ) and

∥∥∥β0
g̃,B − β̂σB(g̃),B

∥∥∥ =

Op(1/
√
T ). Besides, Assumption 3(viii) states that

∥∥∥β0
g,B − β0

g̃,B

∥∥∥ > cT . Because cT >

T−1/2+e, the right hand side of the above inequality is strictly positive with probability ap-

proaching one. This means that σB(g) 6= σB(g̃) for g 6= g̃ with probability approaching one,

which further implies that σB admits a well defined inverse and is bijective. The rest of the

proof is identical to the corresponding part of the proof of Lemma 3.

Lemmas 6 and 7 imply that the Hausdorff distance between β0
B and β̂B and the distance

between β0
A and β̂A both converge to 0 at the rate of

√
T . We also relabel the groups such

that σB(g) = g and σA(g) = g and we have
∥∥∥β0

g,B − β̂g,B
∥∥∥2

= Op(1/
√
T ) for any g ∈ GB and∥∥∥β0

g,A − β̂g,A
∥∥∥2

= Op(1/
√
T ) for any g ∈ GA.

Let N be a neighborhood of β0 such that
∥∥∥β0

g,C − βg,C
∥∥∥ < η = T−1/2+f for 0 < f < e,

where e is defined in Assumption 3(viii), for any g ∈ GC and C = B,A. Note that we can take

η in the above range by considering large N and T by Lemma 7. Let k̄ = k0 + T 1/2+q log T

and k = k0 − T 1/2+q log T . Define K = {k : k ≤ k ≤ k̄}.

Lemma 8. Suppose that Assumptions 1(ii), 1(iv), 1(vii), 3(viii), and 3(ix) hold. We take q

and f in the definitions of K and N , respectively, such that q < e and e−2q−1/4 < f < e−q
where e is defined in Assumption 3(viii). As N,T →∞ with NT−er → 0, where r is defined

in Assumption 3(ix), it holds that

Pr
{
γ̂(k, β) 6= γ0 for some k ∈ K and β ∈ N

}
→ 0.

Proof. To show this probability converges to zero, it is equivalent to show that

max
1≤i≤N

sup
β∈N

max
k∈K

1{ĝi(B)(k, β) 6= g0
i (B)}+ max

1≤i≤N
sup
β∈N

max
k∈K

1{ĝi(A)(k, β) 6= g0
i (A)} = op(1),

where we observe that

1
{
ĝi(B)(k, β) 6= g0

i (B)
}

= max
g∈GB\{g0i (B)}

1

(
k−1∑
t=1

(yit − x′itβg,B)2 <

k−1∑
t=1

(yit − x′itβg0i (B),B)2

)
,

(A.11)
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and a similar equality holds for 1{ĝi(A)(k, β) 6= g0
i (A)}. We analyze the probability of each

of these two indicators being one. To this end, we first evaluate how the deviation of k from

k0 plays a role, while the situation of k = k0 can be analysed using the same arguments as in

Bonhomme and Manresa (2015) and Okui and Wang (2021).

We first examine the difference between the two summations in the argument of the

indicator function in (A.11), and show that this difference evaluated at any k ∈ K and that

evaluated at k = k0 are not very different. Let

D =

k−1∑
t=1

(
(yit − x′itβg,B)2 − (yit − x′itβg0i (B),B)2

)
−
k0−1∑
t=1

(
(yit − x′itβg,B)2 − (yit − x′itβg0i (B),B)2

)
.

First, considering the case of k < k0, we have that

|D| =

∣∣∣∣∣∣
k0−1∑
t=k

2uitxit(βg0i (B),B − βg,B) +

k0−1∑
t=k

(βg0i (B),B − βg,B)′xitx
′
it(2β

0
g0i (B),B − βg0i (B),B − βg,B)

∣∣∣∣∣∣
≤M1(k0 − k)

1

k0 − k

k0−1∑
t=k

‖uitxit‖+M2(k0 − k)

∥∥∥∥∥∥ 1

k0 − k

k0−1∑
t=k

xitx
′
it

∥∥∥∥∥∥ ,
where M1 and M2 are constants independent of (i, g, k, β). Let MT = T f/ log T . By the

Markov inequality, we have

Pr

 1

k0 − k

∣∣∣∣∣∣
k0−1∑
t=k

(‖uitxit‖ − E(‖uitxit‖)

∣∣∣∣∣∣ > MT

 ≤ E
(∣∣∣∑k0−1

t=k (‖uitxit‖ − E(‖uitxit‖)
∣∣∣r)

((k0 − k)MT )r
.

Under Assumption 3(ix ), we can apply Theorem 1 of Yokoyama (1980) to obtain

E

∣∣∣∣∣∣
k0−1∑
t=k

(‖uitxit‖ − E(‖uitxit‖)

∣∣∣∣∣∣
r ≤ C(k0 − k)r/2.

Noting that (k0 − k)−1
∑k0−1

t=k E(‖uitxit‖) converges and MT →∞, we have that

Pr

(k0 − k)−1
k0−1∑
t=k

‖uitxit‖ > MT

 = O
(
T−r/4−qr/2−rf (log T )r/2

)
.

Similarly, it holds that Pr(‖(k0 − k)−1
∑k0−1

t=k xitx
′
it‖ > MT ) = O(T−r/4−qr/2−rf (log T )r/2).

These imply that there exists a sequence that satisfies CT = O(MT ) and CT →∞ as T →∞,

such that

Pr

(
1

k0
|D| > k0 − k

k0
CT

)
= O(T−r/4−qr/2−rf (log T )r/2).
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Using a similar argument, we can show that for k ≥ k0,

Pr

(
1

k0
|D| > k̄ − k0

k0
CT

)
= O(T−r/4−qr/2−rf (log T )r/2).

Next, we consider
∑k0−1

t=1

(
(yit − x′itβg,B)2 − (yit − x′itβg0i (B),B)2

)
. As in the proof of

Lemma 4, we have

k0−1∑
t=1

(
(yit − x′itβg,B)2 − (yit − x′itβg0i (B),B)2

)

=
k0−1∑
t=1

2uitxit(β
0
g0i (B),B − β

0
g,B) +

k0−1∑
t=1

(x′it(β
0
g0i (B),B − β

0
g,B))2 + Ψ,

where

Ψ =
k0−1∑
t=1

2uitxit(βg0i (B),B − βg,B − β0
g0i (B),B + β0

g,B)

+
k0−1∑
t=1

(βg0i (B),B − βg,B − β0
g0i (B),B + β0

g,B)′xitx
′
it(2β

0
g0i (B),B − βg0i (B),B − βg,B)

+
k0−1∑
t=1

(β0
g0i (B),B − β

0
g,B)′xitx

′
it(β

0
g0i (B),B − βg0i (B),B − βg,B + β0

g,B).

By the Cauchy-Schwarz inequality, Assumption 1(ii) and the definition of N imply that

|Ψ| ≤ ηC1

∥∥∥∥∥∥
k0−1∑
t=1

uitxit

∥∥∥∥∥∥+ ηC2

∥∥∥∥∥∥
k0−1∑
t=1

xitx
′
it

∥∥∥∥∥∥ ,
where C1 and C2 are constants independent of η and T . We then have that

1

(
k−1∑
t=1

(yit − x′itβg,B)2 <
k−1∑
t=1

(yit − x′itβg0i (B),B)2

)

≤1

(
k0−1∑
t=1

2uitx
′
it(β

0
g0i (B),B − β

0
g,B)

−
k0−1∑
t=1

(x′it(β
0
g0i (B),B − β

0
g,B))2 + ηC1

∥∥∥∥∥∥
k0−1∑
t=1

uitxit

∥∥∥∥∥∥+ ηC2

∥∥∥∥∥∥
k0−1∑
t=1

xitx
′
it

∥∥∥∥∥∥+ |D|

)
.

Note that the right hand side does not depend on β. Thus, as in the proof of Lemma 4, we

have

Pr

(
sup
β∈N

max
k∈K

1(ĝi(B)(k, β) 6= g0
i (B)) 6= 0

)
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≤
∑

g∈GB\{g0i (B)}

(
Pr

 1

k0

k0−1∑
t=1

(x′it(β
0
g0i (B),B − β

0
g,B))2 ≤

c′′T
2

+ Pr

∥∥∥∥∥∥ 1

k0

k0−1∑
t=1

uitxit

∥∥∥∥∥∥ ≥M


+ Pr

∥∥∥∥∥∥ 1

k0

k0−1∑
t=1

xitx
′
it

∥∥∥∥∥∥ ≥M
+ Pr

(
1

k0
|D| > k0 − k

k0
CT

)

+ Pr

(
1

k0

k0−1∑
t=1

2uitx
′
it(β

0
g0i (B),B − β

0
g,B) < −

c′′T
2

+ ηC1M + ηC2M +
k0 − k
k0

CT

))
,

where we take c′′T = cT × ρ∗ for c in Assumption 3(viii) and ρ∗ in Assumption 1(iv).

We observe that

Pr

∥∥∥∥∥∥ 1

k0

k0−1∑
t=1

xitx
′
it

∥∥∥∥∥∥ ≥M
 ≤ Pr

 1

k0

k0−1∑
t=1

∥∥xitx′it∥∥ ≥M
 = Pr

 1

k0

k0−1∑
t=1

x′itxit ≥M

 .

We then apply the Markov inequality and Theorem 1 of Yokoyama (1980) with respect to

x′itxit − E(x′itxit) so that under Assumption 3(ix ) it holds that

Pr

∥∥∥∥∥∥(k0)−1
k0−1∑
t=1

xitx
′
it

∥∥∥∥∥∥ ≥M
 = O

(
(k0)−r/2

)
= O

(
T−r/2

)
,

where the last equality holds by Assumption 1(vii). Similarly, Assumption 1(ix ) also implies

that Pr
(∥∥∥(k0)−1

∑k0−1
t=1 uitxit

∥∥∥ ≥M) = O
(
T−r/2

)
. Moreover, a similar argument shows that

under Assumptions 1(iv), 3(viii) and 3(ix ), the Markov inequality combined with Theorem

1 of Yokoyama (1980) yields that

Pr

∣∣∣∣∣∣ 1

k0

k0−1∑
t=1

(x′it(β
0
g0i (B),B − β

0
g,B))2 − 1

k0

k0−1∑
t=1

E((x′it(β
0
g0i (B),B − β

0
g,B))2)

∣∣∣∣∣∣ ≥ c′′T
2

 = O(T−er),

which in turn implies that the following equation holds uniformly over g:

Pr

 1

k0

k0−1∑
t=1

(x′it(β
0
g0i (B),B − β

0
g,B))2 ≤

c′′T
2

 = O(T−er).

Now we have shown that Pr{(k0)−1|D| > ((k0 − k)/k0)CT } = O(T−r/4−qr/2−rf (log T )r/2).

Moreover, by similar arguments as above that use the combination of the Markov inequality

and Theorem 1 of Yokoyama (1980) we have

Pr

(
1

k0

k0−1∑
t=1

2uitx
′
it(β

0
g0i (B),B − β

0
g,B) < −

c′′T
2

+ ηC1M + ηC2M +
k0 − k
k0

CT

)

≤Pr

(
1

k0

k0−1∑
t=1

2uitx
′
it(β

0
g0i (B),B − β

0
g,B) < −

c′′T
4

)
= O(T−er)
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uniformly over g under Assumption 3(ix ), where the first inequality holds because c′′T =

O(cT ) = O(T−1/2+e), η = o(T−1/2+e), and ((k0 − k)/k0)CT = O(T−1/2+q+f ) = o(cT ) under

the assumption of q + f < e. It thus follows that

Pr

(
max

1≤i≤N
sup
β∈N

max
k∈K

1(ĝi(B)(k, β) 6= g0
i (B)) 6= 0

)

≤
N∑
i=1

Pr

(
sup
β∈N

max
k∈K

1(ĝi(B)(k, β) 6= g0
i (B)) 6= 0

)
=O(N(T−er + T−r/2 + T−r/4−qr/2−fr(log T )r/2)) = O(NT−er),

where the last equality follows because 1/4 + 2q+ f > e by the choice of f . Similarly, we can

show that Pr
(
max1≤i≤N supβ∈N maxk∈K 1

[
ĝi(A)(k, β) 6= g0

i (A)
]
6= 0
)

= O(NT−er).

Proof of Theorem A.1

Proof. We first note that we can take f to satisfy e−2q−1/4 < f < e−q under the condition

of the theorem so that Lemma 8 can be applied. The proof is almost identical to that of

Theorem 1. There are three main differences. First, Lemmas 6, 7 and 8 are used instead of

2, 3 and 4. Second, the lower bound on
∑k−1

t=k0
∑N

i=1(x′it(βg0i (A),A − βg0i (B),B))2/(NT ) is given

by (k − k0) (m− Cη) /T because of Assumption 3(vi), and it is replaced by (k − k0)m/(2T )

because f < 1/2− q is assumed. Third, we have

Pr

(
sup
β∈N

max
k0<k≤k̄

(
−2

1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

x′it(βg0i (A),A − βg0i (B),B)uit

)
>
m

2

)

≤Pr

(
max
k0<k≤k̄

(
−2

1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

x′it(β
0
g0i (A),A − β

0
g0i (B),B)uit

)
>
m

4

)

+ Pr

(
ηC max

k0<k≤k̄

∥∥∥∥∥ 1

N

1

k − k0

k−1∑
t=k0

N∑
i=1

xituit

∥∥∥∥∥ > m

4

)
= O

(
T 2q

N

)
,

where the last equality follows by applying Bai and Perron (1998, Lemma A.6), noting that

under Assumptions 3(ix ) and 1(x ), xituit is an L2 mixingale. Also note that T 2q/N → 0 is

assumed in the statement of the theorem.

Proof of Corollary A.1

Proof. The proof is identical to that of Corollary 1 except that the current proof is based on

Theorem A.1 while that of Corollary 1 is based on Theorem 1.
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