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I Introduction

The digitization of information has generated exponential growth in new types of data (e.g.,

from social media, web traffic, credit card and point-of-sale, geolocation and satellite im-

agery), often referred to as alternative data.1 This evolution is transforming the way investors

and information intermediaries (e.g., financial analysts) forecast future outcomes (e.g., cash

flows) and make decisions (e.g., value assets and choose portfolios).2 However, research on

its implications is still limited. In particular, the effects of alternative data on the quality of

financial forecasts at different time horizons remain unknown. Our paper addresses this is-

sue, recognizing that many financial decisions (e.g., investing in stocks or capital budgeting)

rely on forecasts that span both short and long horizons.

Alternative data reduces the cost of obtaining information (Goldfarb & Tucker (2019)). In

theory, this reduction enables forecasters to obtain more precise signals and form better fore-

casts (Verrecchia (1982)). Therefore, alternative data should improve the quality of financial

forecasting, in general. In this paper, we propose a more nuanced prediction. We conjecture

that alternative data predominantly contains information about firms’ short-term prospects.

For instance, sensor data tracking retailers’ activity (e.g., satellite or geolocation data),

credit card data, or social media posts about products and brands are informative about

firms’ upcoming earnings, but less clearly so about earnings in three years’ time because

firms’ long-term prospects depend on their strategic and innovation choices. Anticipating

these choices and predicting their implications requires human judgement and more qualita-

tive information (e.g., discussions with industry leaders, scientists, or executives) than that

provided by alternative data. Therefore, while alternative data should improve the quality of

short-term forecasts, its effect on the quality of long-term forecasts is less clear; it depends on

how a decline in the cost of obtaining short-term information affects forecasters’ incentives

to obtain long-term information.

To shed light on this question, we first consider a model in which a forecaster collects

1According to the website Alternative Data.org (http://www.alternativedata.org), there were more than
400 providers of alternative data in 2020 and the amount invested by buy-side investors in such data was
close to $2 billion.

2See, for example, “Demystifying alternative data”, Greenwich Associates, 2019 or “How investment
analysts became data miners”, Financial Times, November 28, 2019.
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information to minimize her average forecast errors of the short-term and long-term earnings

of a firm. Importantly, we assume that forecasting short-term and long-term earnings entails

two distinct tasks. They both require collecting information on the firm’s assets in place

(“short-term information”) but the latter also necessitates information on its growth options

(“long-term information”). The forecaster strategically allocates efforts to these tasks and

bears a cost for multi-tasking (due, for instance, to cognitive constraints): increasing the

effort allocated to one task makes the effort allocated to the other costlier. We show that an

increase in the marginal informational return (reduction in forecasting errors) on the effort

exerted to obtain short-term information due to a drop in the cost of obtaining short-term

information (or an increase in the amount of such information) causes the forecaster to opti-

mally substitute effort away from collecting long-term information. Hence, the availability of

alternative data makes her short-term forecasts more informative but it can reduce the infor-

mativeness of her long-term forecasts, in particular when the correlation between short-term

and long-term earnings is low or the cost of multi-tasking is high.

We test this prediction, focusing on one important type of forecasters, namely sell-side

equity analysts. Indeed, to set target prices and make investment recommendations to

investors, analysts routinely forecast earnings at short and long horizons, and they do so

considering all relevant information, including from alternative data sources.3 For our tests,

we develop a new measure of the informativeness of analysts’ forecasts by horizon, exploiting

the fact that they typically cover multiple firms. Specifically, we measure the informativeness

of the forecasts produced by an analyst on a given day for a given horizon h by the R2 of

a regression of realized earnings at horizon h (across the firms covered by the analyst) on

the analyst’s forecasts of these earnings. A higher R2 implies that the analyst’s forecasts for

horizon h explain (in a statistical sense) a larger fraction of the variation in realized earnings

at this horizon, and thus that her forecasts are more informative.

Using earnings forecasts from I/B/E/S, we calculate this R2 every day between 1983 and

2017 for all U.S. analysts and all possible horizons (ranging from one day to five years). We

obtain a sample of more than 65 million analyst-day-horizon R2 observations and find that

3See Chi et al. (2021) for evidence that analysts use alternative data and Section 13 in our online appendix
for an example.
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short-term forecasts are significantly more informative than long-term forecasts. On average,

R2 decreases by 12 percentage points for every one-year increase in horizon. Thus, the term

structure of forecasts’ informativeness (i.e., the relationship between R2 and the horizon h)

is downward-sloping. Our theory predicts that greater exposure to alternative data increases

R2 for low values of h, but possibly decreases R2 for high values of h, thereby rendering the

slope of the term structure of analysts’ forecast informativeness steeper.

Testing this prediction requires identifying variation in analysts’ exposure to alternative

data, which is empirically challenging for three reasons. First, “alternative data” is a generic

term for any data containing relevant information about firm value that is not directly

disclosed by firms, and refers to a myriad of datasets.4 Second, these datasets greatly vary

in their scope and most of them are only relevant for a subset of firms (e.g., credit card data

are informative for retail activities but less so for steel manufacturing). Last, variation in

analysts’ exposure to alternative data may be related to confounding factors also affecting

their R2. Thus, the key empirical challenge is to identify a source of variation in alternative

data that is (i) common to hundreds of alternative data providers, (ii) relevant for the entire

cross-section of firms, and (iii) unrelated to other factors affecting R2. Since building a single

test satisfying all three conditions is difficult, we develop two tests, one at the “macro-level”

that meets the first two conditions, and another one at the “micro-level” that plausibly meets

the last two.

[Insert Figure I about here]

Our first, “macro-level”, test exploits the rise in the number of alternative data providers

over time, particularly since the late 2000s (see Figure I). We ask whether this trend (com-

mon to all alternative data and relevant for all firms) coincides with an increase in the

informativeness of short-term analysts’ forecasts and a decrease in the informativeness of

their long-term forecasts, as predicted by our model. We find that those two opposite ef-

fects are indeed present in the data. On average, R2 at the one-year horizon has increased

by roughly 10 percentage points since 2000 from about 60% to 70%, but decreased at the

five-year horizon by roughly 10 percentage points from about 40% to 30%. We also show

4See Section 12 in the online appendix for a taxonomy of available alternative data as of this writing.
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that the annual “slope” of the term structure has become steeper over time, a trend that

has accelerated since 2005. Since other factors may also explain this long-run evolution of

the term structure, this first test does not provide causal evidence in support of our theory.

Nevertheless, it provides estimates that serve as a benchmark for gauging the aggregate effect

of the rise of alternative data.

Our second, “micro-level”, test focuses on social media data. We study the effects of

analysts’ exposure to data generated by StockTwits, a social networking platform where in-

vestors share information (blog posts, charts, or links to articles about a stock) and opinions

about individual firms.5 StockTwits is well-suited for our purpose because the data gener-

ated therein is (i) social media data – an important source of alternative data – covering

almost every firm (in contrast to many other alternative datasets, whose coverage is more

specialized), (ii) contains (as we show) information mostly relevant about firms’ short-term

cash flows, and (iii) is used by analysts (we provide evidence thereof). Moreover, StockTwits

was introduced in 2009 and expanded progressively with different level of intensity across

firms. This feature enables us to estimate the effect of greater exposure to alternative (social

media) data using an approach similar to a difference-in-differences, namely by comparing

how R2 (for a given horizon) changes after the introduction of the StockTwits platform for

analysts with early and high exposure to StockTwits data relative to analysts who were

exposed later or simultaneously but with less intensity.

We measure analysts’ exposure using two complementary approaches, aimed at capturing

variations in data generated on StockTwits that would not have been available to analysts

from traditional sources (e.g., company filings or press releases). Our first measure is the

daily average number of users who have on their “watchlist” (i.e., the list of firms they follow)

the firms covered by the analyst. Since users rarely modify their watchlist after registering on

StockTwits, a firm’s watchlist (i.e., the number of users having the firm in their watchlist)

changes because new users register and enter the platform. Therefore, variation in the

number of users on a firm’s watchlist mostly reflects the overall expansion of StockTwits,

5Several recent academic papers use data from StockTwits to measure, for instance, divergence of in-
vestors’ opinions (Cookson & Niessner (2020), or Giannini et al. (2019)), the political orientation of their
beliefs (Cookson et al. (2020a)), or selective exposure to confirmatory information (Cookson et al. (2020b)).
In contrast, we use StockTwits to measure variation in the availability of alternative (social media) data.
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both over time and across firms, and not the arrival of information from other sources. Our

second measure is the number of “hypothetical” messages about the firms covered by an

analyst posted over the last 30 days. Hypothetical messages (on a given firm and day)

correspond to the total number of messages on StockTwits (across all firms) multiplied by

the focal firm’s average share of total messages.6 As this share is constant, the number of

hypothetical messages about a firm (unlike actual messages) does not change with the arrival

of firm-specific information from other sources (which we also confirm empirically). Both

measures are set to zero before 2009 and are used as the main explanatory variable in a

specification controlling for analyst and time fixed effects, which we estimate separately by

horizon sub-sample over the 2005-2017 period.

For both measures, we find that greater exposure to alternative (social media) data is

associated with a significant improvement in the informativeness of analysts’ short-term

forecasts (less than one year), and a decline of comparable magnitude in the informativeness

of their long-term forecasts (beyond two years). We also find that the slope of the term

structure of forecast informativeness becomes steeper for more exposed analysts, and even

more so for exposed analysts whose name matches that of a StockTwits user account. This

steepening is also more pronounced for (i) analysts following more firms (i.e., those for

whom the cost of multi-tasking is plausibly higher), and (ii) analysts following firms whose

earnings are less autocorrelated. Therefore, the steepening of the term structure of forecast

informativeness due to increased exposure to alternative data varies systematically across

analysts, as our theory predicts.

The rest of the paper is organized as follows. Section II positions our contribution in

the related literature. In Section III, we present our model of forecasting by analysts and

derive our main prediction. Section IV presents the data used in our tests and our new

measure of analysts’ forecast informativeness. In Sections V and VI, we report the findings

of our macro- and micro-level tests of the effects of alternative data on the informativeness of

analysts’ forecasts. Section VII concludes. All derivations for our model and the definitions

6Intuitively, “hypothetical messages” is the number of messages that would have been observed about a
given firm in a given day if, on this day, the messaging activity about that firm relative to other firms was
that of an average day.
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for the variables used in our tests are reported in the Appendix.

II Contribution to the Literature

Our results add to a growing literature studying the effects of progress in information tech-

nology and data abundance on financial markets. Existing theories posit that this evolution

reduces the cost of accessing and processing information about firms’ fundamentals (or re-

laxes information capacity constraints) and study the implications for the informativeness

of asset prices (Dugast & Foucault (2018), Farboodi & Veldkamp (2020)), market efficiency

(Martin & Nagel (2020)), firms’ growth rates (Begeneau et al. (2018)), information acqui-

sition choices by asset managers (Abis (2018)), the pricing of information by data vendors

(Huang et al. (2020)), or financial inclusion (Mihet (2020)).

We also assume that the emergence of alternative data reduces the cost of information

acquisition. However, in contrast to the literature, we consider the possibility that this

reduction is heterogeneous across horizons. We conjecture that most types of alternative

data contain short-horizon information about fundamentals and therefore reduce the cost of

obtaining information about short-term cash flows significantly more than about long-term

cash flows. To our knowledge, our paper is the first to formulate this hypothesis and analyze

its implications for the informativeness of financial forecasts when forecasters face a trade-off

between collecting short-term and long-term information. This trade-off is relevant because

most financial decisions require making forecasts about outcomes that occur at different

dates in the future.7

Our focus on the informativeness of financial forecasts differentiates our study from ex-

isting papers analyzing the effects of digitization and alternative data on the informativeness

of order flows and asset prices. Using various sources of variation – the digitization of firms’

regulatory filings (Gao & Huang (2020)), the availability of satellite images of retailers’ park-

ing lots (Zhu (2019)) or variations in the volume of data generated by financial blog posts

(Grennan & Michaely (2020b)) – these papers conclude that digitization or alternative data

7Dugast & Foucault (2018) shows that a decrease in the cost of producing signals after new information
arrival strengthens the informativeness of stock prices in the short-term but not necessarily in the long-term,
where short-term and long-term are defined by the time elapsed since news arrivals. This is distinct from the
notions of short-term and long-term used in our paper (the time elapsed until the realization of a payoff).
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make order flow (e.g., the net order imbalance from individual investors or the absolute or-

der imbalance) and stock prices more informative (e.g., the predictability of future earnings

announcements based on stock returns or measures of price non-synchronicity).8

This conclusion does not contradict our finding that alternative data negatively affects

the informativeness of analysts’ long-term forecasts. Indeed, as stock prices are the sum of

discounted forecasted cash flows at all horizons, their informativeness about firms’ cash flows

at specific future dates depends on the informativeness of both short-term and long-term

forecasts. Thus, the net effect on the informativeness of prices of an improvement in the

informativeness of short-term forecasts and a deterioration in that of long-term forecasts due

to alternative data is ambiguous. This ambiguity is difficult to address given the challenge

of measuring the horizons at which stock prices provide useful information. Gao & Huang

(2020), Grennan & Michaely (2020b) and Zhu (2019) provide evidence consistent with digiti-

zation or alternative data making prices more informative about short-horizon earnings (i.e.,

up to one year), but do not consider longer horizons. To the extent that analysts’ forecasts

are representative of those of investors, their results are consistent with our findings that

alternative data enhances the informativeness of short-term forecasts (less than 1 or 2 years).

Relatedly, Bai et al. (2016) and Farboodi et al. (2020) ask whether long run reductions in

information processing costs due to progress in information technology and data abundance

have changed the informativeness of stock prices. Interestingly, they report ambiguous ef-

fects, with improvements for some firms (e.g., large firms) but deteriorations for others (e.g.,

small firms). Our findings suggest that this heterogeneity could be related to the evolution

of the informativeness of analysts’ forecasts at various horizons (a question which is beyond

the scope of our paper). In any case, given the importance of earnings forecasts for asset

valuation and capital allocation, these results call for a detailed analysis of the effects of

alternative data on the quality of financial forecasting at short and long horizons. Our paper

is a first step in this direction.

8These findings suggest that alternative data contains information. Several papers establish that this is
the case by assessing whether different types of alternative data help in predicting stock returns and firms’
fundamentals (e.g., sales, and earnings). For instance, social media posts (Chen et al. (2014)), product
reviews (Huang (2018) and Tang (2018)), employees’ reviews (Green et al. (2019)), online customers’ activity
(Froot et al. (2017)) or satellite images (Katona et al. (2021), Mukherjee et al. (2021)) have been found to
contain information about stock returns and fundamentals.
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Finally, our paper also contributes to the literature studying how analysts form their

forecasts. To our knowledge, our finding of a downward sloping term structure of equity

analysts’ forecasts’ informativeness and its evolution over time is novel. In addition, our

findings add to existing research studying the determinants of analysts’ effort allocation

(Harford et al. (2019) or Hirshleifer et al. (2019) ), the properties and implications of short-

term and long-term forecasts (Bandyopadhyay et al. (1995) or Mest & Plummer (1999)), and

how progress in information technologies affects the organization and output of the financial

analysis industry (Gerken & Painter (2021), Chi et al. (2021), van Binsbergen et al. (2020),

or Grennan & Michaely (2020a)).

III Hypothesis Development

A The Forecasting Problem

The model features one forecaster (the “analyst”) and one firm. Figure II presents the

timeline. The firm generates two cash flows (earnings), θst at date 2 (the short-term) and θlt

at date 3 (the long-term) with

θlt = βθst + elt, (1)

where β ≥ 0, θst ∼ N (0, σ2
st), elt ∼ N (0, σ2

e), and θst and elt are independent. The long-

term earnings are the sum of two components: (i) the common component (βθst) generated,

for instance, by assets in place, and (ii) the unique component (elt) generated, for instance,

by growth opportunities. The correlation between the long-term and short-term earnings

increases with β.

[Insert Figure II about here]

At date 1, the analyst formulates forecasts about θst and θlt denoted fst (the short-term

forecast) and flt (the long-term forecast), respectively. Her payoff, denoted W (θst, θlt, flt, fst),

is inversely related to the weighted sum of her squared forecast errors:

W (θst, θlt, fst, flt) = ω − γ(fst − θst)2 − (1− γ)(flt − θlt)2, (2)

where ω > 0 and 0 < γ < 1 (see Section III.C for a discussion).
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To generate her forecasts, the analyst uses a “short-term signal”, sst, about the short-term

earnings and a “long-term signal”, slt, about the unique component (elt) of the long-term

earnings:

sst = θst + εst, slt = elt + εlt, (3)

where εh ∼ N (0, Zh−ψhzh) and zh ≤ (ψh)
−1Zh, for horizon h ∈ {st, lt}. The errors (εhs’) in

the analyst’s signals are independent from each other and all other variables in the model.

Variable zh denotes the analyst’s effort (chosen at date 0; see below) to collect and process

information at horizon h. An increase of zst (resp., zlt) reduces the variance of the noise in her

short-term (long-term) signal, sst (resp., slt), at rate ψst (resp., ψlt). Thus, ψh measures the

“informational return” of effort at horizon h. The effort exerted to improve the precision of

one signal does not affect the precision of the other one because the efforts required to collect

information about the common and unique components of future earnings are distinct tasks

(the unique component is not correlated with the common component). For given forecasts

{fst, flt}, the analyst’s expected payoff conditional on her information at date 1 is

W (fst, flt; sst, slt) ≡ E(W (θst, θlt, flt, fst) |sst, slt)

= ω − γ E((fst − θst)2 |sst, slt)− (1− γ)E((flt − θlt)2 |sst, slt) .
(4)

The analyst chooses her optimal forecasts, {f ∗st, f ∗lt}, to maximize W (fst, flt; sst, slt). Thus

(see Appendix III for all derivations)

f ∗st = E(θst |sst) , f ∗lt = E(θlt |sst, slt) . (5)

Substituting eq.(5) into eq.(4), we obtain that the analyst’s unconditional (date 0) expected

payoff is

E(W (f ∗st, f
∗
lt; sst, slt)) = ω − q(β, γ)Var(θst |sst)− (1− γ)Var(elt |slt) , (6)

where q(β, γ) ≡ γ+(1−γ)β2. The analyst’s expected payoff increases in the informativeness

of her signals (the inverse of Var(θst |sst) and Var(elt |slt)) because more informative signals

reduce her average forecast errors. The informativeness of the signal at horizon h increases

in the analyst’s effort to obtain information specific to this horizon because, as explained
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previously, this effort reduces the noise in the analyst’s signal. For instance, if the analyst’s

priors about θst and est are diffuse then

Var(θst |sst) = (Zst − ψstzst), Var(elt |slt) = (Zlt − ψltzlt). (7)

Exerting effort is costly for the analyst. Her total information processing cost is

C(zst, zlt) = C0 + a× z2
st + b× z2

lt + c× zstzlt, (8)

where C0 is the fixed cost of understanding the firm’s business and collecting information

about it. As usual in the literature on information acquisition, we assume that a > 0 and

b > 0: the marginal cost of effort to improve the precision of a signal at a given horizon

increases with the level of effort. Furthermore, we assume that multi-tasking is costly, c > 0.

For instance, if the analyst already exerted a lot of effort to improve the precision of, say,

her short-term signal then it becomes more taxing to exert even more effort, be it to improve

the precision of the short-term signal (a > 0) or the precision of the other signal (c > 0).9

The analyst chooses her efforts, z∗st and z∗lt, at date 0 to maximize her ex-ante expected

payoff net of the cost of effort, J(zst, zlt) ≡ E(W (f ∗st, f
∗
lt; sst, slt))− C(zst, zlt). Thus, z∗st and

z∗lt solve

max
zst≤(ψst)−1Zst,zlt≤(ψlt)−1Zlt

J(zst, zlt) = ω− q(β, γ)Var(θst |sst)− (1− γ)Var(elt |slt)−C(zst, zlt).

(9)

In choosing her efforts, the analyst trades off the precision of her signals against the cost

of effort. To solve for her optimal efforts, it is analytically convenient to assume that the

analyst’s priors about θst and est are diffuse (Var(θst |sst) and Var(elt |slt) are given by eq.(7)).

In this case, we obtain the following result.10

Proposition 1 : When c ≤ c̄(β, γ, a, b, ψst, ψlt) (where c̄ is defined in the proof of the propo-
sition) and Zh is large enough for h ∈ {st, lt}, the analyst’s optimal efforts in producing

9Goldstein & Yang (2015) consider a model in which the payoff of an asset is the sum of three components
and investors can acquire information about the first component or the second one or both. They assume
that the cost of acquiring information on both components is higher than the sum of the costs of acquiring
information on each component separately. This assumption is similar to our assumption that c > 0.

10We assume that ω is large enough so that it is always optimal for the analyst to pay the fixed cost C0

of coverage (i.e., J(0, 0) > 0).
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information at date 0, z∗st and z∗lt, are interior (i.e., 0 < z∗h < (ψh)
−1Zh) and given by

z∗st =
2bq(β, γ)ψst − c(1− γ)ψlt

4ab− c2
z∗lt =

2a(1− γ)ψlt − cq(β, γ)ψst
4ab− c2

. (10)

When the marginal cost of producing the short-term signal, a, decreases then the analyst
increases her effort (z∗st) to improve the precision of her short-term signal and, if c > 0,
decreases her effort (z∗lt) to improve the precision of her long-term signal.

A reduction in the marginal cost of obtaining short-term information raises the net marginal

benefit of improving the precision of her short-term signal for the analyst. As a result, the

analyst reacts by exerting more effort to obtain short-term information. This reaction is

optimal but it raises the marginal cost of exerting effort to improve the precision of the long-

term signal because multi-tasking is costly (c > 0). Consequently, the analyst optimally

reduces the effort she allocates to this task. This mechanism can work either via a reduction

in the cost of obtaining short-term information (as here) or an increase in the informational

return on effort to obtain short-term information (ψst), because what matters is the change

in the marginal benefit of efforts allocated to each task (see Section III.C).

B Alternative Data and Forecasts’ Informativeness

Our hypothesis is that alternative data mainly contains short-term information. Hence, it

reduces the marginal cost of obtaining short-term information (or the informational return

on effort to obtain short-term information). If this hypothesis is correct, Proposition 1

implies that the emergence of alternative data should lead forecasters using such data to

exert (even) more effort to improve the precision of their short-term signals at the expense

of the precision of their long-term signals. Forecasters’ efforts are not directly observable.

However, as shown in Corollary 1, one can use the informativeness of their forecasts to test

the implications of Proposition 1.

Intuitively, the analyst’s forecast at horizon h is more informative if the residual uncer-

tainty about earnings at this horizon after observing the analyst’s forecast, Var(θh | f ∗h), is

smaller. Hence, we define the informativeness of the analyst’s forecast at horizon h ∈ {st, lt},
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denoted by Ih, as the inverse of Var(θh | f ∗h):

Ih ≡ Var(θh | f ∗h)−1 for h ∈ {st, lt}. (11)

As f ∗st = E(θst | sst) and f ∗lt = E(θst | sst, slt), we have (see Appendix III):

Ist = Var(θj | sst)−1 = (Zst − ψstz∗st)−1. (12)

and

Ilt = Var(θlt |sst, slt)−1 = (β2(Zst − ψstz∗st) + (Zlt − ψltz∗lt))−1. (13)

The informativeness of the analyst’s short-term forecast depends only on her optimal effort

(z∗st) to collect information about the common component of the firm’s future earnings and

increases with this effort. In contrast, the informativeness of her long-term forecast increases

with the effort allocated to both horizons (z∗st and z∗lt) because information about the common

component is also useful to forecast the long-term earnings (as long as β > 0).

Corollary 1 : If β < ( cψlt

2bψst
)
1
2 , a decrease in the marginal cost of producing the short-term

signal (a) triggers an increase in the informativeness of the analyst’s short-term forecast and
a decrease in the informativeness of the analyst’s long-term forecast.

A decrease in the marginal cost of producing the short-term signal (a) results in a reallocation

of the analyst’s effort: she puts more effort into increasing the precision of the short-term

signal and less effort into increasing the precision of the long-term signal. The first effect

raises the informativeness of the long-term forecast while the second reduces it. Corollary

1 shows that the second effect dominates when the correlation between the long-term and

short-term earnings is low or when the cost of multi-tasking is large enough (β < ( cψlt

2bψst
)
1
2 ).11

In this case, the informativeness of the long-term forecast declines with the cost of producing

short-term information. In contrast, the informativeness of the short-term forecast always

improves.

11The condition β < ( cψlt

2bψst
)

1
2 requires either β low enough or c high enough. Existence of an interior

solution to the analyst’s problem requires c < c̄ (see Proposition 1). Using the expression for c̄ given in
the Appendix, it can be checked that the set of parameter values (e.g., for c and β) such that these two
conditions hold is non empty.

12



These differential effects lead to our main testable implication. Insofar as alternative

data increases the marginal net benefit of effort exerted for obtaining short-term information

(e.g., via a decrease in the marginal cost of obtaining short-term information), its availability

should be associated with an increase in the informativeness of short-term forecasts and a

decrease in the informativeness of long-term forecasts, especially for firms with a relatively

low autocorrelation of earnings (low β) or analysts for which the cost of multi-tasking (c) is

high.

C Discussion and Interpretation

Analysts’ Objective Function. We test the previous implications using sell-side equity

analysts’ forecasts. As assumed in our model (see eq.(2)), equity analysts care about the ac-

curacy of their forecasts because their career outcomes (compensation and upward mobility)

are positively related to this accuracy (i.e., inversely related to their forecast errors). For

instance, Hong & Kacperczyk (2010) and Harford et al. (2019) show that analysts with more

accurate forecasts are more likely to be ranked “all star analysts” or be promoted. This rela-

tionship might be direct (i.e., the analyst’s compensation explicitly depends on her forecast

errors) or indirect, when the analyst’s career depends on the quality of her recommendations

or the validity of the price target that she sets for a stock based on her forecasts.

In reality, analysts issue long-term forecasts less frequently than short-term forecasts (see

Section IV.A). However, this fact does not imply that they only care about the accuracy of

their short-term forecasts (the case γ = 1 in our model). Indeed, to make investment recom-

mendations or set price targets, analysts must forecast earnings at different future dates. The

quality of their investment recommendations is therefore dependent on the accuracy of their

short and long-term forecasts. In fact, the literature shows that analysts’ long-term forecasts

have the greatest explanatory power for analysts’ recommendations (Bradshaw (2004)), and

that the market reaction to these recommendations is stronger when they are accompanied

by long-term forecasts (Jung et al. (2012)). Moreover, revisions in long-term forecasts in-

duce strong market reactions (Chen et al. (2013), Da & Warachka (2011), or Copeland et al.

(2004)), suggesting that those forecasts matter for investors, which supports our assumption

that the accuracy of long-term forecasts is relevant for analysts’ careers. (i.e., γ < 1 in
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(eq.(2))).

Splitting Tasks. When the cost of obtaining short-term information drops, the analyst

in our model reallocates effort to the task of collecting short-term information. This behavior

is optimal for the analyst (i.e., it minimizes her average total forecasting error) because it

saves on the cost of multitasking but it can reduce the accuracy of her long-term forecasts.

One may then wonder whether the analyst (or her employer) could not be better off by

dividing the tasks of forecasting short-term and long-term earnings between two forecasters.

We show in Section 1 of the online appendix that this not the case when c ≤ 4C0

q(β,γ)(1−γ)ψstψlt
.

Indeed, under this condition, the increase in fixed costs of information production (each

forecaster bears the fixed cost C0 of collecting information to understand the firm’s business)

cancels out savings on the cost of multi-tasking. Other frictions (agency and communication

costs; see the online appendix) can also explain why splitting the tasks of forecasting short

and long-term earnings between two agents is not optimal, even when C0 = 0.

Alternative interpretation. Instead of reducing the cost of obtaining short-term in-

formation, alternative data can increase the informational return on effort for obtaining

short-term information, i.e., ψst (e.g., because one can use quantitative tools to analyze al-

ternative data). Our main prediction in this case is unchanged (see Section 2 in the online

appendix). In particular, if β < 1
2
( cψlt

bψst
)
1
2 (a condition qualitatively similar to that in Corol-

lary 1), an increase in ψst improves the informativeness of the analyst’s short-term forecast

and reduces the informativeness of her long-term forecast. What matters for our prediction is

therefore that the emergence of alternative data raises the marginal benefit of effort exerted

for obtaining short-term information and not the exact channel for this effect.

IV Measuring Forecasts’ Informativeness

A Earnings Forecasts and Realizations

We build a large sample of analyst forecasts of earnings per share (EPS) and net income (in

US dollars) from the I/B/E/S Detail History File (Adjusted and Unadjusted) at different

horizons (up to 5 years). We exclude quarterly and semi-annual earnings forecasts, and
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retain annual earnings forecasts associated with a well-defined fiscal period.12 We eliminate

forecasts with missing announcement dates, analyst code, or broker code. When an analyst

issues multiple forecasts for a firm and horizon on a given day, we keep the last forecast

based on the I/B/E/S time stamp. We further eliminate forecasts that cannot be matched

to CRSP and forecasts for firms with missing information on stock price, number of shares,

and with share code different from 10, 11, or 12.

We use net income forecasts as our main measure of “earnings” forecast.13 We match

earnings forecasts to realized earnings reported in the I/B/E/S Actual File. By default,

we use the actual net income to measure realized earnings. When only the actual EPS is

reported, we convert it into actual net income using the fully diluted number of shares from

Compustat if the firm does not have multiple share classes or the number of shares from

CRSP if not. Last, we require that (i) actual earnings and total assets at the end of the

forecasted fiscal period are not missing, and the absolute value of the former is not greater

than the latter, (ii) all forecasts are about a fiscal year ending between 1983 to 2017, (iii)

the forecast is issued before the actual earnings report date and this report date occurs after

the end of the forecasted fiscal period, and (iv) forecasts (in absolute value) are not greater

than 10 times total assets at the end of the forecasted fiscal period. We obtain 9,129,282

unique forecasts and realizations by analyst-firm-date-horizon, which we use next to build

our measure of forecast informativeness.

This sample contains 4,259,465 million forecasts with horizon less than one year and

1,260,796 million with horizon greater than two (including 102,431 beyond 4 years), where

horizon is the number of days between the forecast date and the earnings report date, divided

by 365. Three factors explain why there are more short-term than long-term unique forecasts.

First, for inclusion in our sample, the earnings realization must be non-missing. As the

12We identify forecasts for different fiscal years using I/B/E/S item “fpi” and retain forecasts with
fpi=1,2,3,4,5,E,F,G,H or I.

13If an analyst simultaneously issues a net income and EPS forecast, we retain the net income forecast.
If an analyst issues only an EPS forecast, we convert it into a net income forecast. This conversion is not
immediate because I/B/E/S does not report the number of shares used by the analyst to make the EPS
forecast. Based on instances where we observe both an EPS and a net income forecast, we find that the
approach minimizing the risk of error is to multiply the actual net income by the ratio of the I/B/E/S
adjusted EPS forecast over the I/B/E/S adjusted actual EPS (see Section 3 in the online appendix).
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horizon increases, some firms become inactive before we observe the corresponding earnings.

Second, for horizons beyond two years, many analysts only disclose a forecast about long-

term growth without explicit horizon.14 In those cases, the horizon is missing, although the

analyst did express a view about the long-term. Last, updating (and consequently reporting)

frequency decreases with horizon. Short-term forecasts – which are for the current fiscal year

– are regularly updated (or reiterated) before and after quarterly reports, whereas updates

of long-term forecasts mostly occur after annual earnings announcements.

As discussed in Section III.C, the imbalance between the number of long and short-term

forecasts in I/B/E/S does not imply that the trade-off highlighted in our theory is irrelevant

and that analysts do not care about long-term forecasts. Arguably, analysts and firms for

which we observe long-term forecasts might be different. To mitigate concerns about self-

selection, we will verify that our main results hold for analysts disclosing both short and

long-term forecasts, and for firms with both types of forecasts.

B Measuring Forecast Informativeness with R2

We define the informativeness of the forecasts of analyst i on day t for horizon h as the R2

of the regression

ej = k0 + k1êj + νj, (14)

where j indexes all firms covered by analyst i at time t with an available forecast at horizon

h, and where êj and ej are, respectively, the forecasted and realized earnings for firm j

normalized by total assets. By definition, the R2 of eq.(14) is

R2
i,t,h = 1− Var(νj)

Var(ej)
= 1− Var(ej|êj)

Var(ej)
. (15)

A higher R2
i,t,h implies that analyst i’s forecasts at horizon h on day t explain a larger fraction

of the variation in realized earnings at date t+ h across the firms she covers. Thus, a higher

R2
i,t,h indicates that analyst i’s forecasts at horizon h are more informative.

Appendix I describes the detailed procedure to compute R2 for an analyst on a given day

and horizon. We apply this procedure to all analysts at all dates between January 1, 1983

14See Section 4 in the online appendix.
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and December 31, 2017, and for all possible horizons between 1 day to 5 years. Our final

sample contains 65,889,122 analyst-day-horizon observations of R2
i,t,h, obtained from 14,379

distinct analysts who issued forecasts about 13,849 distinct firms.

C Why R2 to Measure Forecast Informativeness?

Our measure of analyst forecast informativeness, R2, follows from our theoretical measure of

informativeness, I (see eq.(11)). Indeed, in the model, the theoretical R2 of a regression of

the earnings at horizon h, θh, on the analyst’s forecast fh is R2
h = 1− Var(θh | fh)/Var(θh).

Thus, when the informativeness of the analyst’s forecast (Ih) is higher in theory (i.e., when

Var(θh | fh) is smaller), R2
h is higher.15 R2 relies on the intuition that a signal for a given

horizon (fh) is more informative if observing it reduces the residual uncertainty about the

uncertain outcome (θh) by a larger amount relative to prior uncertainty, i.e., if R2
h is higher.

Note that R2
h is a normalized measure (so that it is comparable across analysts) scaled

between 0 (the analyst’s forecast is only noise) and 1 (the analyst has perfect foresight).

R2 is similar in spirit to the measure of price informativeness developed by Bai et al.

(2016), but it is new in the literature on analysts, which typically measures informativeness

using either analysts’ absolute (or squared) forecast error (often called “accuracy”), or the

impact of analysts’ forecasts on stock prices (Hilary & Hsu (2013) or Merkley et al. (2017)).

Using R2
h rather than these measures has several advantages for our purpose. First, it ac-

counts for the intrinsic difficulty of forecasting by normalizing the residual uncertainty about

earnings at horizon h after observing an analyst’s forecasts at this horizon (Var(θh | fh)) by

a measure of prior uncertainty (Var(θh)). This is important because the residual uncer-

tainty can vary across analysts and within analysts over time, either because of variations in

analysts’ efforts to collect information or variations in uncertainty about earnings (e.g., un-

certainty is higher during recessions; see Bloom (2014)). We are interested in the first source

15R2
h is analyst-specific while in the model it is analyst- and firm-specific. In estimating eq.(15), we

are treating each pair (ej , êj) for fixed values of h, t, and i as different realizations of the pair (θh, f
∗
h) in

the model. Our assumption is that firms’ normalized earnings (ej) and forecasts (êj) in a given analyst’s
portfolio are realizations of the same underlying (gaussian) distributions, and thus that analysts cover firms
with similar characteristics. Building a measure that is analyst- and firm-specific as in the model, i.e., R2

i,j,t,h

where j would index firm is impossible, because this requires multiple forecasts (and realizations) for the
same firm by the same analyst for the same horizon at the same time.
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of variation, not the second one. In contrast to R2, absolute (or squared) forecast errors at a

given horizon can be large because analysts exert little effort to collect information relevant

for this horizon or because uncertainty at this horizon is large (or both).

Second, the absolute (or squared) error can also be large (and yet the forecast still be

informative) when analysts are systematically biased, maybe due to conflicts of interest

(Hong & Kacperczyk (2010)). In contrast, R2 is not affected by the average level of the

analyst’s bias and is identical to the informativeness of analysts’ debiased forecasts if the

analyst’s bias is constant across the firms she covers at time t (see Section 5 in the online

appendix). Thus, R2 is less likely to be affected by determinants of analysts’ biases than

analysts’ absolute or squared forecasts errors.

Last, measuring the informativeness of analysts’ forecasts by their impact on stock prices

is problematic for our purpose. Indeed, analysts often issue long and short-term forecasts

at the same time. This coincidence precludes building a market-based measure of forecast

informativeness for a specific horizon because one cannot disentangle the contribution of

each forecast to the price reaction.

D R2: Summary Statistics and Stylized Facts

Table I presents summary statistics for R2. For the 1983-2017 period, an analyst’s earnings

forecasts explain 68% of the variation in realized earnings across the firms she covers (the

average R2 is 68.01%). The average horizon of her forecasts is 1.11 years, and she typically

covers 8.12 firms.

[Insert Table I about here]

The average R2 decreases with horizon.16 It is 79.60% for horizons shorter than one year,

59.21% for horizons between one and two years, 49.37% between two and three, 37.62%

between three and four, and 31.18% beyond four years. We refer to the relationship between

R2 and h as the term structure of forecasts’ informativeness, or simply the “term structure”.

[Insert Figure III about here]

16We have fewer observations of R2 at long horizons because we have fewer forecasts at long horizons, and
mechanically so at the end of the sample.
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To better characterize the shape of this term structure, we plot the means of analyst-

level R2
i,t,h over all i and t, by horizon h in number of months (displayed on the x-axis).

Figure III (Panel A) confirms that the term structure is downward-sloping. The slope of

this term structure, estimated by regressing the means of R2 by h on h, is negative and

equal to -1 (t-stat=-24). Its intercept is 81 (t-stat=54). This linear approximation implies

that informativeness (R2) deteriorates by 1 percentage point for every one-month increase

in horizon, i.e, 12 percentage points per year.

E Testing the Effect of Alternative Data on R2

Our theory implies that greater exposure to alternative data increases R2
i,t,h for low values

of h, but possibly decreases R2
i,t,h for high values of h, thereby steepening the slope of the

term structure. To test this theory, we thus need to characterize the evolution of R2
i,t,h at

various horizons. We use two approaches for that. In the first approach, we focus on the

level of R2 by horizon and study changes in R2
i,t,h separately for fixed values of h. In the

second approach, we focus on the slope of the term structure, which we estimate by linear

approximation.

Next, for both approaches, we need to identify variation in analysts’ exposure to alterna-

tive data. In doing so, we face three challenges. First, the term “alternative data” is generic

and refers to any data containing relevant information about firms’ fundamentals that is

not directly disclosed by firms (see Section 12 in the online appendix for a taxonomy of

alternative data). A myriad of datasets, introduced progressively over the last thirty years,

corresponds to this definition. Second, these datasets greatly vary in their scope and most of

them are only relevant for a subset of firms (e.g., credit card data are informative for retail

but less so for steel manufacturing). Last, variation in analysts’ exposure to alternative data

may be related to confounding factors also affecting R2. Hence, testing the effect of “alterna-

tive data” on the informativeness of analysts’ forecasts requires finding a source of variation

that is (i) common to all alternative data, (ii) relevant for a large set of firms covered by

analysts, and (iii) unrelated to other factors affecting R2. Building a single test that jointly

satisfies all three conditions is difficult. For this reason, we combine two complementary

tests: a “macro-level” test that satisfies the first two conditions, and a “micro-level” test
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that plausibly satisfies the last two.

The first test (Test#1) focuses on the aggregate evolution of the term structure of fore-

casts’ informativeness. Indeed, a common feature of all alternative data sources is that

(almost) none of them existed 30 years ago. The first alternative data emerged in the early

90’s (see Figure I). Their number and variety then expanded every year, together with their

coverage of the cross-section of firms. We thus posit that analysts have become progressively

more exposed to all sources of alternative data. Based on our model, this increased exposure

should lead to a steepening of the term structure over time. Of course other factors may

also affect the evolution of the term structure, so this test cannot provide causal evidence

in support of our hypothesis. However, it provides a benchmark for gauging the aggregate

effect of the rise of alternative data on financial forecasting.

The second test (Test#2) focuses on analysts’ specific exposure to one major source of

alternative data: social media data. We use data generated by StockTwits, a social network

of traders posting messages about individual stocks. We exploit the heterogeneous expansion

of this platform across stocks to construct two measures of analysts’ exposure to social media

data capturing variation in one important source of alternative data that is relevant for the

entire cross-section of firms and plausibly unrelated to other forces affecting R2.

V Test#1: Long-Run Evolution

This section investigates whether the term structure has become steeper over time, as pre-

dicted by our theory.

A Forecast Informativeness by Horizon

To first illustrate the evolution of the term structure of forecasts’ informativeness, we split

our sample into two sub-samples covering periods of equal length (1983-1999 and 2000-2017)

and compare the average term structure over each period. Panel B of Figure III shows that

it is steeper in the second half of the sample. This steepening is consistent with our main

prediction but it could be due to a structural change around the year 2000.17 To verify

17For example, Srinidhi et al. (2009) document an improvement in the precision of the idiosyncratic
information component in short-term forecasts in the two years following regulation Fair Disclosure (FD) in
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that this steepening corresponds to a general trend, we compute and plot the means of R2
i,t,h

by year, separately for short (h < 1) and long-term (h ≥ 2) forecasts. Figure IV visually

confirms the presence of two opposing trends: an improvement in R2 for short-term forecasts,

and a deterioration for long-term ones.

[Insert Figure IV and Table II about here]

To formally test whether these opposite trends are statistically significant, we regress

R2
i,t,h on a year counter variable by horizon sub-sample. This counter is set to zero before

1992 and increases by one every year after. We divide this variable by the number of years

between 1993 and 2017 so that the estimated coefficient corresponds to the cumulative change

in R2 over the 1993-2017 period.18 Results are reported in Table II and confirm the patterns

in Figure IV. For horizons shorter than one and two years, the average R2 has increased

by 11.5 (Column (1)) and 9.4 percentage points (Column (2)), respectively. Beyond three

and four years, the average R2 has deteriorated by 11.5 (Column (4)) and 20 (Column (5))

percentage points. All four estimates are significant at the 1% level.

B The Slope of The Term Structure

To complement the previous approach, we study the evolution of the slope of the term struc-

ture, which we approximate every year by OLS. Figure V shows the year-on-year evolution

of the slope estimates. The slope was around -10 until the mid-90s, but then became steeper

every year (i.e., more negative), especially after 2005. After this date, the slope is consis-

tently smaller than -10. Table III confirms this pattern. We regress the slope estimates on

a year counter and a constant, as we did above. Column (1) shows that the term structure

steepens over time, with an average slope that shifts from -6.6 during the baseline period

1983-1992 to (-6.6-10.6=) -17.2 in recent years.

[Insert Figure V and Table III about here]

2000 (compared to two years prior), whereas that of long-term forecasts declined.
18In this test and in the rest of the paper, we cluster standard errors by forecasted fiscal period, except

in Table III where we cluster standard errors by year because observations are not available by forecasted
fiscal period. In general, changing the level of clustering does not materially affect our statistical inference.
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The rest of Table III shows that this pattern is robust to alternative estimation ap-

proaches. It holds in Columns (2) and (3) where we first estimate the slope by (two-digit

SIC) industry and year; and in Columns (4) and (5) where we estimate it by analyst and

year (for analyst-year with sufficient short and long-term forecasts). Results in Columns (3)

and (5) are particularly remarkable. They indicate that the steepening of the term structure

holds within industry and within analyst, and thus that the trend is not driven by changes

in sample composition. Results in Column (5) also demonstrate that the selection of dif-

ferent analysts in our sample (some with, and others without missing long-term forecasts),

cannot be the main explanation for our finding, since we observe the same change of the

term structure for the same analyst over time.

C Robustness

The results of Table II and III survive many robustness tests, reported and discussed in

Sections 9 and 10 of the online appendix. In brief, we find similar results when (i) controlling

for the characteristics of the firms covered by the analyst, (ii) focusing on the sub-sample

of analysts and firms with non-missing long-term forecasts, (iii) excluding the time periods

with imperfect coverage by I/B/E/S such as the 80’s, and (iv) using other periods than

1983-1992 as baseline. The results are also robust to alternative methodological choices to

compute R2.

In sum, the informativeness of analysts’ short-term forecasts has improved over time

while that of their long-term forecasts has declined. This pattern coincides with the rise of

various sources of alternative data. Insofar as this evolution increases the marginal benefit

of obtaining short-term information (our hypothesis), this aggregate evolution is consistent

with our main prediction (Corollary 1).

VI Test#2: Exposure to Social Media Data

To complement the previous macro-level analysis, we now perform our second test at the

micro-level exploiting variation of analysts’ exposure to social media data generated on

StockTwits.
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A StockTwits Data

StockTwits was founded in 2008 as a networking platform for investors to share their opinions

about stocks. Participants can post messages of up to 140 characters with extra content

(e.g., charts, links) and make a buy (“Bullish”) or sell (“Bearish”) recommendation for the

underlying stocks. They use $cashtags with stocks’ ticker symbols to link their messages

to firms. Users of StockTwits and its services include, for instance, retail investors, finance

professionals (including analysts) and journalists.

We obtained data from StockTwits for all messages posted between January 1, 2009 and

December 31, 2017. For each message, we observe the user identifier, the date, content,

recommendation, and associated $cashtags with the corresponding tickers (a message can

be associated with multiple tickers). We also have access to users’ self-declared information,

including their name and investment horizon, and for each firm, to its listing venue and its

“watchlist”, i.e., the number of users who explicitly follow that firm. We keep messages

about firms trading on NASDAQ, NYSE, NYSEArca, NYSEMkt, or trading OTC, that are

present in CRSP with share code 10, 11, and 12. These filters produce a sample of more

than 40 million messages posted by 280,147 unique users about 5,919 unique firms.

[Insert Figure VI about here]

Figure VI shows the evolution of the number of users and their posting intensity. Both

have increased exponentially since 2009. The upper left panel indicates that the number

of daily messages has increased from less than 1,000 to more than 80,000. The upper-

right panel shows a similar trend in the average number of users on a firm’s watchlist.

The lower panels display the evolution of the distributions of both variables. They show

substantial and increasing heterogeneity in activity across firms and time. This variation

reflects the heterogeneous expansion of the platform, with some firms receiving high social

media coverage early, some firms receiving coverage later, and others remaining outside most

discussions.
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B Relevance Conditions

Our test exploits this heterogeneous expansion across firms. We conjecture that analysts

covering different sets of firms were differently exposed to new short-term oriented data

produced by StockTwits. Our test thus requires that (i) discussions on StockTwits indeed

contain information about firms’ short-term prospects, and (ii) analysts use this information.

Evidence from prior literature and our own tests support both conditions.

First, there is considerable evidence that social media data contain information about

firms’ future returns or earnings (Chen et al. (2014), Jame et al. (2016), Bartov et al.

(2018), Tang (2018), Gu & Kurov (2020), or Leung et al. (2019)). However, evidence of

earnings or sales predictability reported in these papers are typically for the current or

next fiscal quarter.19 We confirm that this predictive power vanishes at long horizons using

“Bullish” and “Bearish” ratings issued by StockTwits’ users. Specifically, we test whether

these ratings predict firm growth at different horizons by estimating the following cross-

sectional forecasting regression by quintile of total assets and year:

gj,y+h = b0 + b1Ratingj,y + b2gj,y−1 + εj,y, (16)

where j indexes all firms from the same fiscal year, y, and quintile of total assets. Ratingj,y

is the difference between the fractions of “Bullish” and “Bearish” messages about j over the

current fiscal year y and gj,y+h is the future (year-on-year) growth observed in year y + h.20

The main coefficient of interest is b1. It measures the predicted change in growth in year

y+h associated with a change in rating today. Figure VII shows the means of b1, by horizon

y+h when g is the growth of sales, EBITDA, EBIT, or Net Income. For all measures, better

ratings predict higher growth but this association is statistically significant only at short

19 This is consistent with anecdotal evidence from industry reports highlighting the short-term nature of
social media data. For example, a brochure from Deutsche Bank emphasizes the usefulness of “Estimize” (a
social media that crowdsources estimates of future earnings from many individuals) relative to other data
sources. Interestingly, it notes that one limitation of Estimize is the short-term nature of the forecasts: “We
should also be aware of the potential issues with the Estimize dataset. The main issue rests on [...] the
short-term nature of the forecasts”, in line with our hypothesis (See “The wisdom of crowds: crowdsourcing
earnings estimates”, Deutsche Bank Market Research, March 4 2014).

20Ratingj,y is not a text-based measure of sentiment. Unless missing, the “Bearish” or “Bullish” rating is
publicly and directly observable without ambiguity.
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horizons, i.e., for the current fiscal year (y + 0) and the next one (y + 1).21

[Insert Figure VII about here]

The second condition is that analysts use data from social media, including StockTwits.

Section 13 of the online appendix provides an example of J.P.Morgan analysts using social

media data. More systematic evidence is documented by Chi et al. (2021). They find that

sentiment measures built from social media data come second in terms of the most frequently

used alternative data by financial analysts, after app usage and on par with point-of-sale

data. Among the different social media data providers, StockTwits is commonly referred

to as a major one, especially for discussions about stocks.22 StockTwits’ datafeed has also

been gradually integrated into all major financial information aggregation platforms used

by practitioners (e.g., Bloomberg.com or Reuters.com), suggesting analysts are commonly

exposed to this data.

We provide two additional sets of results indicating that analysts do rely on information

produced on StockTwits. First we find that analysts are more likely to issue a new forecast

on a given firm and day following an increase in StockTwits activity, including days without

news arrival from traditional data sources (Table A1 in Section 6 of the online appendix).

Moreover, we show that analysts are more likely to upgrade (downgrade) their recommen-

dation for a stock when more users are “Bullish” (“Bearish”) about a stock (Table A2 in

Section 6 of the online appendix). Second, using biographic information (analysts’ last names

and the first letter of their first names) from I/B/E/S over the 2009-2017 period, we find

21Year-on-year growth for the current fiscal year (gj,y+0) is known after the fiscal year is over, i.e., after
observing the ratings issued during fiscal year y. Nonetheless, Ratingj,y may reflect interim information
publicly disclosed about gj,y+0 around quarterly announcements. One way to solve this issue is to calculate
Rating by fiscal quarter, and to do the same analysis with quarterly data. Doing so yields similar results.

22In their “2019 Alternative Data Handbook”, J.P.Morgan analysts describe StockTwits as “the leading
(...) platform for the investing community (...), producing streams that are viewed by an audience of over
40 million across the financial web and social media platform” (Source: J.P.Morgan (Oct. 25, 2019)).
Commenting on the importance and visibility of StockTwits, other research analysts from Harbin write:
“Position-trading, day-trading, and swing-trading are now household terms for several million Americans,
due to the skyrocketing number of part-time and full-time traders in the United States. As of this writing,
the StockTwits platform boasts a rapidly-growing current user base of two million U.S.-based traders, which
we believe to represent approximately one-third of active or semi-active traders in this country.” (Source:
Harbin Research (Sept. 14, 2020))
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that 35% of (7,655 distinct) analysts’ names exactly match those of StockTwits’ account

holders.23

C Test Specification

Our test compares how the informativeness of forecasts for a given horizon (R2
i,t,h) changes

after StockTwits’ introduction for analysts with early and high exposure to StockTwits data

relative to analysts who were exposed later (or simultaneously but with less intensity). In

essence, this approach is similar to a “difference-in-differences” in which variation in data

generated on StockTwits about a given firm due to StockTwits’ staggered expansion is used

to measure variations in analysts’ exposure to alternative data (i.e., “treated” analyst are

those covering that firm). We implement this methodology separately for different horizons

to study the effect of alternative data on the overall term structure. Our test begins on

January 1, 2005 – almost 5 years before the first message we observe on the platform on July

13, 2009 – and ends on December 31, 2017. Our baseline specification by horizon sub-sample

is:

R2
i,t,h = λ(Data Exposure)i,t−1 + ΓControlsi,t−1 + ηi + ηt + ωi,t,h, (17)

where ηt and ηi are time (i.e., date) and analyst fixed effects, controlling for common fac-

tors affecting the informativeness of all analysts, and for heterogeneous but time-invariant

analyst-specific factors (observed and unobserved). We further control for several character-

istics of the portfolio of firms covered by the analyst at t− 1.24

“Data Exposure” measures analyst i’s exposure to social media data generated on Stock-

Twits at t − 1. It is equal to zero before we observe a message for the first time on the

platform and then increases (differentially across analysts) with its expansion. We posit

that analysts who are more exposed to StockTwits experience an increase in the volume of

23This finding is not evidence of analysts being active users. However, the mechanism we test only requires
that analysts consume information from StockTwits, not that they communicate on this platform. Also,
our matching analysis likely underestimates analysts’ consumption of information on StockTwits because
a StockTwits account is useful for receiving alerts on a specific list of stocks but not required for reading
messages posted on the platform.

24Those characteristics are the mean characteristics of portfolio firms, and include size, age, cash flow to
assets, cash to assets, debt to assets, and Tobin’s Q. All explanatory variables in eq.(17) are standardized
by their sample standard deviation, are winsorized at the 1% and 99% by date (t) (unless they are log-
transformed variables), are measured at t− 1, and are defined in Appendix II.
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alternative social media data available to them. Accordingly, we predict that higher expo-

sure leads to more informative short-term forecasts (i.e., λ > 0 for small h) but possibly less

informative long-term forecasts (i.e., λ < 0 for large h).

We measure exposure to data generated on StockTwits in two distinct ways. One chal-

lenge is to ensure that these measures do not also capture how an analyst’s exposure to data

coming from other data sources concurrently changes with StockTwits’ expansion. Messag-

ing activity on StockTwits is indeed correlated with the arrival of information, whatever its

origin. Hence the content on StockTwits does not only originate from the discussions on the

platform but can relay information from other sources, including those that provide access

to traditional data (e.g., corporate news releases). Ideally, our measures should only capture

the variation in an analyst’s exposure to data that is specifically generated on StockTwits

and that would not (counterfactually) be available without this social media.

The first measure relies on the number of users who have on their “watchlist” the same

firms as the ones covered by an analyst. A user’s watchlist is a list of firms that the user

follows. StockTwits aggregates this information at the firm level and, for each firm, reports

the number of users having that firm on their watchlist. We aggregate this information at the

analyst level by averaging across the firms she covers. We then use this average number of

users (denoted #Watchlist) as a measure of her exposure to StockTwits data.25 Importantly,

a user’s watchlist is persistent. This list is typically declared at the time of registration, and

is rarely modified after. As a result, a firm’s watchlist changes because new users register and

enter the platform. Therefore, variation in #Watchlist mostly reflects the overall expansion

of StockTwits, both over time and across firms, and not the arrival of information from other

sources. As shown below, changes in a firm’s watchlist are indeed largely uncorrelated with

the arrival of information from traditional data sources (which could have affected analysts’

forecasts in the absence of StockTwits).

The second measure relies on the volume of messages posted about the firms covered by an

analyst. Because the number of actual messages may correlate with the arrival of information

25The coverage of firms by StockTwits increases progressively over time (see Figure VI). Thus, if a firm
covered by an analyst is not yet covered by StockTwits on a given day in our sample, we set its watchlist to
zero.
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from traditional data, we estimate hypothetical messages. We calculate every day the share

of total messages posted on StockTwits about each firm j and compute the average share by

firm, reflecting the usual daily share of all messages captured by j. We then multiply this

average share by the total number of messages posted on StockTwits on day t, to obtain the

number of messages for j that one would have expected to observe at t if the intensity of

discussions about firm j (relative to the intensity of discussions about other firms) was at

its average level. We sum the total number of such hypothetical messages in the last thirty

days (from t − 30 to t − 1) for each firm, and take the average across the firms covered by

each analyst (denoted #Hypothetical Messages). Importantly, the ratio of daily hypothetical

messages over total actual messages is (by construction) constant within firm. Hence, the

daily number of hypothetical messages relative to total actual messages varies across firms

but not within. Since analyst coverage is persistent, most of this relative heterogeneity

across firms is controlled for by the analyst fixed effects ηi in eq.(17). Consequently, the

main source of variation used to isolate the effect of StockTwits is the aggregate number of

actual messages, which is plausibly unrelated to individual firm and analyst characteristics,

as well as the regular flow of firm-level information.26

Tables A4 and A5 (reported in Section 8 of the online appendix) present the results of

two tests attempting to falsify our assumption that neither #Watchlist nor #Hypothetical

Messages relates to the regular flow of firm-level information. We use Capital IQ Key

Developments to identify firm-level news from traditional data sources and build two daily

measures of news flow for a given firm: (i) the number of news events, and (ii) the total

market response (in absolute value) to these news events to account for their relevance.

Table A4 shows no significant relationship between the number of news events reported in

Capital IQ and the number of (i) users in a firm’s watchlist, or (ii) hypothetical messages.

Table A5 shows similar results when using the market response to news arrival. Since we

cannot observe all information, providing definitive evidence that our identifying assumption

holds is not possible, but these two falsification tests demonstrate that it cannot easily be

rejected.

26See Section 7 in the online appendix for more details on the sources of variations in #Hypothetical
Messages.
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[Insert Table IV about here]

Table IV presents summary statistics for the variables we use. The sample contains 31,623,819

daily observations over the 2005-2017 period. On average, R2 is 68.33%, the forecasting hori-

zon h is 1.26 years, and an analyst covers 10.35 firms. Each of these covered firms is typically

followed by 321 users on StockTwits, and there are on average (138/30=)4.6 hypothetical

messages about each, daily.

D The Effect of Exposure to StockTwits’ Data

D.1 Forecast Informativeness by Horizon

Table V presents estimates of eq.(17) by horizon sub-samples using both measures of “Data

Exposure”. To ease economic interpretation, we normalize both variables by their sample

standard deviation. Columns (1) and (2) show that increased exposure to StockTwits’ data

has a significantly positive effect on the informativeness of analysts’ short-term forecasts

(h ≤ 1; horizon up to one year). In contrast, Columns (5) to (8) show that increased

exposure to StockTwits has a significantly negative effect on the informativeness of long-term

forecasts (2 < h ≤ 3 or h ≥ 3). A one standard deviation increase in analysts’ exposure

to StockTwits’ data results in a drop in R2 between 1.51 and 1.92 percentage points for

long-term forecasts, and an increase in R2 between 0.53 and 0.66 for short-term forecasts.

Columns (3) and (4) show no effect on informativeness for 1 < h ≤ 2, suggesting that the

horizon of inflection, i.e., the value of h where the effect of greater exposure to StockTwits

on R2 changes sign, is between 1 and 2 years.

[Insert Table V about here]

D.2 The Slope of The Term Structure

Results from Table V are consistent with analysts allocating more (less) effort to the task of

forecasting short-term(long-term) earnings, but do not explicitly control for uniform changes

in informativeness common to all horizons. To better show that analysts substitute effort

away from forecasting long-term earnings, we pool all sub-sample observations and modify

eq.(17) to allow for an interaction term between “Data Exposure” and horizon h, which we
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re-center at 1 and call h∗ (i.e., h∗ = h− 1). Specifically, we estimate:

R2
i,t,h = λ0h

∗ + λ1(Data Exposurei,t−1) + λ2(h∗ ×Data Exposurei,t−1) + ...+ ωi,t,h. (18)

In eq.(18), λ0 measures the (unconditional) slope of the term structure, and λ2 how it

changes with greater data exposure, controlling for uniform changes in R2
i,t,h for all h which

are captured by λ1. Centering h at 1 is neutral on estimates for λ2 (and λ0), but it allows

interpreting λ1 as the effect of “Data Exposure” on R2 at the 1-year horizon (and not zero),

and thus to detect whether the term structure simply rotates (λ2 6= 0 and λ1 = 0), or if it

also shifts either upward (λ1 > 0) or downward (λ1 < 0). We re-center at 1 because Table V

suggests the inflection horizon is between 1 and 2 years.

[Insert Table VI about here]

We report estimates of eq.(18) in Table VI for both measures of analysts’ exposure. In

Column (1), both λ0 and λ2 are negative and significant. The term structure is downward

sloping (λ0 < 0), and greater exposure to StockTwits makes it steeper (λ2 < 0). Interestingly,

λ1 is not statistically different from zero, meaning that the slope of the term structure

changes, but informativeness at the 1-year horizon does not. The term structure thus rotates

around the one year horizon but does not experience a uniform shift upward or downward.

This finding provides evidence of a “pure” reallocation effect of alternative data.

We obtain similar results when interacting h∗ with the fixed effects (Column (2)), or

when controlling for the characteristics of covered firms (Column (3)). Interacting h∗ with

the analyst fixed effects is equivalent to estimating λ0 separately for each analyst, and thus

allows controlling for permanent differences in the slope of the term structure across ana-

lysts. Likewise, interacting h∗ with the date fixed effects allows controlling for the aggregate

variations in the slope of the term structure, like the ones described in figure V, and that

are unrelated to StockTwits expansion.27 The rest of Table VI (Columns (4) to (6)) shows

that our conclusions are similar when using #Hypothetical Messages to measure analysts’

exposure.

27This full interaction approach is also used in papers that study difference-in-differences on a slope
coefficient with fixed effects (see for instance eq.(8) in Edmans et al. (2017), and the discussion that follows).
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D.3 Economic Magnitude

The estimate for λ0 in the first column of Table VI implies that R2 decreases by 16.66

percentage points for every one-year increase in horizon. This estimate differs from the

estimate reported in Section IV.D because the sample period is more recent and the term

structure has become steeper over time. Our estimate for λ2 implies that a one standard

deviation increase in exposure to StockTwits steepens (in absolute value) the slope of the

term structure by 0.86, so that R2 decreases by (16.66+0.86=)17.52 percentage points for

every one-year increase in horizon.

The economic magnitude of this change in slope should be evaluated against normal

variations for the slope of the term structure. Figure V displays yearly estimates at the

aggregate level. The standard deviation of this time series is only 1.9 over the 2005-2015

period, but it is 4.5 when we consider the entire 1983-2015 period to obtain a more precise

estimate. It is 8.6 when we estimate the slope by (2-digit SIC) industry and year from

2005 to 2015, and 11.1 when we do it by analyst and year over the same period. Therefore,

the impact of analysts’ exposure to StockTwits represents, on average, (0.86/4.5=)19.1%,

(0.86/8.6=)10% and (0.86/11.1=)7.7% of the slope standard deviation at the aggregate,

industry, and analyst-level, respectively. This economic magnitude is larger for analysts

whose names match those of a StockTwits user account. For this sub-sample, and using

the same specification as in Column (1) of Table VI (not reported for brevity), we find

λ2 = −1.44 (t-stat=-2.93), i.e., between 12.9% and 32% of the slope standard deviation.

D.4 Robustness

Our findings hold across several robustness tests, reported in Section 11 of the online ap-

pendix. In brief, results are similar when controlling for trading volume, and thus for the

potential effect of news (public or private) that are material enough to generate trading.

They are also robust to restricting our tests to (i) analysts who always cover the same firms,

or (ii) analysts and firms with non-missing long-term forecasts. In sum, news arrival from

other sources, changes in analyst coverage, or sample selection are unlikely to explain our

findings.
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E Additional Predictions and Ancillary Results

Results in the previous sections are consistent with our main prediction: as analysts become

more exposed to alternative data, they substitute effort away from the task of forecasting

long-term earnings at the benefit of the task of forecasting short-term earnings. According

to our theory, this arises because alternative data raises the net marginal informational

benefit of processing short-term information. To further support this mechanism, we test

two ancillary predictions of our theory. Namely, the steepening of the term structure captured

by λ2 in eq.(18) should be more pronounced when (i) the cost of multi-tasking (c) is high,

and (ii) earnings are less autocorrelated (so that the condition β < ( c
2b

)
1
2
ψlt

ψst
in Corollary 1

is more likely to be satisfied).

E.1 Multi-Tasking Costs (c)

First, we assess whether λ2 is indeed more negative for analysts facing higher costs of multi-

tasking. This should be the case for those who cover more stocks because the total number

of forecasting tasks (within and across firms) increases with coverage.28 We thus count the

number of firms in analysts’ portfolio and interact this variable (named #Firms) with all

variables in eq.(18) to test whether λ2 is (even) more negative for analysts covering more

firms. Results are in Table VII. The coefficients on the triple interaction term are consistently

negative, indicating that λ2 indeed decreases with #Firms. As predicted, the steepening

of the term structure is stronger with more costly multi-tasking. Two other coefficients

are consistently negative and highly significant. The first is the coefficient on #Firms,

indicating that, everything else being equal, a greater multi-tasking cost negatively affects

forecast informativeness for all h (which is consistent with the model). The second is the

coefficient on h∗ × #Firms, which shows that the tendency to allocate more effort to the

task of forecasting short-term earnings when the number of forecasting tasks increases is also

true unconditionally, i.e., with and without exposure to StockTwits. Put simply, the more

tasks an analyst has, the more she focuses on the short-term.

28For instance, Harford et al. (2019) state (p.2182) that “busy” analysts (those covering larger portfolios)
are “more likely to hit the constraint created by analysts’ limited time, energy, and resources, making it even
more critical to be strategic in their research activities” and provide evidence that this is the case.
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[Insert Table VII about here]

E.2 Correlated Earnings (β)

Our model also predicts that the steepening of the informativeness term structure due to

greater exposure to alternative data should be more salient for analysts following firms

whose long-term and short-term earnings are less correlated (β in the model). We estimate

the correlation in earnings at the firm level by regressing firms’ quarterly earnings on their

lag (without constant) using a rolling window of two years (and requiring at least four

observations). Then, we average the estimated autocorrelation across all firms covered by

the analyst, and again interact this variable (named Auto) with all variables in eq.(18).

Table VIII shows that the coefficients on the triple interaction term are all significantly

positive. Thus, as predicted, the steepening of the term structure is less pronounced for

analysts covering firms whose earnings are more autocorrelated. Again, the other regression

coefficients are broadly consistent with our premises. For example, the coefficient on h∗ ×
Auto is consistently positive and significant in four out of six specifications, implying that

the slope of the term structure is usually less steep for analysts covering firms with greater

earnings autocorrelation.

[Insert Table VIII about here]

F Alternative Explanations and Interpretations

Our findings are consistent with our prediction: greater exposure to alternative (social media)

data increases the informativeness of short-term forecasts, but decreases that of long-term

forecasts. Moreover, the heterogeneity of this effect across analysts can be explained by our

theory. Other factors influencing R2 may arguably explain our findings. These factors can

be broadly classified into three main categories.

The first category includes variables related to public information. One concern (dis-

cussed above) is indeed that our findings reflect changes in information available to analysts

from sources other than StockTwits. However, Tables A4 and A5 in Section 8 of the online

appendix rule out this possibility. The second category includes variables related to earnings
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uncertainty. When uncertainty is higher, forecasts are naturally less precise, and thus less in-

formative, so our results may arise because uncertainty about earnings changes concurrently

with the expansion of StockTwits. However, R2 is explicitly designed to isolate forecasting

informativeness from forecasting difficulty. The third category includes all variables affect-

ing γ (i.e., analysts’ horizon-specific incentives), including compensation schemes, career

prospects, investors’ demand, or brokers’ internal organization. Nevertheless, to explain our

results, changes in these variables should simultaneous trigger (i) an increase in R2 for low

values of h, (ii) a decrease in R2 for high values of h, but (iii) no change in average R2 across

h (i.e., not only λ2 < 0, but also λ1 = 0 in eq.(18)). Moreover, they should systematically

coincide with the timing of StockTwits’ expansion across stocks, as well as the aggregate

variation in messaging and following activity on StockTwits, while being completely unre-

lated to StockTwits (i.e., the same changes in analysts’ incentives at the exact same time

would have been observed, absent StockTwits). We cannot rule out this scenario, but it

seems unlikely.

Another interpretation of our findings could be that the introduction of StockTwits influ-

ences analysts’ allocation of effort because StockTwits helps them to learn about investors’

demand for short and long-term information. However, this learning channel requires that

the clients of the analysts’ employers and the individuals active on StockTwits are the same

investors, or at least that there is sufficient overlap between them such that analysts can ac-

tually learn about information demand from StockTwits activity. This overlap is not present

in our setting: brokerage house customers are mostly institutional investors, whereas Stock-

Twits users are mainly retail. Moreover, for analysts covering a fixed portfolio of firms, and

for whom incentives are stable, learning about demand is less likely to play some role, and

yet Table A9 in Section 11 of the online appendix shows that our results also hold for those

analysts.

VII Conclusion

This paper examines the effect of alternative data on the informativeness of financial fore-

casts. We posit that alternative data reduces the cost of producing information about short-

term cash flows relatively more than that about long-term cash flows. We show theoretically

34



that this effect can induce forecasters of firms’ cash flows to allocate more effort to the col-

lection of short-term information at the expense of the collection of long-term information

(as they optimally equalize the marginal net benefit of each type of effort). As a result, the

informativeness of their forecasts of short-term cash flows improves while the informativeness

of their forecasts about long-term cash flows can drop. Our main contribution is to test this

novel prediction and confirm it. Using a large sample of short and long-term forecasts issued

by sell-side equity analysts, we find that increases in the availability of alternative data (their

overall expansion over time and the expansion of social media data from StockTwits) are

associated with a drop in the informativeness of analysts’ long-term earnings forecasts (more

than two years), even though the informativeness of their short-term (less than one year)

forecasts improves.
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Figure I: Number of alternative data providers by year

This figure displays the evolution of the number of alternative data providers reported by the website alternativedata.org. The
graph was taken from https://alternativedata.org/stats/ (on 12/23/2020).

Figure II: Timeline of the model
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Figure III: The term structure of analysts’ forecast informativeness
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This figure displays the term structure of analysts’ forecast informativeness. Each graph shows the means of analyst-level
R2

i,t,h over all i and t, for fixed h values expressed in number of months (displayed on the x-axis). The forecasting horizon

h is measured as the number of days between the forecasting date and the date of actual earnings release, divided by 365.
The sample period is 1983-2017 (Panel A), split into two sub-periods (Panel B). The shaded gray area corresponds to a 90%
confidence interval.
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Figure IV: Short vs. long-term forecast informativeness by year
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Panel A: Forecasts with Horizon Shorter than 1 Year
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Panel B: Forecasts with Horizon Longer than 2 Years

This figure shows the means of analyst-level R2
i,t,h over all i by year, separately for short (h < 1) and long-term (h >= 2)

forecasts. The sample period is 1983-2017 for short-term forecasts (Panel A), and 1983-2015 for long-term forecasts (Panel B).
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Figure V: The slope of term structure by year
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This figure shows the evolution over time of the slope of the term structure of analysts forecasts’ informativeness. The slope
of the term structure is estimated every year by linear approximation. We do so by regressing the average of R2 by horizon h
on h, separately for every calendar year. R2 measures analysts forecasts’ informativeness. h measures the forecasting horizon
(defined as the number of days between the forecasting date and the date of actual earnings release divided by 365). The figure
plots the regression coefficient on the regressor h, which is an estimate of the slope of the term structure. Each slope estimate
measures how R2 changes in percentage points for every annual increment of h. For example, a slope estimate of -10 in 1993
indicates that in 1993, R2 decreases on average by 10 percentage points when h increases by 1 year. The shaded gray area
corresponds to a 90% confidence interval.
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Figure VI: StockTwits’ expansion
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This figure shows descriptive statistics on the evolution of StockTwits between 2005 and 2017 (in our sample). The upper-left
panel presents the total number of messages per day. The upper-right panel presents the number of users that have a given
firm in their watchlist (averaged across firms). A user’s watchlist is a list of firms that the user follows. StockTwits aggregates
this information at the firm level and reports the number of users having that firm on their watchlist. The graph shows how
this number has changed over time across firms. The bottom-left panel presents different percentiles of the number of messages
per day and firm. The bottom-right panel presents different percentiles of the number of users that have a given firm in their
watchlist.
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Figure VII: StockTwits ratings and firm growth predictability
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This figure shows the predictive power of Buy (“Bullish”) and Sell (“Bearish”) ratings issued by StockTwits users about firm
growth, by horizon. It relies on cross-sectional forecasting regressions, estimated on every fiscal year starting from 2010 by
quintile of total assets, and specified as follows:

gj,y+h = b0 + b1Ratingj,y + b2gj,y−1 + εj,y

where j indexes all firms from the same quintile and year. Ratingj,y is the difference between the fraction of “Bullish” messages
and that of “Bearish” messages about firm j during fiscal year y, and gj,y+h is the (year-on-year) growth reported ex-post, in
fiscal year y + h. Ratingj,y is naturally bounded between -1 (all ratings issued during fiscal year y are “Bearish”) and +1 (all
ratings issued during fiscal year y are “Bullish”). The figure shows the means of b1 (with the associated 90% confidence interval)
for all quintiles and years y, by horizon y + h (displayed on the x-axis) when g is the growth of sales (upper-left), EBITDA
(upper-right), EBIT (bottom-left), or Net Income (bottom-right). The average predicted change in growth (in percentage
points) associated with a change in rating today is displayed on the y-axis.

44



Table I: R2 measure summary statistics

This table presents descriptive statistics for the main analyst-day-horizon variables used in the aggregate tests (Table II and
Table III). R2 measures the informativeness of the forecasts made by an analyst on a given day for a given horizon. h is the
forecasting horizon, measured as the number of days between the forecasting date and the date of actual earnings release,
divided by 365. #Firms is the number of firms the analyst covers. The sample covers the period from 1983 to 2017. We present
statistics for the whole sample, as well as sub-samples including observations in different annual forecasting horizon ranges.
Variable definitions are in Appendix II.

N Mean St.Dev Min P25 P50 P75 Max

Whole sample

R2 65,889,122 68.01 33.90 0.00 45.71 82.70 96.30 100.00
h 65,889,122 1.11 0.83 0.00 0.48 0.99 1.56 5.00
#Firms 65,889,122 8.12 5.18 3.00 4.00 7.00 11.00 30.00

Sample: 0 < h ≤ 1

R2 33,413,667 79.60 27.63 0.00 72.57 92.49 98.42 100.00
h 33,413,667 0.49 0.29 0.00 0.24 0.49 0.74 1.00
#Firms 33,413,667 8.29 5.36 3.00 4.00 7.00 11.00 30.00

Sample: 1 < h ≤ 2

R2 25,060,925 59.21 34.64 0.00 29.37 69.51 90.42 100.00
h 25,060,925 1.45 0.28 1.00 1.21 1.43 1.68 2.00
#Firms 25,060,925 8.14 5.09 3.00 4.00 7.00 11.00 30.00

Sample: 2 < h ≤ 3

R2 5,361,069 49.37 36.23 0.00 10.47 53.15 84.34 100.00
h 5,361,069 2.39 0.28 2.00 2.15 2.34 2.61 3.00
#Firms 5,361,069 7.53 4.71 3.00 4.00 6.00 10.00 30.00

Sample: 3 < h ≤ 4

R2 1,349,749 37.62 36.04 0.00 0.00 28.84 71.60 100.00
h 1,349,749 3.45 0.29 3.00 3.20 3.43 3.70 4.00
#Firms 1,349,749 6.70 3.95 3.00 4.00 6.00 9.00 30.00

Sample: 4 < h ≤ 5

R2 703,712 31.18 34.98 0.00 0.00 14.75 62.31 100.00
h 703,712 4.43 0.28 4.00 4.19 4.40 4.65 5.00
#Firms 703,712 6.26 3.54 3.00 4.00 5.00 8.00 30.00
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Table II: Forecast informativeness by horizon

This table presents OLS estimates of time trend in analysts’ forecast informativeness by sub-samples including observations in
different annual forecasting horizon ranges. The dependent variable is R2, which measures the informativeness of the forecasts
made by an analyst on a given day for a given horizon. h is the forecasting horizon, measured as the number of days between
the forecasting date and the date of actual earnings release, divided by 365. Year Trend is a variable that takes the value of
zero for the period 1983-1992 and increments by one every subsequent year, divided by 25 so that the regression coefficient can
be interpreted as the cumulative increment in R2 over the 1993-2017 period. Variable definitions are in Appendix II. t-statistics
in parentheses are based on standard errors clustered by forecasted fiscal period. Symbols ***, **, and * denote statistical
significance at the 1%, 5%, and 10% level, respectively.

Dep. variable: Forecast informativeness (R2)

Sample: 0 < h ≤ 1 1 < h ≤ 2 2 < h ≤ 3 3 < h ≤ 4 4 < h ≤ 5
OLS: (1) (2) (3) (4) (5)

Year Trend 11.5*** 9.4*** 2.4 -11.5*** -20.0***
(8.00) (6.89) (1.46) (-5.12) (-5.41)

Constant (83-92) 74.7*** 55.0*** 47.9*** 44.3*** 42.6***
(93.81) (82.46) (39.10) (29.78) (21.12)

N 33,413,667 25,060,925 5,361,069 1,349,749 703,712

Table III: The slope of the term structure

This table presents OLS estimates of time trend in the slope of the term structure. The dependent variable is the slope of the
term structure. This slope measures the change in R2 (in percentage points) when horizon increases by one year. A negative
slope indicates that forecast informativeness (R2) decreases with horizon. In column (1), the slope is calculated every year by
regressing the average of R2 by horizon on the horizon h (i.e., the number of days between the forecasting date and the date
of actual earnings release, divided by 365). In columns (2) and (3), the slope is calculated every year by 2-digit SIC industry
by regressing the average of R2 by horizon and industry on h. In columns (4) and (5), the slope is calculated every year by
analyst by regressing the average of R2 by horizon and analyst on h. In columns (2) to (5), the regression coefficients on h
used as estimates for the slope are winsorized by year at the 1% level in each tail. Year Trend is a variable that takes the value
of zero for the period 1983-1992 and increments by one every subsequent year divided by 25 so that the regression coefficient
can directly be interpreted as the cumulative change in slope over the 1993-2017 period. t-statistics in parentheses are based
on standard errors clustered by year. Symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10% level,
respectively.

Dep. variable: Slope by year Slope by SIC2-year Slope by analyst-year
OLS: (1) (2) (3) (4) (5)

Year Trend -10.8*** -4.9*** -3.4*** -4.9*** -2.7**
(-6.74) (-4.75) (-3.03) (-7.60) (-2.07)

Constant (83-92) -6.5*** -11.3*** -12.1***
(-6.45) (-20.53) (-25.95)

SIC2 FE - No Yes - -
Analyst FE - - - No Yes
N 33 1,083 1,080 7,657 7,290
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Table IV: StockTwits sample descriptive statistics

This table presents descriptive statistics for the main analyst-day-horizon variables in the StockTwits sample. The sample
covers the period 2005-2017. R2 measures the informativeness of the forecasts made by an analyst on a given day for a given
horizon. h is the forecasting horizon, measured as the number of days between the forecasting date and the date of actual
earnings release, divided by 365. #Firms is the number of firms that the analyst covers. #Watchlist is the average number of
users that have in their watchlist the firms covered by an analyst. It is set to zero prior to StockTwits’ introduction in 2009.
#Messages and #Hypothetical Messages is the average number of actual and hypothetical messages posted about the firms (in
the last thirty days) that an analyst covers. Both variables are set to zero prior to StockTwits’ introduction in 2009. Auto is
the average earnings autocorrelation across the firms covered by an analyst. The other variables are control variables used in
the analysis. Detailed variable definitions are provided in Appendix II.

N Mean STDV Min P25 P50 P75 Max

R2 31,623,819 68.33 33.76 0.00 46.43 83.10 96.36 100.00
h 31,623,819 1.26 0.93 0.00 0.54 1.11 1.77 5.00
#Firms 31,623,819 10.35 5.40 3.00 6.00 9.00 13.00 29.00
#Watchlist 30,959,282 321 1,471 0 0 12 117 44,145
#Messages 30,959,282 112 413 0 0 16 76 13,044
#Hypothetical Messages 30,959,282 138 486 0 0 19 99 13,322
Auto 29,364,951 0.67 0.21 -0.01 0.55 0.69 0.82 1.12
Total assets 29,391,344 11,738 32,854 0 1,548 4,616 12,635 2,087,821
Total assets (Log) 29,391,344 8.35 1.54 -4.65 7.34 8.44 9.44 14.55
Age 29,392,961 22.97 12.41 1.00 13.43 20.24 29.90 68.00
Age (Log) 29,392,961 2.98 0.57 0.00 2.60 3.01 3.40 4.22
Cash flow to assets 29,384,430 0.05 0.12 -0.68 0.04 0.08 0.11 0.24
Cash to assets 29,391,077 0.21 0.17 0.01 0.08 0.15 0.30 0.88
Debt to assets 29,391,344 0.24 0.14 0.00 0.13 0.22 0.32 0.85
Tobin’s Q 29,366,671 2.29 1.05 0.71 1.54 2.00 2.74 7.34
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Table V: Data exposure and forecast informativeness by horizon

This table presents OLS estimates of the sensitivity of the informativeness of analysts’ forecasts (R2) at different horizons to analysts’ exposure to social media data
generated on StockTwits (eq.(17)). The total sample includes all available analyst-day-horizon observations between 2005 and 2017, which we split by forecasting
horizon sub-sample. We pool horizons between three and five years because we have few observations at long horizons. The dependent variable is R2, which measures
the informativeness of the forecasts made by an analyst on a given day for a given horizon. Data Exposure is a variable capturing the exposure to data generated
on StockTwits, measured first by firm and then averaged across the firms covered by analysts at time t − 1, where t is the date at which we measure forecast
informativeness. Data Exposure is set to zero prior to StockTwits’ introduction in 2009, and further normalized by its in-sample standard deviation. In panel A,
Data Exposure is based on the number of users that have the firms covered by the analyst in their watchlist. In Panel B, Data Exposure is based on the number of
hypothetical messages posted about the firms covered by the analyst from t − 30 to t − 1. Control variables include firms’ cash flow to assets, cash to assets, debt
to assets, Tobin’s Q, the log of total assets, and the log of age, calculated using the last available financials and averaged by analyst at time t− 1. Detailed variable
definitions are provided in Appendix II. t-statistics in parentheses are based on standard errors clustered by forecasted fiscal period. Symbols ***, **, and * denote
statistical significance at the 1%, 5%, and 10% level, respectively.

Dep. variable: Forecast informativeness (R2)

Sample: 0 < h ≤ 1 1 < h ≤ 2 2 < h ≤ 3 h > 3
OLS: (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Proxy for Data Exposure = #Watchlist

Data Exposure 0.54*** 0.53*** 0.40 0.17 -0.66*** -1.01*** -1.51*** -1.55***
(3.89) (4.03) (1.06) (0.47) (-3.24) (-4.80) (-3.49) (-3.20)

Analyst FE Yes Yes Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes
N 14,055,963 13,033,456 11,489,986 10,601,113 3,916,280 3,636,242 1,496,954 1,435,797

Panel B: Proxy for Data Exposure = #Hypothetical Messages

Data Exposure 0.66*** 0.61*** 0.56 0.16 -0.60* -1.23*** -1.84*** -1.92***
(4.39) (4.46) (1.27) (0.36) (-1.63) (-4.17) (-3.95) (-3.43)

Analyst FE Yes Yes Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes
N 14,055,963 13,033,456 11,489,986 10,601,113 3,916,280 3,636,242 1,496,954 1,435,797
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Table VI: Data exposure and the slope of term structure

This table presents OLS estimates of the sensitivity of the informativeness of analysts’ forecasts (R2) to social media data
generated on StockTwits (eq.(18)). The sample includes all available analyst-day-horizon observations between 2005 and 2017.
The dependent variable is R2, which measures the informativeness of the forecasts made by an analyst on a given day for a given
horizon. Data Exposure is a variable capturing the exposure to data generated on StockTwits, measured first by firm and then
averaged across the firms covered by analysts at time t− 1, where t is the date at which we measure forecast informativeness.
Data Exposure is set to zero prior to StockTwits’ introduction in 2009, and normalized by its in-sample standard deviation.
Data Exposure is based on the average number of users that have the firms covered by the analyst in their watchlist, or the
number of hypothetical messages posted about those firms from t − 30 to t − 1. h is the forecasting horizon, measured as the
number of days between t and the date of actual earnings release, divided by 365. h∗ is the forecasting horizon centered at 1
(h∗ = h− 1) so that the regression coefficient on the baseline variable Data Exposure can be interpreted as the unconditional
effect on R2 at the one-year horizon (rather than zero). In columns (2), (3), (5), and (6), analyst and date fixed effects are
interacted with h∗. Control variables include firms’ cash flow to assets, cash to assets, debt to assets, Tobin’s Q, the log of total
assets, and the log of age, calculated using the last available financials and averaged by analyst at time t− 1. Detailed variable
definitions are provided in Appendix II. t-statistics in parentheses are based on standard errors clustered by forecasted fiscal
period. Symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively.

Dep. variable: Forecast informativeness (R2)

Data Exposure Proxy: #Watchlist #Hypothetical Messages
OLS: (1) (2) (3) (4) (5) (6)

h∗× Data Exposure -0.86*** -0.78*** -0.96*** -0.69*** -0.94*** -1.05***
(-2.59) (-3.06) (-3.72) (-2.75) (-4.54) (-5.03)

Data Exposure 0.13 -0.17 -0.35 0.34 -0.14 -0.32
(0.50) (-0.64) (-1.29) (1.42) (-0.57) (-1.30)

h∗ -16.66*** -16.62***
(-33.85) (-32.13)

Analyst FE Yes Yes
Date FE Yes Yes
Analyst FE (interacted) Yes Yes Yes Yes
Date FE (interacted) Yes Yes Yes Yes
Controls Yes Yes
N 30,959,281 30,105,556 27,860,429 30,959,281 30,105,556 27,860,429
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Table VII: Differential effects by analysts’ processing constraints

This table presents OLS estimates of the sensitivity of the informativeness of analysts’ forecasts (R2) to social media data
generated on StockTwits. The sample includes all available analyst-day-horizon observations between 2005 and 2017. The
dependent variable is R2, which measures the informativeness of the forecasts made by an analyst on a given day for a given
horizon. Data Exposure is a variable capturing the exposure to data generated on StockTwits, measured first by firm and then
averaged across the firms covered by analysts at time t− 1, where t is the date at which we measure forecast informativeness.
Data Exposure is set to zero prior to StockTwits’ introduction in 2009, and normalized by its in-sample standard deviation.
Data Exposure is based on the average number of users that have the firms covered by the analyst in their watchlist, or the
number of hypothetical messages posted about those firms from t − 30 to t − 1. h is the forecasting horizon, measured as the
number of days between t and the date of actual earnings release, divided by 365. h∗ is the forecasting horizon centered at 1
(h∗ = h− 1) so that the regression coefficient on the baseline variable Data Exposure can be interpreted as the unconditional
effect on R2 at the one-year horizon (rather than zero). #Firms is the number of firms that the analyst covers. In columns
(2), (3), (5), and (6), analyst and date fixed effects are interacted with h∗. Control variables include firms’ cash flow to assets,
cash to assets, debt to assets, Tobin’s Q, the log of total assets, and the log of age, calculated using the last available financials
and averaged by analyst at time t− 1. Detailed variable definitions are provided in Appendix II. t-statistics in parentheses are
based on standard errors clustered by forecasted fiscal period. Symbols ***, **, and * denote statistical significance at the 1%,
5%, and 10% level, respectively.

Dep. variable: Forecast informativeness (R2)

Data Exposure: #Watchlist #Hypothetical Messages
OLS: (1) (2) (3) (4) (5) (6)

h∗× Data Exposure × #Firms -0.14*** -0.06*** -0.06*** -0.10*** -0.04* -0.06***
(-5.71) (-3.39) (-3.82) (-6.18) (-1.64) (-2.56)

h∗× Data Exposure 0.69 -0.04 -0.23 -0.06*** -0.03 -0.03
(1.61) (-0.10) (-0.74) (-2.58) (-0.99) (-1.25)

h∗× #Firms -0.15*** -0.23*** -0.23*** -0.14*** -0.23*** -0.22***
(-6.58) (-8.67) (-8.24) (-5.96) (-8.63) (-8.01)

Data Exposure × #Firms -0.09*** -0.05*** -0.04** -0.06*** -0.03 -0.03
(-3.34) (-2.88) (-2.26) (-2.58) (-0.99) (-1.25)

#Firms -0.22*** -0.23*** -0.25*** -0.23*** -0.24*** -0.25***
(-5.97) (-6.95) (-7.00) (-5.79) (-6.99) (-6.92)

Data Exposure 1.10*** 0.42 0.14 0.98*** 0.16 0.01
(2.80) (1.48) (0.53) (3.16) (0.46) (0.02)

h∗ -15.00*** -15.05***
(-23.62) (-22.82)

Analyst FE Yes Yes
Date FE Yes Yes
Analyst FE (interacted) Yes Yes Yes Yes
Date FE (interacted) Yes Yes Yes Yes
Controls Yes Yes
N 30,959,281 30,105,556 27,860,429 30,959,281 30,105,556 27,860,429
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Table VIII: Differential effects by earnings’ autocorrelation

This table presents OLS estimates of the sensitivity of the informativeness of analysts’ forecasts (R2) to social media data
generated by StockTwits. The sample includes all available analyst-day-horizon observations between 2005 and 2017. The
dependent variable is R2, which measures the informativeness of the forecasts made by an analyst on a given day for a given
horizon. Data Exposure is a variable capturing the exposure to data generated on StockTwits, measured first by firm and then
averaged across the firms covered by analysts at time t− 1, where t is the date at which we measure forecast informativeness.
Data Exposure is set to zero prior to StockTwits’ introduction in 2009, and normalized by its in-sample standard deviation.
Data Exposure is based on the average number of users that have the firms covered by the analyst in their watchlist, or the
number of hypothetical messages posted about those firms from t − 30 to t − 1. h is the forecasting horizon, measured as the
number of days between t and the date of actual earnings release, divided by 365. h∗ is the forecasting horizon centered at 1
(h∗ = h− 1) so that the regression coefficient on the baseline variable Data Exposure can be interpreted as the unconditional
effect on R2 at the one-year horizon (rather than zero). Auto is the average earnings’ autocorrelation in analysts’ portfolios.
In columns (2), (3), (5), and (6), analyst and date fixed effects are interacted with h∗. Control variables include firms’ cash
flow to assets, cash to assets, debt to assets, Tobin’s Q, the log of total assets, and the log of age, calculated using the last
available financials and averaged by analyst at time t− 1. Detailed variable definitions are provided in Appendix II. t-statistics
in parentheses are based on standard errors clustered by forecasted fiscal period. Symbols ***, **, and * denote statistical
significance at the 1%, 5%, and 10% level, respectively.

Dep. variable: Forecast informativeness (R2)

Data Exposure: #Watchlist #Hypothetical Messages
OLS: (1) (2) (3) (4) (5) (6)

h∗× Data Exposure × Auto 1.17*** 0.64*** 0.58*** 0.69*** 0.39** 0.35**
(3.23) (2.82) (2.62) (2.75) (2.18) (2.00)

h∗× Data Exposure -4.85*** -2.92*** -2.83*** -3.19*** -2.21*** -2.15***
(-3.88) (-4.34) (-4.28) (-3.52) (-4.03) (-4.14)

h∗× Auto 0.62** 0.57*** 0.55*** 0.35* 0.1 0.14
(1.95) (3.07) (3.12) (1.77) (0.66) (0.90)

Data Exposure × Auto 1.17*** 0.64*** 0.58*** 0.39** 0.40*** 0.39***
(3.23) (2.82) (2.62) (1.99) (2.92) (2.88)

Auto 1.68*** 1.74*** 1.32*** 1.68*** 1.73*** 1.31***
(7.38) (8.88) (6.66) (7.23) (8.63) (6.43)

Data Exposure -2.02* -2.14*** -2.22*** -1.14 -1.52*** -1.66***
(-1.80) (-3.25) (-3.33) (-1.61) (-2.71) (-3.05)

h∗ -18.07*** -17.91***
(-28.26) (-25.76)

Analyst FE Yes Yes
Date FE Yes Yes
Analyst FE (interacted) Yes Yes Yes Yes
Date FE (interacted) Yes Yes Yes Yes
Controls Yes Yes
N 28,712,339 27,865,920 27,840,983 28,712,339 27,865,920 27,840,983
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VIII Appendix

Appendix I – R2 Estimation Procedure

This appendix shows how to estimate our measure of analysts’ forecasts’ informativeness,
R2, based on the initial sample of 9,129,282 unique forecasts and realizations described in
Section IV.A. We illustrate our procedure with a fictitious analyst XYZ covering 6 firms
(A, B, C, D, E, F) on January 19, 2007, and making earnings forecasts for the fiscal period
ending December 31, 2008. The procedure consists of five steps:

� Step 1: Identify the future fiscal period of interest. Analysts make separate forecasts
for the current fiscal period, for the next fiscal period, and for the subsequent ones.
Since the measure is horizon-specific, forecasts relating to different fiscal periods should
not be mixed. In this example we focus on the 2008 fiscal period, and thus ignore the
forecasts of XYZ relating to other fiscal periods (e.g., 2007 or 2009).

� Step 2: Retrieve the last available earnings forecast for each covered firm, and the
realization of earnings observed ex post. If the last available forecast is older than 365
days, the analyst is considered inactive on that firm. Her forecast is then regarded as
stale and the R2 measure is computed excluding the underlying stock.29 Column 1 of
Table IX below shows the last available earnings forecasts made by XYZ for A, B, C,
D, E, and F as of January 19, 2007. The actual realized earnings for fiscal year 2008
are in Column 2.30

� Step 3: Normalize earnings. Heterogeneity across firms on size is persistent. To exclude
this persistent size effect from our R2 measure, we normalize both earnings forecasts
and realized earnings for each firm by its total assets at the end of the forecasted fiscal
period. Total assets as of December 31, 2008 for A, B, C, D, E and F are in Table IX,
Column 3. Earnings forecasts (êj) and realized earnings (ej) after normalization are
reported in Columns 5 and 6.31

� Step 4: Estimate eq.(14) by OLS and compute R2. Regress ej on êj in the cross-
section of covered firms j (i.e., across A, B, C, D, E and F) and calculate the R2 of the

29For example, if as of January 19, 2007, the latest earnings forecast for B made by XYZ were older than
365 days, we would proceed with the R2 computation without firm B.

30Notice Step 2 assumes that the belief of XYZ about an individual firm does not change until a new
forecast is disclosed. Our results are similar if we relax this assumption by estimating first all unobserved
forecasts between two consecutive observable forecasts by linear interpolation, and then use these interpolated
forecasts instead of the last available forecast to compute R2 daily.

31Our results are robust to different normalization approaches. In this example, total assets could be
measured as of December 31, 2006, i.e., from the last available financial statements on January 19, 2007.
One drawback with this alternative approach is that the measure of informativeness will change even when
analysts do not update their forecasts (because the normalization changes).
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regression. R2 is set to zero if êj negatively predicts ej (i.e., if k1 < 0 in eq.(14)). It is
set to missing if there are fewer than 3 or more than 30 observations in the regression,
or if k1 is missing after trimming that regression coefficient at the 1% level in each
tail.32 In Table IX, the R2 of the regression of ej (Column 6) on êj (Column 5) for
XYZ on January 19, 2007 is 14.9%.

� Step 5: Compute the horizon. Horizon is the time elapsed until actual earnings are
reported. Since earnings report dates generally differ across firms covered by an analyst,
we compute the median date and define the horizon as the number of days until that
median date, divided by 365. Column 4 from Table IX shows that realized earnings
for A, B, C, D, E, and F, were all reported on March 31, 2009, so the median date is
March 31, 2009. The horizon associated with the above R2 of 14.9% is thus 2.20 years
(802 days, divided by 365).

Table IX: Example of R2 computation for analyst XYZ on January 19, 2007

Forecasted Fiscal Period: 12/31/2008

Latest Realized Total Earnings Latest Realized
Firm Forecast Earnings Assets Report Normalized Normalized

($M) ($M) ($M) Date Forecast (êj) Earnings (ej)
(1) (2) (3) (4) (5) (6)

A 110 66 1,100 3/31/2009 0.10 0.06
B 30 18 250 3/31/2009 0.12 0.07
C 59 15 735 3/31/2009 0.08 0.02
D 740 538 6,725 3/31/2009 0.11 0.08
E 1,021 1,225 10,210 3/31/2009 0.10 0.12
F 7 3 55 3/31/2009 0.12 0.06

At the end of the above procedure, we find R2
i,t,h = 14.9% for i =“XYZ”, t =“January

19, 2007”, and h =2.20. We apply the same procedure every day from January 1, 1983 to
December 31, 2017 to every analyst in our sample for all available forecasted fiscal periods.
This procedure yields a sample of 65,889,122 daily observations of R2 with an associated
horizon between 1 day and 5 years across 14,379 distinct analysts.

32Trimming of k1 is possible ex-post, after all observations of R2 are available. This filter reduces the
effect of outliers coming from lower power in estimations of eq.(14) with few observations.
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Appendix II – Variable Definitions

Variable Definition

All variables below are analyst-level variables

#Firms Total number of distinct firms covered by an analyst on a given day.

h Number of days between the date at which the econometrician observes the last available
forecasts of the analyst for a given fiscal period, and the date at which actual earnings for
each forecast are announced, divided by 365. When earnings announcement date differs
across firms covered by the analyst, we use the median date.

h∗ Horizon h centered at 1 (h∗ = h− 1)

R2 Informativeness of the forecasts made by an analyst on given day and for a given horizon. A
higher R2 indicates that the forecasts of this analyst explain a larger fraction of the variation
in realized earnings at this horizon.

All variables below are firm-level variables that we convert into analyst-level variables by taking the
average across all firms the analyst covers

#Messages Number of StockTwits messages posted about a given firm over the last thirty days (from
t− 30 to t− 1).

#Hypothetical Messages Number of Hypothetical StockTwits messages posted about a given firm over the last thirty
days (from t− 30 to t− 1). The number of hypothetical messages about firm j at time t is
computed as wj ×Nt, where wj is the mean of wj,t for all t after a message is observed for
the first time, and Nt is the total number of messages posted about all firms at time t. wj,t

is defined as
#Messagesj,t

Nt
.

#Watchlist Total number of StockTwits users having a given firm in their watchlist.

Age 1+number of years in Compustat since inception.

Auto Within firm quarterly net income (ibq item in Compustat) autocorrelation, obtained by
regressing ibq over the lag of ibq over the last 2 years (without constant). We require that
the regression has at least 4 observations.

Cash flow to assets (ib+ dp)/at (from last available financial statements in Compustat).

Cash to assets che/at (from last available financial statements in Compustat).

Debt to assets (dlc+ dltt)/at (from last available financial statements in Compustat).

Tobin’s Q (at− ceq + chso ∗ prccf )/at (from last available financial statements in Compustat).

Total assets at (from last available financial statements in Compustat).

Trading volume Total number of shares traded from t− 30 to t− 1.
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Appendix III – Derivations in the Model

Proof of Equation (5). Differentiating W (fst, flt; sst, slt) with respect to fst and flt, we
obtain that the first order conditions to the analyst’s problem at date 1 are:

∂W

∂fst
= −2γ(f ∗st − E(θst | sst, slt)) = 0

∂W

∂flt
= −2(1− γ)(f ∗lt − E(θlt | sst, slt)) = 0.

(19)

Solving for f ∗st and f ∗lt and using the fact that slt is uninformative about θst, we obtain eq.(5).
It is straightforward that the second order conditions are satisfied.

Proof of Equation (6). Substituting eq.(5) into eq.(4), we have:

E(W (f ∗st, f
∗
lt; sst, slt)) = ω − γ E((E(θst |sst)− θst)2)− (1− γ)E((E(θlt |sst, slt)− θlt)2),

= ω − γ E(Var(θst |sst))− (1− γ)E(Var(θlt |slt, sst)),
= ω − q(β, γ)Var(θst |sst)− (1− γ)Var(elt |slt) .

(20)

The last line in eq.(20) follows from the fact that (i) Var(θht |sht) does not depend on the
realization of sht because θht and sht are normally distributed, and (ii) the independence
between the common component (θst) and the unique component (elt) in the long-term
earnings.

Proof of Proposition 1. Substituting Var(θst |sst) and Var(elt |sst, slt) in the analyst’s
objective function in eq.(9) by their expressions in eq.(7), we obtain that the first order
conditions for the analyst’s optimization problem at date 0 are (ignoring for the moment,
the constraints that 0 ≤ zh ≤ (ψh)

−1Zh for h ∈ {st, lt}):

q(β, γ)ψst − 2az∗st − cz∗lt = 0

(1− γ)ψlt − 2bz∗lt − cz∗st = 0
(21)

It is then straightfoward to check that the solution to this system of equations is given by
(z∗st, z

∗
lt) as defined in eq.(10). The Hessian matrix corresponding to the analyst’s optimization

problem is negative definite and its determinant is positive if and only if 4ab > c2. Thus,
the solution of the previous system of equations maximizes the analyst’s objective function
at date 0, provided that 0 ≤ zh ≤ (ψh)

−1Zh (with strict inequalities for an interior solution)
and 4ab > c2.

The condition z∗h < (ψh)
−1Zh is clearly always satisfied by setting Zh large enough.

Moreover, using the expressions for {z∗st, z∗lt} in Proposition 1, it is direct that the condition
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z∗st > 0 is satisfied if and only if:

ψlt
ψst
≤ 2b× q(β, γ)

c(1− γ)
(22)

and the condition z∗lt > 0 is satisfied if and only if

c× q(β, γ)

2a(1− γ)
≤ ψlt
ψst

. (23)

It is immediate that if Conditions (22) and (23) are satisfied then the condition 4ab > c2 is
satisfied. Finally, it is easily checked that these two conditions are equivalent to:

c < c̄(β, γ, a, b, ψst, ψlt), (24)

where:

c̄(β, γ, a, b, ψst, ψlt) = Min{
2 ψlt

ψst
a(1− γ)

q(β, γ)
,

2bq(β, γ)
ψlt

ψst
(1− γ)

}.

Using the expressions for z∗st and z∗lt in Proposition 1, we deduce that:

∂z∗st
∂a

= − 4b

(4ab− c2)
z∗st < 0,

∂z∗lt
∂a

=
2c

(4ab− c2)
z∗st > 0 if c > 0.

(25)

Proof of equations (12) and (13). By definition, Var(θlt |f ∗lt) = E((θlt−E(θlt | f ∗lt))2 | f ∗lt).
As f ∗lt = E(θlt | sst, slt), we deduce that: Var(θlt |f ∗lt) = E((θlt − E(θlt | sst, slt))2 | f ∗lt). The
law of iterated expectations implies that Var(θlt |f ∗lt) = E(Var(θlt | sst, slt)) | f ∗lt). Since
Var(θlt | sst, slt) does not depend on the realizations of sst and slt (due to the assumption
that all variables are normally distributed), we obtain that: Var(θlt |f ∗lt) = Var(θlt | sst, slt).
Finally, as θlt = βθst + elt, we deduce that:

Var(θlt |f ∗lt) = Var(θlt | sst, slt) = β2 Var(θst | sst) + Var(elt | slt) + 2Cov(sst, elt | sst, slt).

As slt and sst are independent and as elt and θst are unconditionally independent, we have
Cov(sst, elt | sst, slt) = 0. It follows that from eq.(7) that Var(θlt |f ∗lt) = β2(Zst − ψstz∗st) +
(Zlt − ψltz∗lt). Therefore Ilt is as given in eq.(13). The derivation of the expression for Ist
follows the same step and is omitted for brevity.

Proof of Corollary 1. Differentiating eq.(12) and eq.(13) with respect to the marginal
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cost of producing short-term information, a, we obtain

∂Ist
∂a

= (
∂z∗st
∂a

)ψstI2
st, (26)

and
∂Ilt
∂a

= (β2ψst
∂z∗st
∂a

+ ψlt
∂z∗lt
∂a

)Ilt = −(
2(2β2ψstb− cψlt)

(4ab− c2)
)z∗stI2

lt. (27)

As
∂z∗st
∂a

< 0 (see eq.(25)), eq.(26) implies that ∂Ist
∂a

< 0. Moreover as z∗st > 0, eq.(27)

implies that ∂Ilt
∂a

> 0 if and only if β < ( cψlt

2bψst
)
1
2 .
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1 Dividing Forecasting Tasks

In our model, the analyst is in charge of two forecasting tasks and bears a multi-tasking

cost. One may wonder whether she would not be better off assigning these two tasks to two

different agents to save on the multitasking cost. In this section, we identify three reasons

why this may not be optimal: (i) Duplication of fixed cost of information production, (ii)

Agency costs and (iii) Imperfect communication between the agents. We provide conditions

on the parameters in Section 1.1 and 1.3 such that dividing the tasks is suboptimal.

1.1 Duplication of fixed costs of information production

Suppose that the “analyst” assigns the tasks of forecasting short-term and long-term earnings

to two different agents. We call these agents: (i) “st” (in charge of forecasting the short-term

earnings) and (ii) “lt” (in charge of forecasting the long-term earnings). As in the baseline

model, the st-agent obtains a signal sst = θst + εst and can exert the effort zst to reduce the

variance of the noise in her signal and the lt−agent obtains a signal slt = elt + εlt and can

exert the effort zlt to reduce the variance of the noise in her signal. The cost of effort for the

st-agent is Cst(zst) = C0 +a×z2
st and the cost of effort for the lt-agent is Clt(zlt) = C0 +b×z2

lt

where C0 is the fixed cost of acquiring information about the firm.

We first assume that the agents can truthfully, and costlessly, report their signals to the

analyst (the principal). Moreover, there is no agency problem: agents’ efforts are observable

and the analyst perfectly controls the effort exerted by each agent. The compensation ωj paid

to the agent j ∈ {st, lt} must be high enough to cover his effort cost. Thus, the participation

constraint of agent j ∈ {st, lt} is (his outside option is worth zero to simplify)

ωj ≥ Cj(zj),

and the analyst’s final payoff (net of the compensation of the agents) is

W (fst, flt,θst, θlt) = ω − γ(fst − θst)2 − (1− γ)(flt − θlt)2 − ωst − ωlt.

Given the signals reported by the agents, the analyst forms her forecasts optimally, as in the
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baseline model. Thus, proceeding as in the baseline model, the analyst’s objective function

at date 0 is to choose {z∗∗st , z∗∗lt , ω∗st, ω∗lt} solving

max
{zst,zlt,ωst,ωlt}

ω − γV ar(θst |sst)− (1− γ)V ar(θst |sst, slt)− ωst − ωlt

u.c : ωj ≥ Cj(zj) for j ∈ {st, lt},

Clearly, for fixed {zst, zlt}, it is optimal for the analyst to choose the lowest compensation

for the agents, i.e., to set ωj = Cj(zj). We deduce that the analyst’s objective function at

date 0 is

max
{zst,zlt}

H(zst, zlt) = ω−q(β, γ)V ar(θst |sst)−(1−γ)V ar(elt |sst, slt)−2C0−a×z2
st−b×z2

lt. (1)

There are two differences with the case considered in the baseline model. First, by assigning

the forecasting tasks to two different agents, the analyst avoids the cost of multi-tasking, c.

Second, the total fixed cost of acquiring information is 2C0 instead of C0 because each agent

must pay this cost.

Let z∗j (c) be the optimal effort when the cost of multi-tasking is c, as given in Proposition

1. Clearly, solving eq.(1) is identical to the analyst’s problem in the baseline model when

c = 0 (since C0 does not depend on efforts). Thus, everything else being equal, we have:

z∗∗j = z∗j (0).1 Note that z∗j (c) < z∗j (0). Thus, the analyst requires higher efforts for each

task from the agents because, with two agents, she saves on the cost of multi-tasking. As a

result, the analyst’s weighted forecasting error with two agents is smaller than in the baseline

model.

However this does not mean that hiring two agents is optimal, because each agent must

be compensated for the fixed cost of collecting information. In fact, the analyst is better off

not dividing the tasks between two agents if (and only if):

J(z∗st(c), z
∗
lt(c)) ≥ H(z∗st(0), z∗lt(0)), (2)

1Observe that the condition on c in Proposition 1 is sufficient to guarantee that if the solution to the
analyst’s problem is interior when c > 0 then it is for c = 0.
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where J(z∗st(c), z
∗
lt(c)) is defined in the text. Using the fact thatH(z∗st(0), z∗lt(0)) = J(z∗st(0), z∗lt(0))+

cz∗st(0)z∗lt(0)− C0, we can rewrite eq.(2) as:

C0 − cz∗st(0)z∗lt(0) ≥ J(z∗st(0), z∗lt(0))− J(z∗st(c), z
∗
lt(c)). (3)

The R.H.S is negative because {z∗st(c), z∗lt(c)} maximizes J. Thus, a sufficient condition for

Condition (2) to hold is that:

cz∗st(0)z∗lt(0) ≤ C0,

which, using the expressions for z∗st(0) and z∗lt(0) in Proposition 1, is equivalent to:

c ≤ 4C0

h(β, γ)(1− γ)ψstψlt
. (4)

Thus, we obtain that if c ≤Min{c̄(β, γ, a, b, ψst, ψlt), 4C0

q(β,γ)(1−γ)ψstψlt
} (where c̄(β, γ, a, b, ψst, ψlt)

is defined in the proof of Proposition 1), Proposition 1 holds and it is not optimal for the

analyst to hire two agents, despite the multi-tasking cost.

1.2 Agency costs.

Agency frictions (e.g., if the analyst cannot perfectly observe the two agents’ efforts) would

add incentive compatibility constraints to the analyst’s optimization problem. Hence, agency

frictions can only reduce the maximum expected payoff for the analyst when she divides the

task between two agents, H(z∗st(0), z∗lt(0)). Hence, Condition (4) is sufficient for the analyst

being not better off dividing forecasting tasks between two agents when one introduces

agency issues in the set-up considered in the previous section.

1.3 Complementarity and imperfect communication

The analysis in Section 1.1 implicitly assumes that the tasks of obtaining information about

the common component and the unique component of the long-term earnings can be sepa-

rated. A more plausible assumption is that achieving the first task is necessary to achieve

the second one. Intuitively, one cannot obtain a signal about the unique component of

the long-term earnings without first filtering out the common component from information
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about the long-term earnings. The reverse is not true because information about the com-

mon component can be obtained by just focusing on information relevant for forecasting

the short-term earnings. Thus, it is natural to see the tasks of obtaining signals about the

common and the unique components in the firm’s earnings as being “ordered.” Achieving the

first task (obtaining a signal about the short-term earnings, i.e., the common component of

firms’ earnings) is a necessary prerequisite for achieving the second one (obtaining a signal

about the unique component of the long-term earnings). This ordering creates a form of

complementarity between the two tasks: the second task yields a signal only if the first one

has been completed.

To analyze this scenario, we consider a slightly different formulation of the information

structure in our model. Suppose that the long-term signal is

ŝlt(ι) = sst + η + slt = elt + θst + εlt + εst + η if ι = 1, (5)

ŝlt(ι) = ∅ if ι = 0.

where η has a normal distribution with mean zero and variance σ2
η. The indicator variable

ι is equal to 1 if the short-term signal sst has been produced and 0 otherwise. This means

that the long-term signal is observed if and only if the short-term signal is produced. If

σ2
η = 0 and ι = 1, this specification is equivalent to that considered in the model because, for

the analyst, observing {sst, ŝlt} is equivalent to observe {sst, slt}. The case in which σ2
η > 0

can be interpreted as the case in which the short-term signal is observed with noise before

producing the long-term signal.

With this specification for the short-term and the long-term signals, there are three

possibilities to consider. The first possibility is the case in which the analyst does not divide

the tasks, as in the baseline model. In this case, σ2
η = 0 if ι = 1 because the analyst observes

perfectly the short-term signal since she produces it. Choosing ι = 1 is equivalent to choose

to cover the firm and as in the baseline case, this is always optimal for ω large enough. Thus,

we are back to the case analyzed in the paper in which the analyst’s optimal expected payoff

is J(z∗st(c), z
∗
lt(c)).

The second possibility is that the analyst hires the “st” and the “lt” agents. The first is
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in charge of producing the signal sst and the second is in charge of producing the long-term

signal ŝlt(1). Both work independently and report their signals to the analyst. However, even

if σ2
η = 0, this case cannot yield a higher expected payoff to the analyst than the previous

case. Indeed, to produce the long-term signal, the long-term agent must first produce the

short-term signal and pay the multitasking cost. Thus, the short-term signal is produced

twice and the multitasking cost is paid anyway. It is therefore better for the analyst to

directly produce the two signals to avoid duplication of efforts for the production of the

short-term signal.

The third and most interesting possibility is the case in which the analyst delegates

the forecasting tasks to two different agents and the two agents can communicate to avoid

duplications of efforts in the production of the short-term signal. In this case, the st-agent

first produces the short-term signal and then communicates this signal (sst) to the lt-agent.

If communication is perfect (σ2
η = 0), we are back to the case already analyzed in Section

1.1. However, a more realistic possibility is that communication between both agents is

imperfect so that σ2
η > 0. In this case, the observation of {sst, ŝlt} is equivalent to observing

{sst, s′lt} where s′lt = slt+η. Thus, from the agent’s reports, the analyst obtains a less precise

long-term signal than when σ2
η = 0. Intuitively, the analyst cannot distinguish in the signal

conveyed by the lt-agent what is due to noise arising from the lack of information about

the unique component of the firm’s long-term earnings (εlt) and what is due to noise in the

communication between the agents (η).

If communication between the agents is costless, then ι = 1 is optimal, i.e., it is optimal for

the analyst to let the agents communicate even if communication is noisy (because without

communication the lt-agent cannot obtain the long-term signal, unless he pays the cost

of multi-tasking). In this case, the analyst’s problem with two agents is given by eq.(1),

replacing slt by s′lt and

V ar(elt |sst, ŝlt(1)) = V ar(elt |s′lt) = σ2
η + (Z − zst)ψlt.

The rest of the analysis is identical to that in Section 1.1 and after some algebra, we obtain

6



that if

c ≤
4C0 + (1− γ)σ2

η

q(β, γ)(1− γ)ψstψlt
, (6)

then the analyst is better off not splitting the production of the short-term and long-term

signals between two agents. Note that this condition can be satisfied even if C0 = 0, provided

that the communication between the two agents is noisy (σ2
η > 0). The reason is that a single

analyst better exploits the complementarity that naturally exists between the two tasks

because there is no loss of information through communication (a single analyst perfectly

communicates with herself).

2 Shock on ψst

In this Appendix, we show that if β < 1
2
( cψlt

bψst
)
1
2 then (i) the informativeness of the analyst’s

short-term forecast increases with the marginal return on effort for obtaining short-term

information (ψst), i.e., ∂Ist
∂ψst

> 0 and (ii) the informativeness of the analyst’s long-term

forecast decreases with the marginal return on effort for obtaining short-term information

( ∂Ilt
∂ψst

< 0).

First, it is direct from Proposition 1 that

∂z∗st
∂ψst

=
2bq(β, γ)

4ab− c2
> 0, and

∂z∗lt
∂ψst

= − cq(β, γ)

4ab− c2
< 0. (7)

Thus, when ψst increases, the analyst exerts more effort to collect short-term information

and less effort to collect long-term information. The mechanism is the same as for a decrease

in the marginal cost of obtaining short-term information. Indeed, both types of shocks

increase the marginal informational benefit of effort to collect short-term information. Thus,

the analyst exerts more effort to collect short-term information (as the marginal benefit

of effort decreases with effort). However, this raises the marginal cost of effort to collect

long-term information when multi-tasking is costly (c > 0). Consequently, the marginal

benefit of collecting long-term information declines. As the optimal allocation of effort

requires equalizing the marginal benefit of effort on each task, the analyst optimally reacts

by reducing her effort to collect long-term information.

7



Using eq.(12) in the main text, it immediately follows that ∂Ist
∂ψst

> 0 because Ist increases

in z∗st and ψst. The effect of ψst on Ilt is negative if and only if the effect of ψst on (β2(Zst−
ψstz

∗
st)) + (Zlt − ψltz∗lt) is positive (see eq.(13) in the main text). A sufficient and necessary

condition for this is that:

β2(ψst
∂z∗st
∂ψst

+ z∗st) + ψlt
∂z∗lt
∂ψst

< 0. (8)

Substituting
∂z∗h
∂ψst

by its expression in eq.(7) and z∗st by its expression in Proposition 1 in

eq.(8), we deduce that a sufficient condition for this is β < 1
2
( cψlt

bψst
)
1
2 .

3 EPS to Net Income Forecast Conversion

Converting an EPS forecast to a Net Income Forecast is not immediate because I/B/E/S

does not report the number of shares used by the analyst to compute EPS. We experimented

with two different approaches to make that conversion: (i) multiply the unadjusted EPS

forecast from I/B/E/S by the number of shares from CRSP at t (shrout), or (ii) multiply the

actual net income observed ex-post by the ratio of the I/B/E/S adjusted EPS forecast over

the I/B/E/S adjusted actual EPS. This last approach ensures that the implicit number of

shares used in the conversion is adjusted for stock splits, if needed, in a way consistent with

I/B/E/S’s adjustments for these splits, while preserving the ratio of forecast error relative

to realized earnings reported in I/B/E/S.

To evaluate the quality of each approach, we compared the net income forecast obtained

after converting the EPS forecast with the true net income forecast whenever the analyst

issues both. For almost 60% of those cases, the difference (in absolute value) between the

converted EPS and the true net income forecast is lower with the second approach, and so

we retain this one for making this conversion whenever an EPS forecast is available but the

net income forecast is not.

4 Why not Use Long-Term Growth Forecasts?
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Analysts sometimes disclose, in addition to their earnings forecasts, a forecast about long-

term growth. Specifically, a long-term growth (LTG) forecast in percent is reported instead

of earnings forecasts in dollar amounts for more distant and specific fiscal periods. These

LTG forecasts have been used in the literature, either directly to understand belief formation

(e.g., Bordalo, Gennaioli, La Porta, and Shleifer (2019)), or indirectly to estimate the cost

of capital (e.g., Chen, Da, and Xhao (2013)). LTG forecasts are however not well suited for

our purpose because the horizon of these forecasts is unclear, making it difficult to assign

them to actual realizations (and hence measure precisely their informativeness by horizon).

After reading several reports from analysts, we indeed find substantial heterogeneity in how

analysts define the horizon of their LTG forecasts (when they provide this definition). Some

refer to earnings growth for the next five years, others use the next three years. Many refer to

3-5 year growth, without any further detail. Moreover, the base year for the growth estimate

also varies. It can be the last historical fiscal year, the current fiscal year, the next fiscal

year, or the subsequent one. Often, this base year is undefined.

5 Forecast Informativeness with Biased Analysts

To allow for the possibility of a systematic bias in the analyst’s forecasts, suppose that these

forecasts are given by:

fhi = E(θhi |Ω) + b̃hi, (9)

where fhi is the analyst’s forecast about firm i’s earnings, θhi, at horizon h, Ω is the analyst’s

information and b̃hi is the analyst’s bias, which can be random. In our model, b̃hi = 0 (the

analyst is unbiased). On average, the analyst’s bias at horizon h is

E(θhi − fhi) = E(̃bhi).

The literature on equity sell-side analysts suggests that E(̃bhi) ≥ 0. As explained in the text,

the quality of analysts’ forecasts is often measured by the average forecasting error. The

9



analyst’s expected forecasting error is

E((θhi − fhi)2) = E((θhi − E(θhi |Ω) + E(θhi |Ω)− fhi)2)

= Var(θhi |Ω) +E(̃b2
hi)

= Var(θhi |Ω) + Var(̃bhi) + E(̃bhi)
2

Thus, when an analyst is biased, her expected forecasting error is the sum of: (i) the precision

of her forecast (Var(θhi |Ω)), (ii) the variance of her bias, or (iii) her expected bias (E(̃bhi)).

In contrast, as shown below, our measure of the analyst’s forecast informativeness is not

affected by the expected bias and identical to the informativeness of the analyst’s unbiased

forecast when Var(θhi |Ω) = 0.

To see this, let denote by f ∗hi the analyst’s unbiased expected forecast: f ∗hi =E(θhi |Ω) .

Assuming that all variables have a normal distribution, we have

E(θhi |fhi) = k̂0 + k̂1fhi

with k̂0 = (E(θhi)(1 − k̂1) − k̂1E(̃bhi)) and k̂1 =
V ar(f∗hi)

V ar(fhi)
. Assuming, as we do in our tests,

that the observations of (θhi, fhi) for different firms are independent draws from the same

distribution, the estimate of k1 (k0) in the regression considered in eq.(14) in our paper is

a (consistent) estimate of k̂1 (k̂0). The R2 of this regression is our measure of an analyst’s

forecast informativeness at horizon h. Its theoretical value is

R2
ih = k̂2

1

V ar(fhi)

V ar(θhi)
= k̂1R

2
θf∗ (10)

where R2
θf∗ is the R2 of a regression of θhi on f ∗hi. Thus, our measure of informativeness is not

affected by the expected level of the bias in the analyst’s forecast (E(̃bhi)) in contrast to the

expected forecasting error. Moreover, if the analyst’s bias is constant across firms (Var(̃bhi) =

0), our empirical measure of the informativeness of an analyst’s forecast is identical to the

the informativeness of the analyst’s unbiased forecast, f ∗ (which is not observed). Indeed,

in this case, k̂1 = 1 so that R2
ih = R2

θf∗ . If instead Var(̃bhi) > 0, our empirical measure is

biased downward (it underestimates the true informativeness of analysts’ unbiased forecasts

10



at a given horizon). However, there is a one-to-one mapping between our empirical measure

of forecast informativeness (R2
ih) and the informativeness of the analyst’s unbiased forecast

(R2
θf∗).

6 Analysts’ Forecasting Activity and Recommendations

Our second test (Test#2) builds on the assumption that (some) analysts use StockTwits data

as a complementary source of information (see discussion in Section VI.B). Table A1 and

Table A2 report results (discussed in section VI.B) that are consistent with this assumption.

In Table A1, Column (1) shows that analysts are more likely to issue a new forecast on a

given firm and day following an increase in StockTwits activity, as measured by the number

of actual messages posted about the firm over the last 30 days. Column (2) shows that

this result survives when controlling for trading volume, and thus for the possible effects

of contemporaneous news (public or private) that is material enough to generate trading.

Columns (3) and (4) show that this result continues to hold on days without news arrival

from traditional data sources (which we identify using Capital IQ Key Developments), and

thus mitigate the concern that news arrival (affecting both analysts’ forecasts and social

media activity) confounds the relationship documented in Column (1).

In Table A2, Column (1) shows that the recommendation of an analyst on a given firm

and day is positively (negatively) related to the fraction of StockTwits users whose opinion is

“Bullish” (“Bearish”). When more users are “Bullish” (“Bearish”), analysts are more likely

to upgrade (downgrade) their recommendation. The economic magnitude of this effect is

small, but it is highly significant. Columns (2) and (3) show that this result continues to

hold on days without news arrival from traditional data sources (which we identify using

Capital IQ Key Developments), and thus mitigate the concern that news arrival (affecting

both analysts’ recommendations and users’ ratings) confounds the relationship documented

in Column (1) of Table A2.

11



Table A1: Social Media Data and Analysts’ Forecasting Activity

This table presents OLS estimates of the sensitivity of analysts’ propensity to issue new earnings forecasts to recent StockTwits
activity. Estimations are made at the analyst-firm-day level. The sample includes all U.S. firms covered by at least one analyst
between 2009 and 2017. The dependent variable is a binary variable equal to one if the analyst issues a new forecast (or a
revision) on a given firm on day t and zero otherwise. #Messages is the number of StockTwits messages posted about a firm
from t − 30 to t − 1. The number of messages is set to zero when the firm is not covered/discussed on StockTwits. Trading
Volume is the total volume of trading on from t−30 to t−1. In Column (3), we impose that no news (from the Capital IQ Key
Developments dataset) is released about the firm during the day (otherwise the observation is removed from the sample). In
Column (4), we impose that no news is released about the firm from t− 30 to t (otherwise the observation is removed from the
sample). t-statistics in parentheses are based on standard errors clustered by firm. Symbols ***, **, and * denote statistical
significance at the 1%, 5%, and 10% level, respectively.

Dep. variable: Binary Variable (New Forecast=1)
OLS: (1) (2) (3) (4)

# Messages 0.02*** 0.03*** 0.06*** 0.06***
(2.97) (4.29) (8.82) (2.70)

Trading Volume -0.13*** -0.04*** 0.09*
(-9.74) (-4.12) (1.86)

Analyst × Firm FE Yes Yes Yes Yes
Analyst × Date FE Yes Yes Yes Yes
Sample without news in Key Dev. at t No No Yes No
Sample without news in Key Dev. over t−30→t No No No Yes
N 80,434,931 80,379,362 69,414,958 3,147,979

Table A2: Social Media Data and Analysts’ Recommendations

This table presents OLS estimates of the sensitivity of analysts’ recommendations to the number of “Bullish” and “Bearish”
ratings issued by StockTwits users. Estimations are made at the analyst-firm-day level. The sample includes all U.S. firms
covered by at least one analyst between 2009 and 2017. The dependent variable is the last available recommendation made by
analyst i on firm j at t (measured by the item ireccd in I/B/E/S and multiplied by -1 so that greater values of ireccd indicate
better recommendations). Rating is the difference between the fraction of “Bullish” users and that of “Bearish” users about j
at t − 1. Rating is naturally bounded between -1 (all users are “Bearish”) and +1 (all users are “Bullish”). We require that
there are at least 10 users with an active rating about j. A rating is active if it is the last available rating, and if it is not stale
at t − 1. A rating is stale after 365 days. In Column (2), we impose that no news (from the Capital IQ Key Developments
dataset) is released about the firm during the day (otherwise the observation is removed from the sample), i.e., at t. In Column
(3), we impose that no news is released about the firm from t− 30 to t (otherwise the observation is removed from the sample).
t-statistics in parentheses are based on standard errors clustered by firm. Symbols ***, **, and * denote statistical significance
at the 1%, 5%, and 10% level, respectively.

Dep. variable: Analyst Recommendation
OLS: (1) (2) (3)

Rating 0.11*** 0.11*** 0.14***
(6.89) (7.13) (4.22)

Analyst × Firm FE Yes Yes Yes
Analyst × Date FE Yes Yes Yes
Sample without news in Key Dev. at t No Yes No
Sample without news in Key Dev. over t−30→t No No Yes
N 33,758,191 28,677,022 879,011
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7 Actual Messages vs. Hypothetical Messages

This appendix compares actual and hypothetical messages, and decomposes the sources of

variation for each variable. The number of actual messages (#Messages) about firm j on

day t (after coverage initiation by StockTwits) can be decomposed as

#Messagesj,t =
#Messagesj,t

#Total Messagest
×#Total Messagest

= wj,t ×#Total Messagest

where wj,t is the share (in percentage) of total messages posted on StockTwits about j at

t, and #Total Messagest is the total number of messages posted on the platform on day

t. Assuming (for convenience) that analyst i covers only firm j, the actual messages she is

exposed to, denoted #Messagesi,t, can be decomposed as:

#Messagesi,t = wi,t ×#Total Messagest × Posti,t, (11)

where wi,t = wj,t (because i only follows j), and Posti,t is an indicator equal to one after firm

j is discussed on StockTwits for the first time (#Messagesi,t is set to zero before coverage by

StockTwits begins). Variation in analyst i’s exposure (#Messagesi,t) is the product of three

components: (i) the relative cross-sectional variation in the share of messages analyst i is

exposed to, captured by wi,t, (ii) the aggregate variation of total messaging on StockTwits

captured by #Total Messagest, and (iii) time variation due to the staggered introduction of

StockTwits, captured by Posti,t.

Using a similar decomposition, exposure based on hypothetical messages is given by the

following product:

#Hypothetical Messagesi,t = w′i ×#Total Messagest × Posti,t, (12)

where w′i = wj is the average of wj,t across all t, after messaging about firm j begins.2

2Using other methodologies to estimate hypothetical messages does not materially affect our results. For
example, one could use the median (rather than the average) of wj,t to compute w′

i, or use Post′t instead of
Posti,t, where Post′t is equal to one after January 1, 2009.
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Comparing eq.(12) with eq.(11) highlights that the first component (i.e., w′i) in eq.(12) is

time-invariant. Thus, while exposure based on #Messagesi,t could capture variation unre-

lated to StockTwits (e.g., if the arrival of information about firm j from other sources than

StockTwits at t correlates with wi,t (= wj,t) because StockTwits’ users relay or comment

that information), #Hypothetical Messagesi,t cannot because the share w′i is fixed (and thus

cannot vary with such information arrival). Of course, #Hypothetical Messagesi,t still cap-

tures variation across firms via w′i (i.e., some analysts follow firms that are systematically

more discussed), but this variation is controlled for by the analyst fixed effects ηi in our

tests. Therefore, the source of variation we use in the paper to estimate the effect of greater

exposure to StockTwits’ data based on hypothetical messages comes solely from heteroge-

neous exposure to the progressive and staggered expansion of the platform (measured by

#Total Messagest × Posti,t).3

Although our presentation focuses on the case where analyst i follows only firm j, the

source of variation that our test relies upon is the same when analysts cover several firms,

if coverage is stable. Since coverage is persistent on average, most changes in w′i (i.e., the

average of wj across the covered firms j) will be captured by the fixed effects ηi, and the

main source of variation will come from the aggregate variation in the number of messages

(and from the staggered deployment of the platform). To mitigate the concern that changes

in analyst coverage (i.e., change in w′i over time) could explain our results, we verify and

show that our estimates are not materially affected when we focus on the sub-sample of

analysts covering always the same firms (see Table A9 in Section 11 of this Appendix).

Alternatively, the variation in w′i that is not fully captured by ηi due to changes in coverage

can be directly controlled for in the regression. The share wj is indeed perfectly observed

for all firms because we use it to compute hypothetical messages. We average this variable

across firms by analyst, day, and horizon to obtain w′i. Table A3 shows that controlling for

w′i leads to similar conclusions.

3Put it differently, #Hypothetical Messagesi,t captures three sources of variation related to treatment: (i)
w′

i, measuring the degree of exposure to treatment, (ii) #Total Messagest, measuring the overall treatment
intensity, and (iii) Posti,t, measuring the treatment status. This third and last source of variation is the
same as the one used to identify treatment in a standard staggered diff-in-diff specification. Since the first
source of variation is absorbed by ηi in eq.(18), only the last two contribute to the estimation.
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Table A3: Controlling for Analysts’ Average Share of All Messages (w′i)

This table presents OLS estimates of the sensitivity of the informativeness of analysts’ forecasts (R2) to social media data
generated on StockTwits (eq.(18)). The sample includes all available analyst-day-horizon observations between 2005 and 2017.
The dependent variable is R2, which measures the informativeness of the forecasts made by an analyst on a given day for a given
horizon. Data Exposure is a variable capturing the exposure to data generated on StockTwits, measured first by firm and then
averaged across the firms covered by analysts at time t− 1, where t is the date at which we measure forecast informativeness.
Data Exposure is set to zero prior to StockTwits’ introduction in 2009, and normalized by its in-sample standard deviation.
Data Exposure is based on the number of hypothetical messages posted about those firms from t−30 to t−1. h is the forecasting
horizon, measured as the number of days between t and the date of actual earnings release, divided by 365. h∗ is the forecasting
horizon centered at 1 (h∗ = h− 1) so that the regression coefficient on the baseline variable Data Exposure can be interpreted
as the unconditional effect on R2 at the one-year horizon (rather than zero). w′i is the mean of wj across the firms covered
by the analyst. wj is the mean of wj,t for all t after a message is observed for the first time about j. Other control variables
include firms’ cash flow to assets, cash to assets, debt to assets, Tobin’s Q, the log of total assets, and the log of age, calculated
using the last available financials and averaged by analyst at time t− 1. In columns (2), (3), analyst and date fixed effects are
interacted with h∗. Detailed variable definitions are provided in Appendix II. t-statistics in parentheses are based on standard
errors clustered by forecasted fiscal period. Symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10% level,
respectively.

Dep. variable: Forecast informativeness (R2)

Data Exposure Proxy: # Hypothetical Messages
OLS: (1) (2) (3)

h∗× Data Exposure -1.15*** -1.03*** -1.05***
(-3.72) (-4.40) (-5.03)

Data Exposure 0.05 -0.39 -0.4
(0.28) (-1.57) (-1.60)

h∗× w′i 3.54*** 0.33 -0.21
(2.37) (0.20) (-0.13)

w′i 2.79*** 3.46*** 1.3
(2.42) (2.62) (0.93)

h∗ -16.77***
(-32.69)

Analyst FE Yes
Date FE Yes
Analyst FE (interacted) Yes Yes
Date FE (interacted) Yes Yes
Controls Yes
N 30,959,276 30,105,551 27,860,424
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8 Do Our Measures Correlate with News from Stan-

dard Sources?

Our second test (Test#2) builds on the assumption that our two measures of analysts’

exposure to StockTwits’ data (“Data Exposure”) do not correlate with the regular flow of

firm-level information coming from standard sources (see discussion in Section VI.C). Tables

A4 and A5 present the results of two tests (mentioned in section VI.C) attempting to falsify

this assumption.

We use Capital IQ Key Developments to identify the regular flow of firm-level information

from standard sources. This database is well-suited for two reasons. First, it covers a large

spectrum of news category (e.g., announcements of earnings, dividend, M&As, executive

changes, or SEC inquiries). There are almost 12 million news items in Capital IQ Key

Developments about firms in our sample.4 Second, the vast majority of the reported news

items originate from standard sources (e.g., press releases, news wires, regulatory filings),

which is precisely the news we want to identify (i.e., coming from “traditional” data). We

use two approaches to measure the regular flow of firm-level information. First, we simply

count the number of news items reported in Capital IQ about a given firm and time period

(henceforth the “Volume Approach”). Second, we calculate the market response to each

news item in absolute value, and use the sum for a given firm and time period to capture

the relevance of these news items (henceforth the “Market Response Approach”).5 We then

test whether these two measures of the flow of information for a given firm correlates with

our measures of “Data Exposure”.

Table A4 shows the results based on the “Volume Approach”. We find no significant

relationship between the number of daily news items reported in Capital IQ and the number

of (i) users in a firm’s watchlist (Columns (1) to (3)), or (ii) hypothetical messages (Columns

(4) to (6)). As expected, however, we find a positive correlation with the number of actual

messages (Columns (7) to (9)). Our assumption is thus rejected for this variable, but it

4In our tests, we consider all news except M&A rumors, because these rumors may actually come from
social media outlets.

5We set this sum to zero when no news is reported.
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is not rejected for the two measures of data exposure we use. Table A5 shows similar

results based on the “Market Response Approach” instead of the number of news. In sum,

neither the number of news items arriving from standard sources, nor their relevance correlate

significantly with either a firm’s watchlist, or hypothetical messages.
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Table A4: Data Exposure and News Arrival (Volume Approach)

This table presents OLS estimates of the sensitivity of different measures of social media data exposure to news arrival from standard sources. Estimations are made
at the firm-day level. The sample includes all U.S. firms that have been discussed at least once on StockTwits between 2009 and 2017, and that are covered by at least
one analyst. In columns (1) to (3), #Watchlist is the number of StockTwits users having the firm in their watchlist on day t. In columns (4) to (6), #Hypothetical
Messages is the number of hypothetical messages posted about the firm from t − 30 to t − 1. In columns (7) to (9), #Messages is the number of actual messages
posted about the firm from t− 30 to t− 1. #Newst is the number of distinct news about the firm reported in Capital IQ Key Developments on day t. #Newst→T is
the number of distinct news about the firm reported in Capital IQ Key Developments between day t and day T . Capital IQ Key Developments is a dataset providing
structured summaries of material news and events for more than 800,000 firms worldwide. It monitors more than 230 categories of news (i.e., a “key development”
item) including for example companies SEC filings, executive changes, M&A announcements, earnings announcements, changes in corporate guidance, delayed filings,
SEC inquiries, or credit rating changes. Each “key development item” includes announced date, headline, situation summary, type, company role, and company
identifiers. t-statistics in parentheses are based on standard errors clustered by firm. Symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10%
level, respectively.

Dep. Variable: #Watchlist #Hypothetical Messages #Messages
OLS: (1) (2) (3) (4) (5) (6) (7) (8) (9)

#Newst -4.66 -2.82 5.67***
(-0.59) (-0.82) (2.97)

#Newst−1 -3.98 -1.95 9.11***
(-0.51) (-0.59) (4.65)

#Newst−30→t−1 -2.73 -1.68 10.06***
(-0.41) (-0.61) (5.91)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 18,664,998 18,661,528 18,560,734 18,664,998 18,661,528 18,560,734 18,664,998 18,661,528 18,560,734
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Table A5: Data Exposure and News Arrival (Market Response Approach)

This table presents OLS estimates of the sensitivity of different measures of social media data exposure to news arrival from standard sources. Estimations are made
at the firm-day level. The sample includes all U.S. firms that have been discussed at least once on StockTwits between 2009 and 2017, and that are covered by at least
one analyst. In columns (1) to (3), #Watchlist is the number of StockTwits users having the firm in their watchlist on day t. In columns (4) to (6), #Hypothetical
Messages is the number of hypothetical messages posted about the firm from t − 30 to t − 1. In columns (7) to (9), #Messages is the number of actual messages
posted about the firm from t− 30 to t− 1. Market Response to #Newst is the Absolute (value of the) Cumulative Abnormal Return (ACARj,t) observed in response
to news about firm j reported in Capital IQ Key Developments on day t. Market Response to #Newst is set to zero when no news is reported. The cumulative
abnormal return at t is computed with a two-day window [t+ 0, t+ 1], using CRSP value-weighted index as a benchmark. Market Response to #Newst→T is sum of
all ACARj,t observed in response to each news event about j reported in Capital IQ Key Developments between day t and day T . This variable is set to zero when
no news is reported between t and T . Capital IQ Key Developments is a dataset providing structured summaries of material news and events for more than 800,000
firms worldwide. It monitors more than 230 categories of news (i.e., a “key development” item) including for example companies SEC filings, executive changes,
M&A announcements, earnings announcements, changes in corporate guidance, delayed filings, SEC inquiries, or credit rating changes. Each “key development item”
includes announced date, headline, situation summary, type, company role, and company identifiers. t-statistics in parentheses are based on standard errors clustered
by firm. Symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively.

Dep. Variable: #Watchlist #Hypothetical Messages #Messages
OLS: (1) (2) (3) (4) (5) (6) (7) (8) (9)

Mkt Resp. to #Newst 1.35 -0.44 5.14***
(0.80) (-0.44) (6.38)

Mkt Resp. to #Newst−1 1.60 -0.32 6.56***
(0.95) (-0.33) (7.74)

Mkt Resp. to #Newst−30→t−1 -0.30 -0.67 4.91***
(-0.26) (-0.98) (10.31)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 18,568,413 18,566,389 16,996,902 18,568,413 18,566,389 16,996,902 18,568,413 18,566,389 16,996,902
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9 Robustness Table II

This Appendix discusses the robustness of the results reported in Table II (Section V.A).

All robustness tests are reported in Table A6.

First, we find similar results in Panels A, B, and C when adding controls for various

characteristics of the portfolio covered by the analyst. In Panel A, we report specifications

that include fixed effects for two-digit SIC industries.6 In Panel B, we further control for the

average characteristics of the covered firms, namely: size (log of total assets), (log of) age,

cash flow to assets, debt to assets, cash to assets, and Tobin’s Q. Finally, Panel C shows

similar results using the same specification, but after we re-compute R2 focusing only on

forecasts about S&P500 firms, whose underlying characteristics have remained stable over

time (Bai et al. (2016)).

Second, we show that the results are robust to focusing on analysts (Panel D) and firms

(Panel E) for which both short and long-term forecasts are available. In Panel D we restrict

the analysis to analysts who have issued at least one forecast with horizon greater than 3

years. In Panel E, we re-compute the dependent variable R2 using only forecasts about firms

for which at least one forecast with horizon greater than 3 year is available.

Finally, we check that our results are not specific to using the period 1983-1992 as our

baseline, nor driven by I/B/E/S imperfect coverage at the beginning of the sample (Panel

F). We also show that neither the number of forecasts used to estimate R2 (Panel G), nor

the assumptions we make about the updating speed of those forecasts (Panel H), materially

affects inferences. Panel G reports specifications that include fixed effects for the number

of observations used to estimate R2 in eq.(14). Panel H reports results after we re-compute

R2 assuming analysts constantly update their forecasts. Specifically, we estimate an up-

dated forecast every day, unless the analyst discloses one. We do so by linear interpolation

between two consecutive disclosures for each analyst, firm, and fiscal period. This alterna-

tive approach for computing R2 relaxes the implicit assumption that analysts update their

forecasts only when we observe a new forecast.

6The constant is omitted because it is absorbed by the fixed effects.
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Table A6: Robustness: Forecast Informativeness by Horizon

This table presents OLS estimates of time trend in analysts’ forecasts’ informativeness by sub-samples including observations in
different annual forecasting horizon ranges. The dependent variable is R2, which measures the informativeness of the forecasts
made by an analyst on a given day for a given horizon. h is the forecasting horizon, measured as the number of days between
the forecasting date and the date of actual earnings release, divided by 365. Year Trend is a variable that takes the value of
zero for the period 1983-1992 and increments by one every subsequent year, divided by 25 so that the regression coefficient can
be interpreted as the cumulative increment in R2 over the 1993-2017 period. Variable definitions are in Appendix II. t-statistics
in parentheses are based on standard errors clustered by forecasted fiscal period. Symbols ***, **, and * denote statistical
significance at the 1%, 5%, and 10% level, respectively.

Dep. variable: Forecast informativeness (R2)

Sample: 0 < h ≤ 1 1 < h ≤ 2 2 < h ≤ 3 3 < h ≤ 4 4 < h ≤ 5
OLS: (1) (2) (3) (4) (5)

Panel A: Controlling for changes in industry composition

Year Trend 12.2*** 11.1*** 2.0 -7.6*** -14.2***
(8.97) (7.75) (1.21) (-3.15) (-3.52)

Industry FE Yes Yes Yes Yes Yes
Controls No No No No No
N 33,386,528 25,044,127 5,359,098 1,349,651 703,653

Panel B: Controlling for the characteristics of covered firms

Year Trend 10.9*** 8.5*** 1.9 -5.0* -9.2**
(7.72) (6.13) (1.09) (-1.70) (-2.01)

Industry FE Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes
N 31,175,295 23,216,441 4,994,926 1,286,975 670,362

Panel C: Focusing on SP500 firms

Year Trend 11.8*** 11.4*** 5.9*** -4.2 -9.1**
(6.35) (5.50) (2.61) (-1.51) (-2.03)

Constant (83-92) 80.1*** 64.3*** 56.3*** 53.5*** 49.6***
(64.88) (56.49) (46.87) (38.73) (25.43)

N 18,423,237 14,206,102 3,138,963 769,951 406,058

Panel D: Analysts with both short and long-term forecasts

Year Trend 6.9*** 6.1*** 1.6 -11.5*** -20.0***
(4.78) (4.14) (0.85) (-5.12) (-5.41)

Constant (83-92) 78.6*** 58.3*** 47.4*** 44.3*** 42.6***
(84.31) (60.25) (32.74) (29.78) (21.12)

N 8,600,935 7,389,585 3,663,585 1,349,749 703,712
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Table A6: Robustness: Forecast Informativeness by Horizon (Cont’d)

Dep. variable: Forecast informativeness (R2)

Sample: 0 < h ≤ 1 1 < h ≤ 2 2 < h ≤ 3 3 < h ≤ 4 4 < h ≤ 5
OLS: (1) (2) (3) (4) (5)

Panel E: Firms with both short and long-term forecasts

Year Trend 7.6*** 3.6** 0.1 -11.5*** -20.1***
(4.86) (2.23) (0.08) (-5.04) (-5.38)

Constant (83-92) 78.6*** 60.8*** 50.2*** 44.5*** 42.7***
(79.65) (69.16) (41.17) (29.58) (20.98)

N 29,023,675 22,491,017 5,159,145 1,338,504 698,958

Panel F: Excluding 80’s

Year Trend 7.6*** 8.5*** 3.5* -11.8*** -18.3***
(6.19) (5.54) (1.72) (-4.66) (-4.78)

Constant (90-92) 77.4*** 55.6*** 47.1*** 44.5*** 41.4***
(113.19) (62.63) (31.24) (26.28) (19.77)

N 29,047,461 22,334,402 5,169,002 1,308,876 683,413

Panel G: Controlling for the number of observations used to compute R2

Year Trend 12.0*** 10.2*** 6.4*** -11.5*** -18.3***
(8.33) (7.25) (3.46) (-5.12) (-5.22)

#Firms FE Yes Yes Yes Yes Yes
N 33,413,667 25,060,925 5,361,069 1,349,749 703,712

Panel H: Using R2 based on interpolated forecasts

Year Trend 9.8*** 6.9*** -1.4 -11.1*** -13.4***
(6.84) (5.28) (-1.30) (-5.32) (-3.98)

Constant (83-92) 78.2*** 61.0*** 56.1*** 53.5*** 50.9***
(97.82) (102.57) (69.25) (39.51) (25.75)

N 33,413,667 25,060,925 5,361,069 1,349,749 703,712
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10 Robustness Table III

This Appendix discusses the robustness of the results reported in Table III (Section V.B).

All robustness tests are reported in Table A7.

In Panel A, we report specifications controlling for the average characteristics of the

covered firms, namely: size (log of total assets), (log of) age, cash flow to assets, debt to

assets, cash to assets, and Tobin’s Q.7 Specifically, we average those average characteristics

by (two-digit SIC) industry and year in Columns (2) and (3), and by analyst and year in

Columns (4) and (5), and control for those in the regression.

Next, we verify that the results are also robust to focusing on analysts (Panel B) and

firms (Panel C) for which both short and long-term forecasts are available. In Panel B we

restrict the analysis to analysts who have issued at least one forecast with horizon greater

than 3 years. In Panel C, we re-compute the dependent variable R2 using only forecasts

about firms for which at least one forecast with horizon greater than 3 year is available.

Finally, we show that neither the choice of our baseline period (Panel D), nor the as-

sumptions we make about the updating speed of analysts forecasts (Panel E), materially

affects our conclusions. In Panel D, we exclude the 80’s and use the period 1990-1992 as our

baseline. In Panel H, we re-compute R2 assuming analysts constantly update their forecasts.

Specifically, we estimate an updated forecast every day, unless the analyst discloses one. We

do so by linear interpolation between two consecutive disclosures for each analyst, firm, and

fiscal period. This alternative approach for computing R2 relaxes the implicit assumption

that analysts update their forecasts only when a new forecast is publicly disclosed.

7We do so in Columns (2) to (5), but not in Column (1) because we have too few observations of yearly
slope estimates.
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Table A7: The Slope of the Term Structure

This table presents OLS estimates of time trend in the slope of the term structure of forecasts’ informativeness. The dependent
variable is the slope of the term structure. This slope measures the change in R2 (in percentage points) when horizon increases
by one year. A negative slope indicates that forecasts’ informativeness (R2) decreases with horizon. In column (1), the slope
is calculated every year by regressing the average of R2 by horizon on the horizon h (i.e., the number of days between the
forecasting date and the date of actual earnings release, divided by 365). In columns (2) and (3), the slope is calculated every
year by 2-digit SIC industry by regressing the average of R2 by horizon and industry on h. In columns (4) and (5), the slope is
calculated every year by analyst by regressing the average of R2 by horizon and analyst on h. Year Trend is a variable that takes
the value of zero for the period 1983-1992 and increments by one every subsequent year divided by 25 so that the regression
coefficient can directly be interpreted as the cumulative change in slope over the 1993-2017 period. Variable definitions are
in the Appendix II. t-statistics in parentheses are based on standard errors clustered by year. Symbols ***, **, and * denote
statistical significance at the 1%, 5%, and 10% level, respectively.

Dep. variable: Slope by year Slope by SIC2-year Slope by analyst-year
OLS: (1) (2) (3) (4) (5)

Panel A: Controlling for covered firms characteristics

Year Trend -10.8*** -4.7*** -4.4*** -4.2*** -2.8**
(-6.74) (-3.96) (-3.28) (-6.05) (-2.22)

Constant (83-92) -6.5*** -18.4*** -18.6***
(-6.45) (-5.44) (-7.70)

SIC2 FE - No Yes - -
Analyst FE - - - No Yes
Controls - Yes Yes Yes Yes
N 33 1,083 1,080 7,256 6,909

Panel B: Focusing on SP500 firms

Year Trend -7.5*** -1.4 -2.5* -5.2*** -3.4**
(-3.60) (-1.13) (-1.80) (-7.94) (-2.07)

Constant (90-92) -7.5*** -11.5*** -9.9***
(-5.67) (-16.23) (-22.22)

SIC2 FE - No Yes - -
Analyst FE - - - No Yes
N 33 803 772 4,533 4,307

Panel C: Analysts with short and long-term forecasts

Year Trend -10.1*** -4.5*** -2.8** -4.9*** -2.7**
(-6.20) (-3.63) (-2.30) (-7.60) (-2.07)

Constant (83-92) -7.3*** -11.7*** -12.1***
(-7.06) (-21.91) (-25.95)

SIC2 FE - No Yes - -
Analyst FE - - - No Yes
N 33 1,083 1,080 7,657 7,290
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Table A7: The Slope of the Term Structure (Cont’d)

Dep. variable: Slope by year Slope by SIC2-year Slope by analyst-year
OLS: (1) (2) (3) (4) (5)

Panel D: Firms with short and long-term forecasts

Year Trend -9.4*** -3.7*** -2.6** -4.4*** -2.5*
(-5.62) (-3.12) (-2.12) (-6.58) (-2.83)

Constant (83-92) -7.8*** -12.3*** -12.5***
(-7.41) (-17.74) (-25.19)

SIC2 FE - No Yes - -
Analyst FE - - - No Yes
N 33 1,050 1,019 7,619 7,252

Panel E: Excluding 80’s

Year Trend -7.6*** -3.8*** -2.4** -4.1*** -2.6*
(-7.20) (-3.90) (-2.38) (-5.20) (-1.96)

Constant (90-92) -8.5*** -12.0*** -12.7***
(-12.60) (-23.33) (-22.23)

SIC2 FE - No Yes - -
Analyst FE - - - No Yes
N 26 959 957 7,430 7,054

Panel F: Using R2 based on interpolated forecasts

Year Trend -8.7*** -4.1*** -3.4*** -5.6*** -4.1***
(-6.17) (-4.60) (-3.59) (-8.07) (-3.04)

Constant (83-92) -5.3*** -9.3*** -8.9***
(-6.30) (-21.47) (-21.42)

SIC2 FE - No Yes - -
Analyst FE - - - No Yes
N 33 1,083 1,080 7,657 7,290
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11 Robustness Table VI

This Appendix discusses the robustness of the results reported in Table VI (Section VI.D).

Table A8 shows that our results are robust to controlling for trading volume and thus for the

effects of news (public and private) that are material enough for generating trading. Table

A9 shows that our results are also robust to focusing on analysts with stable coverage, and

thus that changes in coverage cannot be the main explanation for our findings. Finally, we

verify that focusing on analysts (Table A10) and firms (Table A11) for which both short and

long-term forecasts are available does not affect inferences. Table A10 repeats the analysis

focusing on analysts who have issued at least one forecast with horizon greater than 3 years.

Table A11 does the same, but after we re-calculate R2 using only forecasts about firms for

which at least one forecast with horizon greater than 3 years is available.
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Table A8: Robustness: Controlling for Trading Volume

This table presents OLS estimates of the sensitivity of the informativeness of analysts’ forecasts (R2) to social media data
generated on StockTwits (eq.(18)). The sample includes all available analyst-day-horizon observations between 2005 and 2017.
The dependent variable is R2, which measures the informativeness of the forecasts made by an analyst on a given day for
a given horizon. Data Exposure is a variable capturing the exposure to data generated on StockTwits, measured first by
firm and then averaged across the firms covered by analysts at time t − 1, where t is the date at which we measure forecast
informativeness. Data Exposure is set to zero prior to StockTwits’ introduction in 2009, and normalized by its in-sample
standard deviation. Data Exposure is based on the average number of users that have the firms covered by the analyst in their
watchlist (#Watchlist), or the number of hypothetical messages posted about those firms from t− 30 to t− 1 (#Hypothetical
Messages). h is the forecasting horizon, measured as the number of days between t and the date of actual earnings release,
divided by 365. h∗ is the forecasting horizon centered at 1 (h∗ = h−1) so that the regression coefficient on the baseline variable
Data Exposure can be interpreted as the unconditional effect on R2 at the one-year horizon (rather than zero). Trading volume
is the total number of shares traded from t− 30 to t− 1, measured first by firm and then averaged across the firms covered by
analysts. Other control variables include firms’ cash flow to assets, cash to assets, debt to assets, Tobin’s Q, the log of total
assets, and the log of age, calculated using the last available financials and averaged by analyst at time t− 1. In columns (2),
(3), (5), and (6), analyst and date fixed effects are interacted with h∗. Detailed variable definitions are provided in Appendix
II. t-statistics in parentheses are based on standard errors clustered by forecasted fiscal period. Symbols ***, **, and * denote
statistical significance at the 1%, 5%, and 10% level, respectively.

Dep. variable: Forecast informativeness (R2)

Data Exposure: #Watchlist #Hypothetical Messages
OLS: (1) (2) (3) (4) (5) (6)

h∗× Data Exposure -1.09*** -0.86*** -1.00*** -1.01*** -1.06*** -1.13***
(-3.23) (-3.17) (-3.74) (-3.88) (-4.84) (-5.32)

Data Exposure 0.16 -0.17 -0.3 0.38* -0.14 -0.25
(0.66) (-0.68) (-1.15) (1.62) (-0.62) (-1.03)

h∗× Trading Volume 1.13*** 0.62*** 0.57*** 1.18*** 0.71*** 0.66***
(6.56) (3.28) (2.67) (6.82) (3.76) (3.17)

Trading Volume -0.4 -0.12 -1.23*** -0.43 -0.12 -1.23***
(-1.29) (-0.49) (-3.80) (-1.39) (-0.48) (-3.83)

h∗ -17.62*** -17.59***
(-31.69) (-30.94)

Analyst FE Yes Yes
Date FE Yes Yes
Analyst FE (interacted) Yes Yes Yes Yes
Date FE (interacted) Yes Yes Yes Yes
Controls Yes Yes
N 30,959,276 30,105,551 27,860,424 30,959,276 30,105,551 27,860,424
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Table A9: Robustness: Analysts With Stable Coverage

This table presents OLS estimates of the sensitivity of the informativeness of analysts’ forecasts (R2) to social media data
generated on StockTwits (eq.(18)). The sample includes analyst-day-horizon observations between 2005 and 2017 for analysts
with stable coverage only. Coverage is stable if the level of similarity between the portfolio of firms covered in the current year
and that of the previous year is greater than 90%. Similarity is defined as the number of common firms between the portfolio
covered in the current year and the one covered the year before, scaled by the square root of the product of the number of
firms in each portfolio. The dependent variable is R2, which measures the informativeness of the forecasts made by an analyst
on a given day for a given horizon. Data Exposure is a variable capturing the exposure to data generated on StockTwits,
measured first by firm and then averaged across the firms covered by analysts at time t − 1, where t is the date at which we
measure forecast informativeness. Data Exposure is set to zero prior to StockTwits’ introduction in 2009, and normalized by
its in-sample standard deviation. Data Exposure is based on the average number of users that have the firms covered by the
analyst in their watchlist (#Watchlist), or the number of hypothetical messages posted about those firms from t− 30 to t− 1
(#Hypothetical Messages). h is the forecasting horizon, measured as the number of days between t and the date of actual
earnings release, divided by 365. h∗ is the forecasting horizon centered at 1 (h∗ = h − 1) so that the regression coefficient on
the baseline variable Data Exposure can be interpreted as the unconditional effect on R2 at the one-year horizon (rather than
zero). In columns (2), (3), (5), and (6), analyst and date fixed effects are interacted with h∗. Control variables include firms’
cash flow to assets, cash to assets, debt to assets, Tobin’s Q, the log of total assets, and the log of age, calculated using the last
available financials and averaged by analyst at time t− 1. Detailed variable definitions are provided in Appendix II. t-statistics
in parentheses are based on standard errors clustered by forecasted fiscal period. Symbols ***, **, and * denote statistical
significance at the 1%, 5%, and 10% level, respectively.

Dep. variable: Forecast informativeness (R2)

Data Exposure: #Watchlist #Hypothetical Messages
OLS: (1) (2) (3) (4) (5) (6)

h∗× Data Exposure -0.46 -0.50** -0.69*** -0.29 -0.71*** -0.85***
(-1.49) (-2.02) (-2.60) (-1.26) (-3.46) (-3.82)

Data Exposure 0.32 0.04 -0.15 0.48* 0.00 -0.16
(1.25) (0.15) (-0.52) (1.68) (0.01) (-0.64)

h∗ -16.35*** -16.34***
(-36.86) (-35.24)

Analyst FE Yes Yes
Date FE Yes Yes
Analyst FE (interacted) Yes Yes Yes Yes
Date FE (interacted) Yes Yes Yes Yes
Controls Yes Yes
N 14,552,288 13,773,488 12,683,367 14,552,288 13,773,488 12,683,367
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Table A10: Robustness: Analysts With Non-Missing Long-Term Forecasts

This table presents OLS estimates of the sensitivity of the informativeness of analysts’ forecasts (R2) to social media data
generated on StockTwits (eq.(18)). The sample includes analyst-day-horizon observations between 2005 and 2017 for analysts
with non-missing long-term forecasts. An analyst has non-missing long-term forecasts if there is at least one non-missing R2

i,t,h

for h ≥ 3 over the sample period (2005-2017). The dependent variable is R2, which measures the informativeness of the forecasts
made by an analyst on a given day for a given horizon. Data Exposure is a variable capturing the exposure to data generated
on StockTwits, measured first by firm and then averaged across the firms covered by analysts at time t− 1, where t is the date
at which we measure forecast informativeness. Data Exposure is set to zero prior to StockTwits’ introduction in 2009, and
normalized by its in-sample standard deviation. Data Exposure is based on the average number of users that have the firms
covered by the analyst in their watchlist (#Watchlist), or the number of hypothetical messages posted about those firms from
t − 30 to t − 1 (#Hypothetical Messages). h is the forecasting horizon, measured as the number of days between t and the
date of actual earnings release, divided by 365. h∗ is the forecasting horizon centered at 1 (h∗ = h− 1) so that the regression
coefficient on the baseline variable Data Exposure can be interpreted as the unconditional effect on R2 at the one-year horizon
(rather than zero). In columns (2), (3), (5), and (6), analyst and date fixed effects are interacted with h∗. Control variables
include firms’ cash flow to assets, cash to assets, debt to assets, Tobin’s Q, the log of total assets, and the log of age, calculated
using the last available financials and averaged by analyst at time t− 1. Detailed variable definitions are provided in Appendix
II. t-statistics in parentheses are based on standard errors clustered by forecasted fiscal period. Symbols ***, **, and * denote
statistical significance at the 1%, 5%, and 10% level, respectively.

Dep. variable: Forecast informativeness (R2)

Data Exposure: #Watchlist #Hypothetical Messages
OLS: (1) (2) (3) (4) (5) (6)

h∗× Data Exposure -1.40*** -1.07*** -1.25*** -1.10*** -1.19*** -1.27***
(-4.17) (-3.34) (-4.13) (-4.59) (-5.96) (-7.42)

Data Exposure -0.12 -0.29 -0.48 0.16 -0.26 -0.39
(-0.54) (-1.00) (-1.49) (0.71) (-1.08) (-1.58)

h∗ -15.33*** -15.24***
(-41.16) (-38.40)

Analyst FE Yes Yes
Date FE Yes Yes
Analyst FE (interacted) Yes Yes Yes Yes
Date FE (interacted) Yes Yes Yes Yes
Controls Yes Yes
N 13,782,999 13,019,477 12,153,633 13,782,999 13,019,477 12,153,633
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Table A11: Robustness: Firms With Non-Missing Long-Term Forecasts

This table presents OLS estimates of the sensitivity of the informativeness of analysts’ forecasts (R2) to social media data
generated on StockTwits (eq.(18)). The sample includes analyst-day-horizon observations between 2005 and 2017 for analysts
covering firms with non-missing long-term forecasts. A firm has non-missing long-term forecasts if it has at least one non-missing
forecast for h ≥ 3 over the sample period (2005-2017). The dependent variable is R2, which measures the informativeness of the
forecasts made by an analyst on a given day for a given horizon. Data Exposure is a variable capturing the exposure to data
generated on StockTwits, measured first by firm and then averaged across the firms covered by analysts at time t − 1, where
t is the date at which we measure forecast informativeness. Data Exposure is set to zero prior to StockTwits’ introduction in
2009, and normalized by its in-sample standard deviation. Data Exposure is based on the average number of users that have
the firms covered by the analyst in their watchlist, or the number of hypothetical messages posted about those firms from t−30
to t−1. h is the forecasting horizon, measured as the number of days between t and the date of actual earnings release, divided
by 365. h∗ is the forecasting horizon centered at 1 (h∗ = h− 1) so that the regression coefficient on the baseline variable Data
Exposure can be interpreted as the unconditional effect on R2 at the one-year horizon (rather than zero). In columns (2), (3),
(5), and (6), analyst and date fixed effects are interacted with h∗. Control variables include firms’ cash flow to assets, cash to
assets, debt to assets, Tobin’s Q, the log of total assets, and the log of age, calculated using the last available financials and
averaged by analyst at time t−1. Detailed variable definitions are provided in Appendix II. t-statistics in parentheses are based
on standard errors clustered by forecasted fiscal period. Symbols ***, **, and * denote statistical significance at the 1%, 5%,
and 10% level, respectively.

Dep. variable: Forecast informativeness (R2)

Data Exposure: #Watchlist #Hypothetical Messages
OLS: (1) (2) (3) (4) (5) (6)

h∗× Data Exposure -0.86*** -0.78*** -0.96*** -0.69*** -0.94*** -1.05***
(-2.59) (-3.06) (-3.72) (-2.75) (-4.54) (-5.03)

Data Exposure 0.13 -0.17 -0.35 0.34 -0.14 -0.32
(0.50) (-0.64) (-1.29) (1.42) (-0.57) (-1.30)

h∗ -16.66*** -16.62***
(-33.85) (-32.13)

Analyst FE Yes Yes
Date FE Yes Yes
Analyst FE (interacted) Yes Yes Yes Yes
Date FE (interacted) Yes Yes Yes Yes
Controls Yes Yes
N 30,959,281 30,105,556 27,860,429 30,959,281 30,105,556 27,860,429
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12 Alternative Data: Definition and Classification

Alternative data refers to any data containing relevant information about the value of firms

that is not directly disclosed by them. These data sources can be broadly classified into three

categories depending on whether they are produced by individuals (e.g. social media posts),

generated through business processes / new technologies (e.g., credit card data or app data),

or produced by sensors (e.g., satellite). This classification follows that of J.P.Morgan (Source:

2019 Handbook of Alternative Data, J.P.Morgan (Oct. 25, 2019)). It is summarized in their

Figure 1 (“Classification of big/alternative data sources”) on page 6, which we reproduce

below.

Data generated by individuals include data from social media (e.g., Twitter, StockTwits,

Facebook), from business-reviewing websites (e.g., Yelp) and E-commerce groups (e.g., Ama-

zon), as well as web searches data (e.g., Google Search trends). Most of these data come

in a text format. Data generated by business processes / new technologies include credit

card data, supermarket scanner data, supply chain data, and app data, among others. Data

generated by sensors typically include satellite imagines and geolocation data in general, as

well as weather, natural disasters and pollution data.
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13 Example of Analysts Using Social Media Data
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