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Abstract

Modern machine learning approaches to classification, including AdaBoost, sup-
port vector machines, and deep neural networks, utilize the surrogate-loss techniques
to circumvent computational complexity in minimizing the empirical classification
risk. These techniques are useful also for causal policy learning problems as estima-
tion of individualized treatment rules can be cast as weighted classification. Con-
sistency of these surrogate-loss approaches studied in Zhang (2004) and Bartlett
et al. (2006) crucially relies on the assumption of correct specification, meaning that
the specified class of policies contains a first-best. This assumption is, however,
less credible when the class of policies is constrained by interpretability or fair-
ness, leaving applicability of the surrogate-loss based algorithms unknown in such
second-best scenarios. This paper analyzes consistency of the surrogate-loss proce-
dures under a constrained set of policies without assuming correct specification. We
show that the hinge losses (i.e., `1-support vector machines) are the only surrogate
losses that preserve consistency in the second-best scenarios. We illustrate impli-
cations and uses of our theoretical results in monotone classification by proposing
computational attractive procedures that are robust to misspecification.
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