
Asset Price Booms and Macroeconomic Policy:

a Risk-Shifting Approach�

Franklin Allen

Imperial College London

Gadi Barlevy

Federal Reserve Bank of Chicago

Douglas Gale

New York University

December 3, 2020

Abstract

This paper uses a risk-shifting model to analyze policy responses to asset price booms. We show

risk shifting leads to ine¢ cient asset and credit booms in which asset prices can exceed fundamentals.

However, the ine¢ ciencies associated with risk shifting arise independently of whether the asset is a

bubble. Given evidence of risk-shifting, policymakers may not need to determine if assets are bubbles to

justify intervention. We then show that some of the main candidate interventions against asset booms

have ambiguous welfare implications: Tighter monetary policy can mitigate some ine¢ ciencies but at a

cost, while leverage restrictions may raise asset prices and lead to more leveraged speculation rather than

less. Policy responses are more e¤ective when they disproportionately discourage riskier investments.
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Introduction

Policymakers have long debated how to respond to asset booms and potential bubbles, i.e. situations where

asset prices surge to levels that seem to exceed the value of dividends these assets are expected to yield. One

view, summarized in Bernanke and Gertler (1999) and Gilchrist and Leahy (2002), holds that policymakers

should hold o¤ in these cases, acting only if asset prices collapse and drag down economic activity. An

alternative view, summarized in Borio and Lowe (2002) and reinforced in later work by Jorda, Schularick,

and Taylor (2015) and Mian, Su�, and Verner (2017), argues these asset booms are likely to end in dire

�nancial crises and recessions, especially when they coincide with credit booms. By intervening to dampen

asset prices during booms, they reason, policymakers might mitigate the eventual crash.

The severity of the Global Financial Crisis in 2007 and the di¢ culty central banks faced in providing

stimulus in its wake led many policymakers to lean toward a more proactive response to asset booms. This

shifted the debate from whether to intervene to how to intervene. The leading proposals for intervention

include monetary tightening and macroprudential regulation. Yet both approaches have also been criticized.

For example, Svensson (2017) argues the costs of monetary tightening during asset booms exceed its bene�ts.

In the opposite direction, Stein (2013) argues that even if regulatory policy could work in principle, in

practice it is likely to be circumvented through clever �nancial engineering.

This paper revisits the question of how policy should respond to asset booms. It does so through the

lens of a risk-shifting model, one in which the lenders who ultimately �nance asset purchases cannot gauge

the default risk they face from any individual borrower. We focus on risk shifting because asset booms

often feature extensive lending against assets that are hard for lenders to evaluate, either because these

assets are tied to new and imperfectly understood technologies (dot-com, tranched securities, blockchain)

or because they are valued idiosyncratically, like housing, making it hard to distinguish committed buyers

from speculators who will walk away if prices fall.1 To be sure, there is a vast literature on asset booms

and bubbles that abstracts from risk shifting, so this feature is not essential for booms or bubbles to arise.

However, as we elaborate in the Conclusion, risk-shifting can naturally emerge in these alternative models.

Our analysis should thus be viewed as complementary to alternative models of bubbles, not as a substitute.

The idea of risk shifting goes back at least to Jensen and Meckling (1976) and Myers (1977), and has

become central to a large literature in �nance. Some of the papers in this literature have proposed private

solutions to the risk-shifting problem, including warrants as in Green (1984), managerial compensation as

in John and John (1993), and unlimited liability as in Saunders and Wilson (1995). We consider the case

where contracting frictions make these private solutions infeasible, raising the question of whether policy

interventions such as monetary policy, credit limits, and leverage restrictions can help when alternative

private remedies are unavailable. In using risk-shifting models to study macroeconomic phenomena such as

1While we describe situations where limited information is an exogenous feature of an asset, Asriyan, Laeven, and Martin

(2018) argue asset booms can reduce the incentive to screen borrowers, so information about assets deteriorates endogenously.
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asset booms rather than the decisions of individual �rms, we follow Aikman, Haldane, and Nelson (2015)

and Martinez-Miera and Repullo (2017) who use these models to analyze credit booms and banking crises.

Our model builds on existing work on risk-shifting and asset pricing. Allen and Gorton (1993) were

the �rst to show that risk-shifting allows asset prices to exceed fundamentals, an idea further developed in

Allen and Gale (2000), Barlevy (2014), Dow and Han (2015), Dubecq, Mojon, and Ragot (2015), and Bengui

and Phan (2018). We contribute to this literature in two ways. First, we use a general equilibrium setup

that can incorporate policy interventions absent in previous work. Second, we introduce costly default,

allowing us to capture a fall in output when an asset boom ends. Hoggarth, Reis, and Saporta (2002) and

Reinhart and Rogo¤ (2009) estimate that asset price crashes are associated with a fall in GDP per capita

of 9-16%; Atkinson, Luttrell, and Rosenblum (2013) estimate even larger cumulative losses for the US in

the recent crisis. Economists have identi�ed various reasons for why output falls when asset prices collapse.

For example, �nancial intermediaries who lent against assets may not be able to �nance new investments

when they face an overhang of debt against those assets. Alternatively, indebted households may delever

when the assets they borrowed to buy fall in price, and with nominal price rigidity such deleveraging

can reduce aggregate demand and output.2 Default costs similarly leave agents poorer when asset prices

collapse, although this is because lenders must use resources to recover their obligations. Allowing for such

a contraction, even in this stylized way, has important implications for policy.

At the heart of our model is an information asymmetry in which borrowers know the risks of their

investments better than lenders. This encourages them to borrow and gamble on risky assets, knowing

lenders will bear the losses and default costs if the gamble fails. As speculators buy up assets, they drive

up asset prices and drive down the expected return on assets. Our model gives rise to equilibria that are

broadly consistent with historical asset booms: Asset prices appear excessive and can grow exponentially,

the asset boom is accompanied by a credit boom, borrowing to buy risky assets is relatively cheap, and

realized returns on assets during the boom are high. Finally, the boom can feature a bubble in the sense

that asset prices exceed fundamentals. But the boom in our model is ine¢ cient even if it does not give rise

to a bubble. The goal of policy is not to push prices toward fundamentals, but to correct distortions that

arise when those who buy assets do not bear the full consequences of their purchases, i.e., the default costs

borne by lenders. In contrast to Bernanke and Gertler (2001) who argue policymakers should not intervene

when they are unsure if they face a bubble or not, in our model policymakers don�t need to know if asset

booms represent bubbles in order to intervene, at least if they have evidence of underlying risk-shifting.

This provides a microfoundation for the Borio and Lowe (2002) view on intervention.

While our model suggests a role for intervention, the main remedies policymakers have focused on have

ambiguous welfare e¤ects and do not fully resolve the underlying ine¢ ciency in the model. This is because

2See Phillipon (2010) on debt overhang and Korinek and Simsek (2016) and Farhi and Werning (2016) on aggregate demand

externalities and deleveraging. Rognlie, Shleifer, and Simsek (2018) suggest another channel involving investment overhang,

whereby a glut of assets during the boom such as housing dampens the production of new assets after the crash. The latter is

tricky to capture in our setup, since we assume assets are either endowed or created at date 0 but not thereafter.
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agents in our model undertake two types of investments, speculation and a safe activity, and policy inter-

ventions a¤ect both rather than just speculation. For example, tighter monetary policy alleviates excessive

leverage but also discourages productive investment. We show this might be mitigated if policymakers

promise to tighten only if the boom continues (and, by implication, ease if it ends) rather than tighten

immediately. Likewise, leverage restrictions can be counterproductive by discouraging safe investments and

shifting resources toward speculation. Unlike with monetary tightening, promising to restrict future leverage

only makes things worse. Our takeaway is that policies for �ghting booms must be carefully designed to

disproportionately deter speculation. While monetary tightening and leverage restrictions can both increase

welfare, the two are not equivalent: Tighter money raises interest rates, while leverage restrictions reduce

demand for credit and lower interest rates. This o¤ers a contrast to recent work by Caballero and Simsek

(2019) that emphasizes the features monetary tightening and leverage restrictions share.

The paper is organized as follows. Section 1 introduces the basic setup assuming assets are riskless. We

build on this framework in Section 2 to study risky assets, and show these give rise to asset booms and, in

some cases, bubbles. Section 3 shows that the equilibrium of our model is constrained ine¢ cient. Section

4 considers monetary policy and Section 5 considers leverage restrictions. Section 6 concludes.

1 Credit, Production, and Assets

Our analysis requires credit, production, and assets. We begin with the simple case where the asset is

riskless. We build on this setup in Section 2 to allow for risky assets, which leads to credit and asset booms.

Consider an overlapping generations economy where agents live for two periods and only value consump-

tion when old. That is, agents born at date t value consumption ct and ct+1 at dates t and t+ 1 at

u (ct; ct+1) = ct+1 (1)

There is a cohort of old agents at date 0 who wish to consume that period. New cohorts of agents arrive

at each date t = 0; 1; 2; ::. Any new cohort consists of two types. The �rst, whom we call savers, are

endowed with a total of e units of the good while young. They cannot produce or store goods. Given their

preferences, they goal is to convert the endowment e when young into consumption when old. The second

type, whom we call entrepreneurs, can convert a unit of the good at date t into 1 + y units of the good at

date t+ 1 where y > 0, but only up to a �nite capacity of one unit of input. Each entrepreneur is endowed

with w < 1 goods while young. As this is below their productive capacity, there is scope for savers to fund

the intertemporal production of entrepreneurs.

In principle, w and y can vary across entrepreneurs. For most of the analysis, we assume w = 0 for

all entrepreneurs. They must therefore borrow all of their inputs. As will become clear in Section 5

when we allow for w > 0, allowing entrepreneurs to have wealth greatly complicates the analysis without
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changing the qualitative results. We do assume y varies across entrepreneurs. Let n (y) denote the density

of entrepreneurs with productivity y. We assume n (y) > 0 for all 0 < y <1 and

e <

Z 1

0

n (y) dy <1 (2)

Condition (2) implies entrepreneurs collectively require more inputs than savers are endowed with.

Finally, the old at date 0 are endowed with a mass 1 of assets. Assets yield a constant real dividend d > 0

per period. In the next section we consider the more interesting case where the dividend is stochastic.

Each period, savers can use their endowment e to buy assets and to fund production, either of which will

allow them to consume when old. We assume trade between savers and entrepreneurs is subject to several

frictions. At this point, with deterministic dividends, these frictions are largely irrelevant. They will matter

once we allow stochastic dividends in Section 2.

1. Transaction Costs: Any agent who reaches out to savers to secure �nancing incurs a �xed utility
cost �, where we let �! 0.

2. Information Frictions: Savers cannot monitor if the agents they fund buy assets or produce. They
also cannot observe any wealth the agent has that is not associated with the project the lender �nances.

3. Contracting Frictions: Trade is restricted to non-contingent debt contracts, i.e., for each unit of
funding agents receive at date t they must pay a �xed amount 1 +Rt at date t+ 1.

4. Default Costs: If borrowers fail to pay their obligation, lenders can collect any proceeds from the

project borrowers invested in, but the seizure wastes � resources per unit invested in the project.

A positive transaction cost � ensures agents will not borrow for ventures that will lead them to default

with certainty. We take the limit as �! 0 to avoid keeping track of this cost. This cost eliminates equilibria

in which agents borrow for strictly unpro�table purposes out of sheer indi¤erence.

The information frictions we assume imply that savers cannot prevent their borrowers from buying assets

instead of producing. This will not be an issue with deterministic dividends given transaction costs make

buying assets unpro�table in equilibrium. When we allow for stochastic dividends in the next section,

though, some borrowers will choose to buy assets. While buying assets and production are distinct activities

in our model, we view this as a metaphor for situations in which borrowers buy assets for di¤erent purposes

and lenders cannot tell the risk they face from any given borrower. For example, with new technologies,

lenders cannot distinguish workable applications of new assets from speculative ventures. Likewise, mortgage

lenders cannot distinguish illiquid agents who value homeownership and earn a surplus from borrowing, much

as entrepreneurs in our model earn 1+y, and speculators who buy houses intending to default if prices fell.3

3Of course, the surplus for agents who value homeownership is not a constant and depends on the current price of housing.

For an example of a proper risk-shifting model of housing, see Barlevy and Fisher (forthcoming).
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Assuming wealth is unobservable implies borrowers face limited liability, since lenders can only go after

the resources they know about. Essentially, agents are restricted to non-recourse loans, or, alternatively,

borrowers can resort to shell entities to limit their liability to the returns on the project they borrow for.

The contracting frictions we assume are motivated by the empirical prevalence of non-contingent debt.

However, this restriction on contracts plays an important role in preventing savers from screening borrowers

who intend to speculate. When we allow for stochastic dividends in the next section, savers could discourage

speculation by stipulating a higher repayment when the return on the asset is high and a lower one when

the return is low. Imposing noncontingent debt rules out such arrangements. While we do not model the

friction on contracting, we implicitly view it as a high cost to a third party of verifying contingencies.

Finally, our assumption that default costs are proportional to the scale of the project captures the idea

that auditing a borrower requires inspecting their entire project. Although we model these as recovery costs,

we view them as a stand-in for various mechanisms that lead output to fall when asset prices collapse.

An equilibrium in our economy consists of paths for asset prices fptg1t=0 and interest rates on loans
fRtg1t=0 that ensure asset and credit markets clear when agents optimize. To simplify the exposition,

suppose pt and Rt are deterministic. We con�rm in Appendix A there are no equilibria where prices are

stochastic. To solve for an equilibrium, we need supply and demand for assets and credit. These are easily

characterized. Agents in their last period of life neither supply nor demand credit. They do own all assets,

though, and will sell them if the asset price pt > 0. Young savers are the only ones who can lend. They

compare the return to lending 1 + Rt with the return to the asset 1 + rt � d+pt+1
pt

and invest in whatever

o¤ers the highest return. Young entrepreneurs choose whether to borrow to produce, and all young agents

choose whether to borrow to buy assets. Agents will borrow for any activity they expect to pro�t from.

Entrepreneurs �nd it pro�table to borrow to produce i¤ their productivity exceeds the cost of borrowing,

i.e. i¤ y � Rt + �. In the limit as �! 0 entrepreneurs will borrow to produce i¤ y � Rt.

Savers use their endowment to either buy assets or make loans. Their borrowers in turn either produce or

buy assets. Hence, the endowment is ultimately used either to �nance production or buy assets, implyingZ 1

Rt

n (y) dy + pt = e (3)

Since we assume n (y) > 0 for all y � 0, there is a unique interest rate Rt = � (pt) that satis�es (3) for any

asset price pt, where � (pt) is increasing in pt. Intuitively, a higher pt reduces the amount of goods available

for productive investment, so the interest rate on loans Rt must rise to lower demand from entrepreneurs.

Next, we argue the equilibrium interest rate 1 +Rt will equal the return on the asset 1 + rt � d+pt+1
pt

. If

Rt < rt, agents can earn pro�ts by borrowing to buy assets at a large enough scale to cover the �xed cost

�. Demand for borrowing would then be in�nite, yet the supply of credit is at most e, so the credit market

would fail to clear. If Rt > rt, savers earn more from lending than from buying the asset. They would thus

not buy the asset. Nor would anyone borrow to buy the asset. But the old would want to sell their assets,
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since the equilibrium price pt of a dividend-paying asset must be positive. Hence, the asset market would

not clear if Rt > rt. For both credit and asset markets to clear, we must have

1 +Rt = 1 + rt =
d+ pt+1

pt
(4)

Note that (4) holds regardless of �. When � > 0, no agent would borrow to buy assets that o¤er the same

return as the interest rates on loans given the transaction costs involved. Taking the limit as �! 0 selects

the equilibrium where agents only borrow to produce. Substituting (3) into (4) implies

pt+1 = (1 + � (pt)) pt � d

�  (pt) (5)

where  0 (pt) > 1,  (0) = �d < 0, and limp!e  (p) = 1. The graph of  (p) is illustrated in Figure 1
together with the 45o line. The two intersect at the unique value pd for which pd =  

�
pd
�
. For any initial

condition, the law of motion pt+1 =  (pt) de�nes a unique path of asset prices. For any initial condition

other than p0 = pd, the path will reach in �nite time a value that is either negative or exceeds e, neither

of which can be an equilibrium. Hence, the unique equilibrium is one where the economy is at its steady

state, i.e., pt = pd and Rt = �
�
pd
�
� Rd for all t. Substituting pt = pt+1 = pd in (5) implies

d = �
�
pd
�
pd

The right hand side is increasing in pd. It follows that the equilibrium price pd is increasing in d. Graphically,

a larger d will shift the curve pt+1 =  (pt) in Figure 1 down, and so the steady state pd will rise.

In Appendix A, we con�rm there is no equilibrium with stochastic prices, implying the following:

Proposition 1 When dt = d for all t, in the limit as � ! 0, the unique equilibrium features a constant

price pt = pd and constant interest rate Rt = �(pd) = Rd. Only entrepreneurs with productivity y � Rd

produce, agents only borrow to produce and not to buy assets, and only savers hold assets.

In equilibrium, the return on assets and loans are equal. Denote the common return to both activities

by Rd = �
�
pd
�
. Consider the present value of dividends discounted at this return. This is given by

ft �
1X
j=1

�
1

1+Rd

�j
d = d=Rd = pd

The value of dividends discounted at the return agents earn on their savings coincides with the price of the

asset. When dt = d for all t, the asset will not be associated with a bubble. In short, when the asset is

riskless, agents only borrow to produce and assets are properly priced. This will o¤er a contrast to what

happens in the next section when we assume dividends are stochastic

Remark 1: While we assume a single asset, we can easily allow multiple riskless assets. Suppose there
were J assets indexed j = 1; :::; J , each with �xed supply of 1 but with di¤erent �xed dividends dj . Let pjt
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denote the price of the j-th asset at date t. De�ne d �
PJ

j=1 dj as the total dividends from all J assets and

pt �
PJ

j=1 pjt as the combined value of all J assets. Resources that don�t �nance production will be used

to buy assets, so (3) continues to hold. In addition, the return on each asset 1 + rjt � dj+pj;t+1
pjt

must equal

the interest rate on loans 1+Rt. Combining these equalities implies (4). Hence, the equilibrium conditions

that govern pt and Rt are the same as in the one asset case, but pt now represents the total value of all

assets, each of which o¤ers the same return Rt. �

Remark 2: With some changes, we can also allow the set of assets to grow over time. This will become
more relevant in the next section when booms are possible and can be triggered by the arrival of new assets.

Suppose each period�s old receive an endowment of new assets of size 1. Assets start paying dividends one

period after arrival. For aggregate dividends to remain constant, dividends on existing assets must decay

over time. Let dst denote the dividend at date t on assets that arrived at date s, and suppose

dst =

(
(1� �)t�1 d if s = 0

(1� �)t�(s+1) �d if s = 1; 2; 3; :::
for t � s+ 1

where � 2 (0; 1). The initial dividend on new assets is �d, and the dividend on any asset decays exponentially
towards 0. The dividends are set to ensure total dividends

Pt�1
s=0 dst each period sum to d. Let pst denote

the date-t price of the asset that arrived by date s, and set pt =
Pt

s=0 pst as the total value of all assets that

exist at date t. The market clearing condition (3) still holds. The return on each asset 1+rst � ds;t+1+ps;t+1
pst

will equal the interest rate on loans 1 + Rt. Aggregating over all assets at date t and remembering to

subtract new assets at date t+ 1 from pt+1 yields the following alternative to (4):

1 +Rt =
d+ (pt+1 � pt+1;t+1)

pt

The equilibrium value of all assets pt will be constant and equal to d
Rd+�

, where Rd denotes the equilibrium

interest rate on loans. The price of any individual asset equals pst =
ds;t+1
d pt =

ds;t+1
Rd+�

. �

2 Risky Assets, Credit Booms, and Bubbles

We now turn to the case where dividends are stochastic. For this, we return to assuming there is a single

asset. Let the dividend on this asset follow a regime-switching process such that the dividend dt starts at

D > d when t = 0 and then switches to d with a constant probability � 2 (0; 1) each period if it has yet to
switch. Once the dividend falls to d, it will remain equal to d forever.

An equilibrium still consists of paths for asset prices fptg1t=0 and loan rates fRtg
1
t=0 that ensure asset

and credit markets clear at all dates t and for both values of dt. But since agents might now borrow both

to buy assets and to produce, we also need to track the share of lending used to buy assets, f�tg1t=0.

In what follows, it will be convenient to distinguish for each date t whether dt still equals D or switched

to d. If dt = D, agents will be unsure about the dividend at date t+1. If dt = d, agents know the asset will
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pay a dividend of d at date t + 1. Let
�
pDt ; R

D
t ; �

D
t

�
denote equilibrium values if dt = D and

�
pdt ; R

d
t ; �

d
t

�
denote equilibrium values if dt = d. Once dividends fall, the equilibrium will be as in Section 1, with

pdt = pd, Rdt = Rd, and �dt = 0 for all t. We only need to solve for
�
(pDt ; R

D
t ; �

D
t )
	1
t=0
.

To solve for these values, observe that the endowment e is still used either to fund production or buy

assets, so condition (3) still holds. We now look for an analog to condition (4). In Appendix A, we show

that if dt = D, the return dt+1+pt+1
pDt

will be higher if dt+1 = D than if dt+1 = d, i.e. if the dividend remains

high. We now argue that the interest rate on loans 1 +RDt equals this maximal return on the asset, i.e.,

1 +RDt =
pDt+1+D

pDt
(6)

Suppose instead that 1+RDt <
pDt+1+D

pDt
. Agents would earn positive pro�ts if they borrowed to buy the asset

and it turned out dt+1 = D and nonnegative pro�ts if dt+1 = d given they can always default. Demand to

borrow would then be in�nite, but supply is �nite. The credit market would fail to clear. Next, suppose

1 + RDt >
pDt+1+D

pDt
. In this case, no agent would borrow to buy the asset knowing they would default. The

only agents who borrow are entrepreneurs with productivity y > RDt , and they repay for sure. The return

to lending is then 1+RDt , which exceeds the highest return on the asset. Savers should then prefer lending

to buying the asset. But then the asset market wouldn�t clear given nobody buys assets yet the old want

to sell their holdings. For both the asset and credit market to clear, we need 1 +RDt =
pDt+1+D

pDt
.

Condition (6) is identical to the equilibrium condition for an asset that o¤ers a constant dividend dt = D

for all t. From the previous section, we know there is a unique path
�
pDt ; R

D
t

	1
t=0

that satis�es both this

condition and (3). The equilibrium price pDt is thus constant and equal to p
D, where pD solves

�
�
pD
�
pD = D

The interest rate on loans RDt is given by �
�
pD
�
� RD. The asset thus trades as if dt+1 = D with certainty,

even though dt+1 may equal d < D with probability � that can be arbitrarily close to 1.

The reason the asset is priced this way is as follows. Lenders cannot monitor borrowers, nor can they

use contingent contracts to screen out speculators. This allows agents to blend in with entrepreneurs and

borrow to buy risky assets. Since borrowers can default and shift any losses to creditors if the asset return

is low, they only care about the maximal return on the asset. They will drive the price of the asset to the

price consistent with the maximal dividend D, even if this realization is unlikely. We discuss below whether

this implies the asset is a bubble in the sense that its price exceeds its fundamental value.

The only part we still need to solve is the share of lending used to buy assets,
�
�Dt
	1
t=0
. We leave the

derivation to Appendix A and brie�y summarize the results. As we show in Figure 2, the value of �Dt
depends on the size of the default cost �. There exists a �� > 0 such that if � � ��, only borrowers

buy the asset while savers only lend, implying �Dt = pD

e . Intuitively, when � = 0, lending to a borrower

who buys the asset is equivalent for the lender to buying the asset outright, while lending to a borrower

who produces yields a sure return of 1 + RD equal to the maximal return on the asset. Savers will thus
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strictly prefer lending to buying the asset outright. As � rises, lending becomes less and less pro�table,

until eventually savers turn indi¤erent between lending and buying the asset. In this case, savers buy some

but not all of the asset, and �Dt is below
pD

e but still positive.

To see why �Dt > 0, note that if agents only borrowed to produce, no one would default. Since the

equilibrium interest rate on loans RD equals the maximum return on the asset, lending would be more

pro�table than buying the asset. But then nobody would buy the asset, which cannot be an equilibrium

given the old want to sell all their assets. This logic also helps explain why the equilibrium value of �D

is unique even though agents are indi¤erent about borrowing to speculate. While agents earn zero from

speculation, the amount of speculation in equilibrium must ensure that enough agents are willing to buy all

the assets so the asset market clears, or else that savers are willing to both lend and buy the asset so both

asset and credit markets clear. By contrast, who borrows to speculate in equilibrium is indeterminate. It

could be less productive entrepreneurs with y < RD who don�t produce, but it could equally be savers and

productive entrepreneurs who can hide their wealth. In contrast with the equilibrium in Section 1, lending

now �nances both production and speculation. The equilibrium can be summarized as follows:

Proposition 2 When dt follows a regime-switching process, as �! 0, the unique equilibrium is given by

(pt; Rt) =

( �
pD; RD

�
if dt = D�

pd; Rd
�

if dt = d

The share of lending used to buy assets �t when dt = d equals 0 and when dt = D is given by

�t = �D =

(
pD

e if � � ��
D+pD�d�pd

D+pD�d�pd+�pD if � > ��

and �� �
�
e
pD
� 1
�
D+pD�d�pd

pD
.

Remark 3: In our model, there are no safe assets when dt = D. We can add a technology with return

rf to mimic a safe real asset. If rf is below the expected equilibrium return on lending, the safe technology

would go unused. If rf exceeded the expected return to lending, savers would shift from lending to the

technology, depressing the price of the risky asset pD and increasing the expected return on loans. This

mirrors what we �nd in Section 4 when we allow agents to make deposits with a central bank: If the central

bank o¤ered to pay a higher rate on (safe) deposits, the asset price pD would fall. The fact that the boom

occurs in the absence of safe assets or when the return to such assets is low is reminiscent of work by Aoki,

Nakajima, and Nikolov (2014), Caballero and Farhi (2017), and Acharya and Dogra (2018) who shows these

same conditions lead to bubbles. But the mechanism is di¤erent. In those papers, bubbles arise when the

safe interest rate falls below the economy�s growth rate. Here, a low rf encourages savers to �search for

yield�and tolerate risky lending, similarly to Martinez-Miera and Repullo (2017). �

We now argue our model captures some key features of the booms documented in Borio and Lowe (2002),

Jorda, Schularick, and Taylor (2015), and Mian, Su�, and Verner (2017). That is, we show the equilibrium
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involves asset and credit booms, may involve bubbles, features high realized returns to savings even as

borrowing is relatively cheap, and the asset boom ends with a crash and costly defaults.

Asset Booms: We begin with asset prices. The equilibrium price pDt while dt = D will be the same

as in an economy in which dividends equal D forever. Recall that pd is increasing in d, so pD > pd. Our

economy thus features an initially high asset price that eventually collapses.

Actual asset booms, however, feature rapid asset price growth despite otherwise regular dividends, not

high but ]stable prices sustained by high dividends. We can generate a more realistic-looking boom in our

model if we allowed dividends to rise over the course of the initial regime. Formally, suppose there were

some �nite date T such that dividends would start at d and jump to D only if we remained in the initial

regime until date T , i.e., dt = d for t < T and dt = D for t � T . Once we leave the initial regime, dividends

will equal d forever.4 This speci�cation accords with how new technologies promise eventual rather than

immediate pro�ts, and how rents in boom markets are stable even as house prices surge. If we remained in

the initial regime, the equilibrium from date T on would be as in Proposition 2. Between dates 0 and T ,

the equilibrium path of prices
�
pDt
	T
t=0

would satisfy the law of motion

pDt+1 =
�
1 + �

�
pDt
��
pDt � d �  d

�
pDt
�

with the boundary condition that pDT = pD. We can use Figure 1 to solve for the path consistent with this

boundary condition. Essentially, since pD > pd, the price pDt must start above p
d at date 0 and rise towards

pD at date T . The trajectory for the price pDt conditional on staying in the initial regime is given in Figure

3. The asset price follows an explosive path that grows at an increasing rate even as dividends remain

constant. We can con�rm that the price grows faster than the expected return on savings, so asset price

growth is not due to discounting. Rather, prices grow to compensate agents for the risk of capital losses

should the initial regime end before date T . Our framework can thus generate booms with rising prices

and constant dividends, but this would require us to solve the entire price path fptgTt=0. For analytical
convenience, we will continue to assume dt is constant within each regime.

Our setup also abstracts from how booms start. One might have thought we could start in the low

dividend regime where dt = d and have a boom emerge when we transit stochastically to the regime where

dt = D. But in that case, agents would borrow to buy assets in the initial low regime, gambling that

the high dividend regime would start next period. The asset would trade at pD before we enter the high

dividend regime, and the boom would be present at the beginning. This is reminiscent of the Diba and

Grossman (1987) result that asset bubbles cannot emerge suddenly, but must be present from the very

inception of the asset. Martin and Ventura (2012) show one can get around this result by allowing for the

arrival of new assets that cannot be traded in advance and let bubbles emerge on these new assets. We

could similarly allow for new assets as per Remark 2. Most new assets would pay a predictable dividend

4This setup is reminiscent of Zeira (1999). He assumed dividends grow until a stochastic date. In both his setup and ours,

dividends rise more the longer the initial regime survives.
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that decays over time, but new assets arrive periodically that pay temporarily high dividends.5 With some

modi�cations, then, our model can allow periodic booms. Again, we do not pursue this approach here.

Credit Booms: We now show that the asset boom coincides with a boom in borrowing against assets.

When dt = D, the amount agents borrow to buy assets is given by

�D

1� �D
Z 1

RD

n (y) dy (7)

By contrast, no one borrows to buy assets when dt = d.

Since informational frictions imply that it is hard to distinguish between borrowing to buy assets and

borrowing for productive purposes, arguably the relevant empirical measure is not borrowing against assets

but total borrowing. The total amount agents borrow to buy assets or produce is given by

1

1� �t

Z 1

Rt

n (y) dy

Since �D > 0 = �d, the term 1
1��t is higher during the boom. At the same time, with R

D > Rd, the

integral
R1
Rt
n (y) y is smaller when dt = D than when dt = d. Total lending can therefore rise or fall when

the boom ends. Recall we �nd there a cuto¤ �� such that if � � ��, savers strictly prefer lending. In that
case, total lending will equal e when dt = D but e� pd when dt = d, so total lending is higher in the boom.

When � > ��, total lending is less than e. If lending to entrepreneurs when the boom ends rises by more

than what savers were lending to speculators during the boom, total lending would rise. The asset boom is

thus associated with a boom in lending against assets, and, unless � is large, a boom in total lending.

Asset Bubbles: We next turn to whether the asset and credit boom in our model is associated with a

bubble, in the sense that the asset�s price exceeds the present expected discounted value of its dividends.

Empirical booms are often suspected to be bubbles, even if this is hard if not impossible to verify. But in

the model we can compute the fundamental value of the asset to see if the boom features a bubble.

To properly de�ne the fundamental value of the asset, let us distinguish several rates of return when

dt = D. First is the interest rate on loans RD that borrowers are asked to repay. Recall that 1 + RD is

equal to the maximal return on the asset, i.e.,

1 +RD = 1 + D
pD

(8)

This is not the rate lenders will expect to collect in the boom, since a fraction �D > 0 of lending is used to

buy assets and may result in default. Lenders instead expect to earn 1 +R
D
, de�ned as

1 +R
D
=
�
1� �D�

� �
1 + D

pD

�
+ �D�

�
d+pd

pD
� �

�
(9)

5To ensure the return on assets is riskless outside of booms may require one-o¤ changes in the dividends of existing assets if

the assets that arrive are risky to ensure the return on existing assets is the same as it would be if the new assets were riskless.
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Finally, the expected return to buying the asset is given by

1 + rD =
(1��)(D+pD)+�(d+pd)

pD
(10)

These three returns can be ranked, with RD > R
D � rD. The last inequality follows from the fact that if

the expected return to buying the asset rD exceeded R
D
, agents would prefer to buy assets than lend. But

this is inconsistent with how demand for credit is always positive given the unbounded support for y.

We need to take a stand on which rate to discount dividends when de�ning the fundamental value. If an

agent had a unit of resources, the best she can expect to earn on it is R
D
, since in equilibrium she can do

no better than lending out her unit. This suggests using R
D
as the discount rate. Since the equilibrium is

stationary, the fundamental value of the asset fD satis�es the recursive equation

fD =
(1��)(D+fD)+�(d+pd)

1+ �RD (11)

Equation (11) discounts dividends at rate 1+R
D
, and uses the fact there pd = fd = d=Rd as we showed in

Section 1. Rearranging (11) implies

1 +R
D
=

(1��)(D+fD)+�(d+pd)
fD

(12)

Comparing (12) with (10) shows that pD > fD whenever R
D
> rD and pD = fD whenever R

D
= rD.

Recall that when the cost of default � falls below ��, savers strictly prefer lending to buying the asset,

which means R
D
> rD. When � � ��, savers are indi¤erent between lending and buying the asset, which

implies R
D
= rD. Whether the asset price pD exceeds fundamentals fD thus depends on �. Solving for pD

from (10) and fD in (12) yields an expression for the bubble term bD = pD � fD.

Proposition 3 Let fD denote the value of dividends discounted at the expected return on loans �Rt. Then

the di¤erence between the price of the asset and its fundamental value bD = pD � fD is

bD = ((1� �)D + �
�
d+ pd

�
)

�
1

� + �rD
� 1

� + �RD

�
(13)

The bubble term bD is positive when � < �� but equal to 0 when � � ��.

The fact that the asset is priced as if dt+1 = D with certainty does not on its own imply the price exceeds

fundamentals. Intuitively, bubbles arise in our model when leveraged agents who only care about the upside

potential of the asset pay more for the asset than its expected return. When � is small, only leveraged

agents buy assets. In that case, the price of the asset will exceed fundamentals. When � is large, lending

against the entire stock of assets is too costly, and in equilibrium savers will have to buy some of the assets.

But savers who invest their own funds will refuse to pay more than fundamentals, so a bubble cannot occur.

Since previous work on risk-shifting ignored default costs, it tended to con�ate risk-shifting with bubbles.

Although bubbles only arise when � < ��, there is a sense in which the price of the asset is too high

regardless of �. To see this, note that since RD > R
D � rD, the return RD that the marginal entrepreneur
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can earn exceeds the expected return rD on the asset, regardless of whether R
D
> rD or R

D
= rD. The

asset thus yields a lower return than what the marginal entrepreneur can earn. The asset price is too high

not in the sense that it exceeds the present discounted value of future earnings, but that the return on the

asset is low relative to what the economy could achieve. Comparing price and fundamentals is not the only

sense in which an asset can be viewed as overpriced.

Realized Returns and Interest Rates: We next consider rates of return during the boom. Since
RD > Rd, the realized return on investment, both for those who buy assets and for those who lend, will be

higher while the boom lasts. A boom will appear to be a good time for savers.

But even as realized returns must be higher during the boom, expected returns can be lower. The expected

return to lending is R
D
during the boom and Rd after the boom. The expected return R

D
de�ned in (9)

is a weighted average of 1 + D
pD
and d+pd

pD
� �. Since D=pD = RD > Rd and Rd = d=pd > d=pD, we have

1 + D
pD

> 1 +Rd > d+pd

pD

If the weighted average of 1 + D
pD

and d+pd

pD
gives enough weight to the latter, e.g. if � is close to 1, the

expected return to lending will be below 1 +Rd even before accounting for default costs. Asset booms can

therefore be times of high realized returns but low expected returns.

Although realized returns to savers during the boom are high, there is an important sense in which the

interest rate for borrowing to buy risky assets is low. When lenders cannot distinguish safe and risky

borrowers, the former end up cross-subsidizing the latter. We can formalize this intuition by comparing

the equilibrium in Proposition 2 to a hypothetical full-information benchmark. With complete information,

lenders would charge those who buy assets an interest rate at least as high as the maximum return on

the asset, 1 +D=bpD, where a hat denotes the asset price with full information. At the same time, lenders
would charge entrepreneurs an interest rate equal to the expected return on the asset (1� �)

�
1 +D=bpD�+

�
�
d+ pd

�
=bpD that lenders can earn on their own. If bpD were equal to pD, entrepreneurs would be charged

a lower interest under full information. But then more entrepreneurs would borrow to produce, leaving

fewer resources to spend on the asset. In equilibrium, the asset price bpD must be lower than pD, implying
RD = D

pD
< DbpD

Agents who borrow to buy risky assets are charged less than they would be to buy equally risky assets

under full information. The interest rate RD doesn�t fully re�ect the risk of the assets speculators buy.

Fallout from the Crash: Finally, we turn to how booms end in our model. When the initial regime
ends and dt falls, agents who previously borrowed to buy assets will be forced to default. This imposes a cost

of �pD on lenders. The collapse in asset prices leaves this cohort with fewer resources to consume, above

and beyond the decline in the dividend income they earn. By construction, the fall in available resources

is proportional to the price of assets pD during the boom. A larger boom thus implies a larger loss once
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the boom ends. This is because recovery costs are larger when agents borrow more resources to spend on

assets. As we noted above, we view default costs as a stand-in for other channels in which a fall in asset

prices would lead to lower output, e.g. debt overhang and or deleveraging. In all of these mechanisms, the

decline in output after a crash would also increase in the size of the run-up in asset prices during the boom.

Our model thus replicates key features of the asset booms and busts we see in practice. In the remainder

of the paper, we examine whether there is a reason to intervene against these booms in our model, and

whether the particular interventions policymakers have focused on can in fact improve welfare.

3 Ine¢ ciency of Equilibria

An equilibrium is constrained ine¢ cient if, starting from the equilibrium allocation, a planner facing the

same markets and constraints as private agents can intervene to make some agents better o¤ without

making any agents worse o¤. The relevant constraints in our model are the informational and contractual

restrictions in Section 1. We now show that the equilibrium in Proposition 2 is constrained ine¢ cient.

The intervention we consider involves a quota on total lending. Such a restriction does not require private

information on what borrowers do with the funds they secure. Nor does it violate the restriction on the

type of contracts agents can use. To study the e¤ect of a quota, we need to be more speci�c on how credit

markets operate and allow for the possibility of rationing. We continue to assume that there is a single

interest rate on loans Rt that borrowers and lenders take as given. However, we now assume savers seeking

to lend line up sequentially according to some pre-speci�ed order. If the total amount of lending reaches the

quota, savers who still want to lend will be turned away. These savers can still buy assets, though. Since

there is no quota on how much agents can borrow, either individually or in total, there is no need to specify

the order in which borrowers show up to the market as we do with savers.

Suppose we impose a quota that total lending at date 0 cannot exceed (e�pD), where pD is the equilibrium
price of the asset in Proposition 2. Without a quota at dates t � 1, the equilibrium after date 0 will be the

same as in Proposition 2.

As for date 0, entrepreneurs whose productivity y exceeds the interest rate on loans RD0 at date 0 will

borrow to produce. Any resources not used to �nance production will be used to buy the asset. Hence,

the market clearing condition (3) still holds at date 0. We need an equilibrium condition for RD0 that is

analogous to (6). The interest rate on loans RD0 at date 0 must still be at least as large as the maximal

return on the asset, pD+D
pD0

, to ensure �nite demand for borrowing. In the Appendix, we show 1 + RD0

cannot exceed pD+D
pD0

. The equilibrium interest rate condition is thus identical to (6), implying pD0 = pD

and RD0 = RD just as when there is no quota. However, given savers can lend at most
�
e� pD

�
, the quota

forces savers to spend at least pD on the asset. Since the asset is worth pD in equilibrium, no borrowers

can buy the asset, i.e. �D0 = 0. Even though agents are indi¤erent to speculating, the asset market clears
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only when none of them do so. While the quota restricts total lending rather than not what borrowers do,

only speculation gets crowded out in equilibrium. The amount lent for production remains unchanged.

We can verify this equilibrium is a Pareto improvement. The quota only a¤ects agents alive at date 0.

The old can still sell their assets at price pD and so are una¤ected. Young entrepreneurs face the same

interest rate RD and are also una¤ected. Agents who would have borrowed to buy assets without the quota

would have earned zero, and so are no worse now that none of them speculate. Finally, if � > 0, the total

return for savers is higher given they avoid default costs. We can therefore make all savers better o¤. Savers

may complain about being forced to buy assets when the return to lending RD exceeds the expected return

on the asset. But committing themselves not to lend makes savers better o¤. In the Appendix, we show

that extending the quota of (e � pD) for as long as dt = D leaves pDt and RDt unchanged while forcing

�Dt = 0 for all t, making all cohorts born while dt = D better o¤. This implies the following:

Proposition 4 If � > 0, the equilibrium described in Proposition 2 is constrained ine¢ cient while dt = D.

Intuitively, constrained ine¢ ciency arises because without a quota, there is scope for lenders and specu-

lators to renegotiate and have the lender buy assets directly to avoid default but compensate the speculator

for what she would have earned. This is not feasible without a quota, since paying borrowers not to buy

assets would lead to in�nite demand for credit. A quota lets savers commit to buying assets a priori.6

Our constrained ine¢ ciency result bears some similarity to work by Korinek and Simsek (2016) and Farhi

and Werning (2016) on the bene�ts of macroprudential policy under rigid pricing. In those models, credit

is associated with a negative externality whereby if there is a negative shock, leveraged agents demand

fewer goods, and, given sticky prices, output falls. Restricting lending can therefore increase welfare. Our

setting features rigid contracting rather than prices. Increasing lending worsens the pool of borrowers by

drawing in speculators in addition to entrepreneurs. If there is a negative shock, these agents default. The

output available for agents to consume falls, not because of lower aggregate demand but because resources

are wasted on recovery. Limiting the amount agents can lend again increases welfare.

Since the quota we consider has no e¤ect on prices, it is still the case that the expected return on the

asset is lower than what the marginal entrepreneur can earn. Young savers could consume more if they

could coordinate to redirect some of the resources they spend on assets to be used for production. Since the

old would earn less from selling their assets, this reallocation would not constitute a Pareto improvement, a

point highlighted in Grossman and Yanagawa (1993) in a related model.7 While the high asset price matters

6Allowing for contingent contracts can also eliminate speculation, although this would violate the constraints on private

contracting. If lenders could charge a lower interest rate when dt+1 = d, lending to entrepreneurs and speculators could be

designed to be equally pro�table in equilibrium, and one can show that �D would necessarily equal 0.

7 In a previous version of this paper, we argued that redirecting resources to production could make all agents better o¤ if

assets were produced rather than endowed. Policymakers could then raise welfare by taxing the production of the asset, even if

they can�t observe whether those who buy the asset are leveraged. We omit this extension of the model for the sake of brevity.
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for welfare, the case for intervention in our model stems from eliminating speculation and the externalities it

involves rather than correcting asset prices. The fact that the equilibrium is constrained ine¢ cient for any

� > 0 while bubbles only arise if � < �� further con�rms that whether the asset is a bubble is unrelated

to constrained ine¢ ciency. As long as policymakers know that there is risk-shifting, they do not need to

know if there is an asset bubble to determine whether to intervene.

Although a lending cap is Pareto improving in our model, the policy debate on how to respond to asset

booms has focused on monetary policy and leverage restrictions. In the remainder of the paper, we study

how these interventions a¤ect outcomes and welfare in our model. We will need to modify some of our

simplifying assumptions to study these. But a cap on lending remains Pareto improving even with these

changes, and an asset boom features too much lending given the speculation and default it encourages.

To capture the e¤ects of monetary policy, we need to relax our assumption that each cohort is endowed

with an exogenously �xed supply of goods e. While this assumption is convenient, models of monetary

policy often rely on price rigidities that allow economic activity to expand or contract when the monetary

authority moves. In the next section, we allow the initial income e of savers to be endogenous.

To capture the e¤ect of leverage restrictions, we need to relax our assumption that entrepreneurs have

no initial wealth. When borrowers have no resources, there is no way to restrict leverage other than to cut

o¤ credit altogether. In Section 5, we return to assuming savers are endowed with an exogenous income,

but we assume entrepreneurs also have some initial endowment. Whereas penniless entrepreneurs must

take on in�nite leverage, those with wealth can choose how much leverage to take on. This introduces

a complication we were able to avoid thus far, namely that we need a continuum of markets to span all

possible choices of leverage agents might entertain. By contrast, so far we had all credit intermediated in

a single market. We discuss how to deal with the complication of a continuum of markets and then study

the e¤ect of restrictions on the amount of leverage borrowers can take on.

4 Monetary Policy

This section explores monetary policy. As we noted above, we need to drop our simplifying assumption

that savers are endowed with goods and consider a production economy. Our approach follows Galí (2014),

who also studies monetary policy in an overlapping generations economy with assets. We assume savers are

endowed with labor that can be used to produce goods rather than endowed directly with goods. We then

introduce a monetary authority and monopolistic competition so producers who hire labor set the prices

of their goods. We assume the monetary authority moves after goods producers set their prices but before

they hire labor. This allows the real wage �and consequently output �to respond to monetary policy.

We leave the detailed analysis to Appendix B and sketch the results here. Our assumptions imply

labor supply only depends on the real wage. In the absence of money, the equilibrium real wage will be
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constant over time and independent of the return on savings and hence independent of dt. The reduced-form

representation of our production economy is the same as the endowment economy we studied up to now:

Each cohort of savers has a �xed budget e to allocate between entrepreneurial activity and assets.

Next, we introduce a monetary authority that can announce a nominal interest rate at which it is willing

to borrow and lend. As in Galí (2014), we consider an equilibrium in which money doesn�t circulate. This

requires in�ation to adjust so that the real value of the nominal rate set by the monetary authority equals

the real return agents earn elsewhere, leaving agents indi¤erent to holding money. At the beginning of

each period, producers set the prices of the goods they expect to sell. The monetary authority then sets

a nominal interest rate. Finally, producers hire workers and produce goods. If producers could perfectly

anticipate what the monetary authority will do, the nominal interest rate would have no e¤ect on the real

wage or any other real variable: Producers would set their prices as a markup over the nominal wage they

know will prevail, the real wage would not depend on monetary policy, and neither would earnings e.

If producers cannot perfectly anticipate what the monetary authority will do, producers will set their

price as a markup over the expected nominal wage that will prevail after the monetary authority moves. If

the nominal interest rate this period turns out to be higher (lower) than expected, the nominal and real

wage can be higher (lower) than expected. Essentially, an unanticipated move by the monetary authority

allows a self-ful�lling fall in demand for goods. Lower demand for goods means producers don�t need to

hire as much labor, the real wage falls, and since agents earn less, demand for goods will indeed be lower.

A surprise move by the monetary authority at date 0 can thus change earnings e0, just as an income tax

or subsidy would. Since producers set prices at the beginning of each period, an intervention at date 0 will

not a¤ect real variables beyond date 0: We can therefore deduce the e¤ects of such an intervention using

comparative statics on e0 in our original endowment economy holding et = e at all other dates. The next

proposition, based on our analysis in Appendix B, summarizes these e¤ects.

Proposition 5 An unanticipated monetary contraction that reduces earnings e0 at date 0 leads to a lower
asset price pD0 and a higher real interest rate on loans RD0 at date 0 as compared to no intervention.

A surprise intervention at date 0 will have no impact on real variables beyond date 0, so only the agents

alive at that date are a¤ected. Begin with the young. A contractionary policy induces them to work

less. Since they value leisure, this on its own makes them better o¤. But their utility also depends on

consumption. Suppose � < ��, so absent intervention savers would lend all of their earnings e0 and only

borrowers buy the asset. The expected total consumption of young agents would then beZ 1

RD
0

(1 + y)n (y) dy +
�
(1� �)

�
D + pD1

�
+ �

�
d+ pd1

��
� ��pD0 (14)

The �rst term in (14) represents output produced for date 1 by entrepreneurs. The second term represents

the expected payout on the asset at date 1. The last term represents expected default costs. A contractionary

monetary policy increases RD0 and reduces the amount entrepreneurs produce captured by the �rst term
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in (14). This policy has no e¤ect on the payout on the asset at date 1. Finally, it lowers expected default

costs by reducing spending on assets pD0 .
8 Contractionary policy thus has ambiguous e¤ects on the total

consumption of those born at date 0: With fewer resources they can fund less entrepreneurial activity, but

they also face smaller deadweight losses from default. If � is su¢ ciently large, this cohort will consume

more. Since they also enjoy more leisure, they will be better o¤ with tighter monetary policy.9

While contractionary policy can make the young better o¤ for large �, it will make the old at date 0 worse

o¤ by lowering the price at which they sell their assets. To ensure no agent is worse o¤, we need to transfer

resources from savers to the old. In Appendix B, we con�rm that even though this redistribution further

increases RD0 and decreases pD0 , it will be possible to fully reimburse the old but leave the young better

o¤. Contractionary monetary policy can thus be Pareto improving. However, it is a relatively ine¢ cient

intervention: If the policymaker merely imposed a lump-sum tax on savers and transferred it to the old,

it could still lower pD0 and default costs ��pD0 without distorting labor or depressing the income e0 savers

earn. A cap on lending as in Section 3 would be better still, since it can eliminate all default costs without

depressing either e0 or entrepreneurial activity, eliminating speculation without changing pD0 or R
D
0 .

Our �nding that contractionary monetary policy o¤ers a costly way to improve welfare has parallels in

other papers. Svensson (2017) and Gourio, Kashyap, and Sim (2018) also discuss the costs of monetary

policy. In their models, tighter monetary policy reduces the odds of a �nancial crisis rather than mitigates

the severity of the output decline when the boom ends as in our model. Farhi and Werning (2020) introduce

assets into the model of leverage and rigid prices in Farhi and Werning (2016). They �nd that there may be

scope for tighter monetary policy if the agents who borrow are also overly optimistic about asset returns.

In our model, speculators who create negative externalities are also overly eager to buy assets, not because

of distorted beliefs but because of distorted incentives. Our �nding that monetary policy is an imperfect

substitute for lending restrictions mirrors theirs.

Finally, when � is close to 1 and the boom is likely to end quickly, there may be a better way to use

monetary policy during the boom. Rather than tightening at date 0, suppose the monetary authority

promises to tighten at date 1 if d1 = D and the boom continues. For this, we assume dt is revealed

after producers set their prices at the beginning of date t but before the monetary authority moves. Since

producers at date 1 set prices based on the expected nominal wage, monetary policy is contractionary when

d1 = D only if it is also expansionary when d1 = d. The monetary authority will thus set ed1 > e if d1 = d

and eD1 < e if d1 = D. Per Proposition 5, the fact that eD1 < e will depress pD1 and increase RD1 , and

likewise the fact that ed1 > e increases pd1 and decreases R
d
1. Income e0 will not change, but as we show in

Appendix B, the promise of such future intervention will lower both pD0 and R
D
0 at date 0.

8 In principle, expected default costs might also fall if a contractionary policy induced savers to buy some of the asset

directly. It turns out that in our model, contractionary policy if anything discourages savers from buying assets directly.

9 If � � �� so that absent intervention savers directly buy some of the assets, tighter monetary policy is even more

ambiguous. Although it lowers pD0 , it also increases the share of assets bought by borrowers. This increases expected default

costs. Eventually, though, all assets will be bought by borrowers, and the only e¤ect of policy would be to lower pD0 .
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Proposition 6 A commitment by the monetary authority at date 0 to set ed1 > e > eD1 leads to a lower

asset price pD0 and a lower interest rate on loans R
D
0 at date 0 than would have prevailed absent intervention.

Promising to intervene at date 1 can only a¤ect cohorts who are alive at dates 0 and 1. Consider �rst the

cohort born at date 1. If d1 = D, tightening at date 1 means savers in this cohort enjoy more leisure, earn

a lower income, and expect to incur smaller default costs ��pD1 when they lend. Just as with tightening

at date 0, the e¤ect on this cohort is ambiguous and depends on how higher leisure and lower default costs

compare to lower earnings. If d1 = d, easing at date 1 means this cohort works more, earns more, and, just

as with no easing, incurs no default costs. Given we assume �rms are monopolists and set prices, easing

helps mitigate the monopoly distortion, meaning the marginal gains from higher consumption exceed the

losses from less leisure. When � is close to 1 and the monetary authority will almost surely ease, this cohort

will be better o¤ ex ante. Next, consider the cohort born at t = 0. Their labor supply is una¤ected, while

their consumption is given by (14). Since RD0 is lower, they fund more entrepreneurial activity. Since pD0
is lower, they face lower expected default costs. The expected payout on the asset is ambiguous given the

intervention lowers pD1 and raises pd1. For � close to 1, though, the expected payout will be higher, and

this cohort will be better o¤, including better o¤ than under a contractionary policy at date 0. Finally, the

cohort that is old at date 0 will be worse o¤ given they earn less from selling assets at a lower price pD0 .

But once again we can use a lump-sum tax on the young at date 0 to leave them no worse o¤.10

Essentially, when � is close to 1, policymakers can promise to tighten in an unlikely state of the world.

Such a threat remains useful, since speculation is driven by the maximum return on the asset regardless

of how likely it is. By its nature, this intervention is expansionary in some states and contractionary in

others. But if � is close to 1, these e¤ects of monetary policy are largely anticipated and inconsequential.

The main e¤ect of the threat is to discourage speculation by making it less pro�table.

5 Leverage Restrictions

We now turn to leverage restrictions. This intervention in credit markets is di¤erent from the quota in

Section 3. A quota limits the total amount savers can lend. A leverage restriction imposes no direct limits

on how much savers can lend, and instead forces borrowers to complement the funds they borrow with

their own funds. Given our assumption so far that entrepreneurs have no resources, any requirement that

borrowers provide their own funds would kill all credit. For leverage restrictions to have a non-trivial e¤ect,

entrepreneurs must have some initial wealth. However, this modi�cation introduces complications. When

agents have nothing, they have to be in�nitely levered. If they have wealth, they must choose how much

leverage to take on. This requires multiple markets to accommodate all possible degrees of leverage.

10 If there were a subsidy to correct the underlying monopoly distortion, the cohort born at date 1 would be worse o¤ if

dt = d. However, if � is close to 1, they would not be much worse o¤ given dt is largely anticipated and the stimulus is small.

The cohort born at date 0 would have to compensate the cohort born at date 1, but the compensation would vanish as �

tended to 1. Since contractionary policy at date 0 is always costly, those born at date 0 would prefer delayed intervention.
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Let us brie�y preview our results. Leverage restrictions reduce demand for credit, which lowers interest

rates. This in turn tends to raise asset prices, especially if, as in our model, credit demand among entrepre-

neurs falls, freeing up resources for speculation. Tighter leverage restrictions thus have the opposite e¤ect

on interest rates and asset prices as tighter monetary policy. But, like the cap on lending we considered

in Section 3, leverage restrictions can lower the fraction of assets purchased by borrowers. The e¤ect of

these restrictions on speculation and welfare is ambiguous: Borrowers buy a smaller share of assets, but they

spend more on the assets they buy. Default costs may actually rise, unlike what we saw with a lending cap

or tighter monetary policy. Our results thus o¤er a contrast to Caballero and Simsek (2019), who describe

an economy where leverage restrictions and tighter monetary policy are welfare equivalent.

For tractability, we return to assuming agents are endowed with goods rather than labor. Cohorts still

consist of unproductive savers endowed with e goods and entrepreneurs who can convert goods at date t into

goods at date t+1. Rather than assume entrepreneurs are all endowed with w = 0 and di¤er in productivity

y, we turn to the opposite case where entrepreneurs di¤er in w and share the same productivity y�. We

discuss the case where both w and y vary across entrepreneurs at the end of this section.

We assume the wealth of entrepreneurs w is distributed uniformly. Speci�cally, for each w 2 [0; 1], there
is a constant density 2'e of entrepreneurs with wealth w, where e is the endowment of savers and ' is a

constant such that 0 < ' < 1. The combined endowment of all entrepreneurs is thereforeZ 1

0

w (2'e) dw = 'e

The combined wealth of savers and entrepreneurs is (1 + ') e. To produce at capacity, entrepreneurs needZ 1

0

(1� w) (2'e) dw = 'e

Since ' < 1, entrepreneurs require fewer resources than savers have, in contrast to what we assumed in (2).

We assume the common productivity y� is large enough to exceed the maximal return on the asset. To

establish that this maximal return is �nite, observe that the asset price pt is bounded above by (1 + ') e,

the most each cohort has to spend on the asset, and is bounded below by (1� ') e, the amount of resources
left to spend on the asset if all entrepreneurs produce at capacity. The maximal return on the asset occurs

when dt+1 = D, the price of the asset at date t assumes its lowest value (1� ') e, and the price at t + 1
assumes its maximum value (1 + ') e. We assume 1 + y� exceeds this return, i.e.,

1 + y� >
D + (1 + ') e� (1� ') e

(1� ') e =
D + 2'e

(1� ') e (15)

Assumption (15) ensures the return on production exceeds the return on the asset, so all entrepreneurs will

want to produce at capacity in equilibrium. This allows us to avoid solving for the endogenous fraction of

entrepreneurs funded in each of a continuum of markets, which greatly simpli�es the analysis.

Now that entrepreneurs have wealth, they can fund their investments. Lenders still cannot observe what

borrowers invest in, but they can observe the resources borrowers invest in the same project. E¤ectively,
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we let borrowers set up a shell entity and choose how much of their wealth to endow the entity with. By

helping �nance her investment, a borrower discloses some of her wealth to the lender, which in turn allows

the lender to seize that wealth in case of default. The borrower�s remaining wealth stays hidden.

Formally, borrowers choose the fraction � 2 [0; 1) of their investment to self-�nance. We model this as
a continuum of markets indexed by � 2 [0; 1). An agent who borrows in market � receives 1��

� units for

each unit of her own wealth that she invests. She can thus leverage her endowment of w to �nance an

investment of size w
� . When w > 0, the choice of leverage is non-trivial. By going to a market with a lower

�, an entrepreneur can borrow more and produce at a larger scale. But this will leave their lender with a

smaller cushion to go after in case of default.11 Back when we assumed all entrepreneurs had no wealth,

agents had no choice. They could only borrow in market � = 0 and choose in�nite leverage. This allowed

us to consider only a single market. Now that agents have wealth, we need a market for each � 2 [0; 1) to
accommodate any leverage they might choose, meaning we must allow a continuum of markets.

We now de�ne and solve the equilibrium with a continuum of markets. To anticipate where we are

going, we study an equilibrium where entrepreneurs with wealth w 2 [0; 1] go to market � = w and invest

their entire endowment in production, borrowing 1 � w to attain capacity. Entrepreneurs with di¤erent

wealth thus sort into di¤erent markets. As before, when dt = D, some agents will borrow to buy assets

and speculate. However, they will only borrow in markets with low �. This motivates us to consider

macroprudential regulations that shut down markets where � is below some �oor �.

5.1 Equilibrium with Multiple Markets

An equilibrium in our economy still consists of a path of asset prices fptg1t=0 and a path of interest rates,
but the latter now consists of a path of interest rates fRt (�)g1t=0 for each market � 2 [0; 1). In addition,
let fat (�) and fpt (�) denote the density of borrowing in market � used to buy assets and to produce,

respectively, and ft (�) � fat (�) + fpt (�) denote the density of total borrowing in market �. We can

integrate these densities to obtain the total amounts borrowed in all markets,
R 1
0
fat (�) d� and

R 1
0
fpt (�) d�.

Although we refer to the density of borrowing, we do not require agents to borrow in�nitesimal amounts

in all markets. Indeed, once we introduce leverage restrictions, there will be a market that will attract a

positive mass of borrowers. We discuss how to deal with this formally in Appendix C, but, loosely, such

markets can be viewed as having in�nite borrowing rates. We refer to market � as inactive if ft (�) = 0

and active if ft (�) > 0. The price pt, interest rates Rt (�), and amounts borrowed fat (�) and f
p
t (�) must

ensure markets clear when agents acts optimally, just as with a single credit market.

To determine if lenders are optimizing, we need to know what they expect to earn from lending in any

11A market with smaller � means fewer resources for the lender to seize in case of deafult. But wth fewer assets to review,

default costs �
1�� per unit borrowed are actually smaller for more leveraged buyers. Below we show that having less to seize

is the dominant factor, and in equilibrium more leveraged buyers will have to pay higher interest rates.
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market � 2 [0; 1). Building on our previous notation, let Rt (�) denote the expected return to lending at date
t in market �. If market � is active, we can deduce Rt (�) from the interest rate Rt (�) in market � together

with the amounts fat (�) and f
p
t (�) that agents borrow to buy assets and to produce, respectively. If market

� is inactive, there is nothing to guide lenders on what to expect if they were to lend to a market where no

borrowers show up. Instead, we need to assign an expected return Rt (�) to each inactive market as part

of our de�nition of an equilibrium. In what follows, we �rst look for an equilibrium in which all markets

are active to avoid the question of how to assign Rt (�) in inactive markets. We then discuss equilibria in

which markets can be inactive. This naturally leads into our analysis of regulatory interventions in which

some markets are inactive by decree rather than because of what agents believe.

We begin with the case where dt = d for all t. As in Section 1, we proceed as if equilibrium prices are

deterministic and verify this is the case in Appendix C. In this case there will be no default, and so the

expected return to lending Rt (�) will equal the interest rate on loans Rt (�) in each active market �. The

expected return in all active markets must be the same for lenders to agree to lend in all of these markets,

and so Rt (�) must be the same in all active markets. Moreover, this common interest rate must equal the

return on the asset 1+ rt � d+pt+1
pt

to ensure savers agree both to buy assets and to lend in active markets.

That is, Rt (�) = rt in all active markets �. At these interest rates, borrowing to buy assets is unpro�table

given � > 0. Since (15) ensures y� exceeds rt, all entrepreneurs will want to borrow in order to produce

at capacity. Given Rt (�) is the same for all �, entrepreneurs will be indi¤erent as to which market they

borrow in, as long as they borrow enough to reach capacity. This includes the case where those with wealth

w borrow 1� w in market � = w, an arrangement that ensures all markets are active.

Since all entrepreneurs produce at capacity, they will use 2'e units of input to produce. Any part of the

total wealth (1 + ') e of each cohort not used to produce will be spent on the asset. This implies

pt + 2'e = (1 + ') e (16)

It follows that pt = (1� ') e for all t. The return to buying the asset rt and the interest rate on loans
Rt (�) in all markets � will then be d

(1�')e . This leads to the following analog to our earlier Proposition 1:

Proposition 7 When dt = d for all t, there exists an equilibrium in which all markets are active. In

any such equilibrium, pt = (1 � ')e � pd for all t, Rt(�) = d
(1�')e � Rd for all � 2 [0; 1) and all t, all

entrepreneurs borrow and produce at capacity, no agent borrows to buy assets, and only savers hold assets.

Next, we turn to the case where dt = D at date 0 and permanently switches to d with constant probability

� per period. We again use a superscriptD to refer to an equilibrium object at date t when dt = D. We begin

by solving for equilibrium interest rates. For each active market � where ft (�) > 0, either agents borrow to

buy assets, i.e., fat (�) > 0, or they do not, i.e., f
a
t (�) = 0. In the latter case, there will be no default and

the expected return to lending R
D

t (�) will equal the interest rate on loans R
D
t (�). In equilibrium, R

D

t (�)

must be the same in all active markets for lenders to agree to lend in these markets. Denote this common

expected return by R
D

t . Then R
D
t (�) = R

D

t in any active market � in which f
a
t (�) = 0.

22



Consider next an active market � in which agents do borrow to buy assets, i.e., fat (�) > 0. Agents would

only borrow to buy assets if they intend to default. Borrowing to buy assets and never defaulting cannot

be pro�table, since lenders would not lend at an interest rate below the expected return they could earn

from buying the assets themselves, and for � > 0 this would be unpro�table. The expected payo¤ per unit

invested from borrowing in market � to buy assets and defaulting if dt+1 = d is given by

(1� �)
h
pDt+1+D

pDt
� (1� �)

�
1 +RDt (�)

�i
(17)

For each unit of resources agents invest in buying assets, a fraction � must come from their own wealth.

If they had lent out their own wealth instead, they would have earned (1 + R
D

t )�. We now argue that in

equilibrium, this payo¤ must equal (17). If (1 + R
D

t )� exceeded (17), nobody would borrow to buy assets

in market � given they could earn more from lending, contradicting the fact that fat (�) > 0. Conversely,

if (1 +R
D

t )� were lower than (17), no agent would be willing to lend in any market given they can borrow

in market � to buy assets, again contradicting the fact that fat (�) > 0. Equating the two payo¤s yields an

expression for the interest rate on loans RDt (�) in any active market � in which f
a
t (�) > 0:

1 +RDt (�) =
1

1��

�
pDt+1+D

pDt
�

�
�
1+R

D
t

�
1��

�
(18)

Thus, we have expressions for the interest rate RDt (�) if f
a
t (�) = 0 and if fat (�) > 0, respectively. The

next lemma, derived in Appendix C, shows there exists a cuto¤ �Dt 2 [0; 1) such that Rt (�) is given by
(18) in markets � < �Dt but is equal to R

D

t in markets � � �Dt .

Lemma: If all markets are active, then there exists a cuto¤ �Dt 2 [0; 1) such that

1 +RDt (�) =

8><>:
1

1��

�
pDt+1+D

pDt
�

�
�
1+R

D
t

�
1��

�
if � 2 [0;�Dt )

1 +R
D

t if � 2 [�Dt ; 1)
(19)

Figure 4 plots the schedule of interest rates from (19). In market � = 0, where agents are in�nitely

levered, the interest rate RDt (0) equals the maximal return on the asset,
pDt+1+D

pDt
. This is the same as

in Section 2, where � = 0 was the only possible market. The logic is the same: When agents put no

resources down, they must hand over all returns from the asset to the lender to ensure they earn no pro�ts.

For 0 < � � �Dt , the interest rate Rt (�) decreases with �. We prove this formally in Appendix C, but

intuitively, when the borrower pledges more resources, the lender need not charge as much interest to make

speculation unpro�table. Finally, for � � �Dt the interest rate Rt (�) is constant and equal to R
D

t . Credit

markets thus fall into two distinct groups: In markets with � < �Dt some agents borrow to buy assets and

the interest rate RDt (�) exceeds the expected return R
D

t , while in markets with � � �Dt agents only borrow
to produce and the interest rate RDt (�) is the same as the expected return R

D

t . Intuitively, borrowers

become reluctant to speculate once they have enough skin in the game and invest their own wealth.

Once again, equilibrium interest rates ensure agents cannot pro�t from borrowing to speculate so that

demand to borrow is �nite. As before, this means interest rates depend only on the payo¤ to the borrower
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and not the default costs � lenders incur. One noteworthy di¤erence is that while speculators never earn

a pro�t if they borrow in market � = 0, in markets with � > 0 they invest their own wealth in assets and

must earn strict pro�ts if dt+1 = D to o¤set their losses if dt+1 = d.

Given the equilibrium interest rates schedule (19), we can solve for what entrepreneurs do. Recall that

(15) implies y� exceeds the maximal return on the asset. We just argued RDt (0) is equal to this maximal

return, and that RDt (0) exceeds R
D

t , the expected return to lending. R
D

t is also the most agents can expect

to earn by leveraging their wealth in some market � to buy assets. Entrepreneurs should thus use their

endowment w for production, which yields the highest return. The question is which market � 2 [0; 1] they
should borrow to scale up their production, where � = 1 denotes no borrowing.

Consider an entrepreneur with wealth w > �Dt . If she borrowed in market � = w, she could borrow up

to 1 � w at an interest rate of R
D

t , the lowest available interest rate on loans. If she borrowed in some

market � < w, she could borrow more than 1�w. But there is no bene�t to this extra borrowing given her
capacity. Moreover, the interest rate in this market would be the same or higher than R

D

t . So there is no

advantage to going to markets � < w over going to market � = w. If she borrowed in some market � > w,

she would have to borrow less than 1 � w, and she would face the same interest rate R
D

t . This too o¤ers

no bene�t over going to market � = w. The best this entrepreneur can do is go to market � = w to borrow

1� w, although she could also achieve the same payo¤ going to any market � 2
�
�Dt ; w

�
.

Next, consider an entrepreneur with wealth w � �Dt . If she borrowed in market � = w, she could borrow

up to 1 � w at an interest rate of RDt (w). If she borrowed in some market � < w, she would be able

to borrow more than 1 � w, but she has no use for this extra borrowing. Moreover, the interest rate in

this market would be higher than RDt (w). If she borrowed in some market � > w, she would have to

borrow less than 1 � w. But she would face a lower interest rate. The question is whether it is worth

reducing capacity to obtain a lower rate. Her payo¤ from borrowing in market � 2 [w;�Dt ] would be
w
� [1 + y

� � (1� �) (1 +Rt (�))]. Substituting in from (19), this is equal to

w

�

�
1 + y� � pDt+1+D

pDt
+

�
�
1+R

D
t

�
1��

�
This payo¤ is decreasing in �, so there is no advantage to borrowing in these markets instead of � = w.

Borrowing in any market � 2 (�Dt ; 1) is dominated by borrowing in market � = �Dt , which we already

argued was worse than borrowing in � = w. So borrowing 1� w in market � = w is uniquely optimal.

In any equilibrium where all markets are active, then, entrepreneurs with wealth w 2 [0;�Dt ) will borrow
in market � = w, while those with wealth w � �Dt would borrow in some market between �Dt and w. This
implies fpt (�) = 2'e for � 2 [0;�Dt ) while f

p
t (�) is indeterminate for � 2 [�Dt ; 1). But this indeterminacy

is irrelevant for allocations or welfare, since in any such equilibrium we know agents with wealth w � �Dt
borrow 1�w at an interest rate of 1+RDt . Just as before, we can ensure all markets are active by assuming
entrepreneurs with wealth w � �Dt also borrow 1� w in market � = w.
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We now turn to the equilibrium price pDt . Since resources not used for production are spent on the asset,

pDt + 2'e = (1 + ') e (20)

It follows that pDt = (1� ') e for all t. This is the same price as when dt = d. Although the price is the

same, the expected return to buying the asset when dt = D is higher, with 1 + rD = (1��)D+�d
(1�')e .

As in Section 2, we were able to solve for the equilibrium price pDt and the interest rates RDt (�) for all

markets � without solving for the amounts people borrow to buy assets. We now solve for the amounts

agents borrow to buy assets in each market, fat (�). Recall that the expected return to lending in all active

markets � is given by R
D

t (�) = R
D

t . Let �t (�) � fat (�) =ft (�) denote the fraction of lending in any active

market � that is used to buy assets. With probability 1���t (�), the borrower can a¤ord to pay the lender
back RDt (�) in full. With remaining probability ��t (�) the borrower will be a speculator and dt+1 = d,

leading the borrower to default. In this case, the lender will seize 1
1�� assets per unit borrowed from the

borrower, and incurs a default cost to seize these assets. Since this expected return must equal R
D

t , we have

(1� ��t (�))RDt (�) +
��t (�)

1� �

�
d

(1� ') e � �
�
= R

D

t (21)

Given the value of RDt (�) in (19), we can solve for �t (�). Since f
p
t (�) = 2'e, we can use �t (�) to solve for

fat (�). Since R
D
t (�) > R

D

t for � < �
D
t , we have �t (�) > 0, i.e., some borrowers in these markets speculate.

Earlier we established that agents do not borrow to buy assets in markets � � �Dt . Hence, fat (�) = 0 for
� 2 [�Dt ; 1), and so fat (�) is uniquely determined for all � 2 [0; 1) in any equilibrium in which all markets are
active. We can also say something about who engages in speculation. In Section 2, which agents borrowed

to buy assets was indeterminate. This is still true for market � = 0. But in markets � > 0, borrowers must

invest their own wealth to speculate. Entrepreneurs with w < �Dt invest all of their wealth w in production.

So it must be savers and wealthy entrepreneurs who borrow to buy assets in markets � 2
�
0;�Dt

�
.

We have now solved for the equilibrium price pDt , and, for all �, the interest rate on loans R
D
t (�) and

the rates of borrowing fat (�) and f
p
t (�) to buy assets and to produce. These are all de�ned in terms of the

expected return to saving R
D

t , which we have yet to derive. We leave the details on solving R
D

t to Appendix

C, where we show it is constant over time, i.e. R
D

t = R
D
for all t. Given a value for R

D
, the analog to

Proposition 2 can be summarized as follows:

Proposition 8 There exists an equilibrium in which all markets are active while dt = D. In any such

equilibrium, the asset price is given by

pDt = (1� ')e � pD

and, in the limit as �! 0, the interest rates on loans in di¤erent markets are given by

1 +RDt (�) = max
n
1 + �RD; 1

1��

h
1 + D

pD
� �(1+ �RD)

1��

io
where �RD can be solved separately. The rate of borrowing in market � for production is given by fpt (�) = 2'e

for � 2 [0;�D) and the for buying assets fat (�) is given by (21).
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As in Proposition 2, there must be some agents who borrow to buy assets while dt = D. They do this in

markets with high leverage, although not just in market � = 0 where leverage is in�nite. The high dividend

regime still gives rise to credit booms and, if � isn�t too large, bubbles. Borrowing to buy assets is still

socially wasteful when � > 0, and an intervention that discouraged speculation can be Pareto improving.

So far, we have only considered equilibria in which all markets are active. But for any �, we can always

construct an equilibrium in which market � is inactive by setting the interest rate on loans Rt (�) above y�

to ensure no agent would want to borrow in that market, and the expected return Rt (�) to be arbitrarily

low to ensure no one would want to lend in market �. Such equilibria are essentially coordination failures

where markets that could sustain trade are instead inactive. Inactivity in some markets will generally a¤ect

prices and interest rates in remaining active markets, and so characterizing equilibria with inactive markets

would require us to solve again for interest rates, asset prices, and amounts borrowed. We will not try to

characterize all such equilibria. However, we will now turn to studying interventions that shut down markets

with low �. This is equivalent to studying equilibria in which markets with low � are inactive because of

what agents believe rather than because they were shut down by �at. The reason markets are inactive is

irrelevant for how inactivity a¤ects other markets. Given our interest in the e¤ect of restricting markets

that would otherwise trade, it seems natural to focus on equilibria in which markets are maximally active.

5.2 The E¤ect of Leverage Restrictions

Proposition 8 implies speculators only borrow in markets with low �. A natural way to intervene against

speculation, then, is to shut down all markets � below some �oor �, or, alternatively, to cap the leverage

agents can take on. Agents with wealth w < � can only undertake projects of size at most w=� < 1. We

mostly consider a permanent �oor at all dates, although later we also consider a �oor only while dt = D.

We restrict attention to equilibria in which all markets � � � are active. The equilibria in Proposition 8

is then a special case where � = 0. When � > 0, the same arguments imply interest rates Rt (�) are given

by (19) when dt = D. That is, interest rates RDt (�) given the expected return R
D

t is unchanged. However,

changing � may a¤ect R
D

t . Given (19), entrepreneurs will still prefer to invest all of their wealth w and

borrow 1 � w to produce at full capacity. But entrepreneurs with w < � cannot do so. Since their pro�ts

are decreasing with � for � > w, they will all �ock to market � and produce at scale w=� < 1. The total

inputs entrepreneurs will use to produce is thenZ �

w=0

2'e

�
w

�

�
dw +

Z 1

w=�

(2'e) dw =
'e

�
w2
��

0

+ 2'e (1� �)

= �'e+ (1� �) 2'e

The amount that remains to spend on the asset is (1 + ') e minus the above, which pins down its price:

pDt = (1� ' (1� �)) e (22)
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Increasing � will lead to a higher asset price. Intuitively, leverage restrictions force poor entrepreneurs

to operate at a smaller scale. Since savers want to save a �xed amount e regardless of �, the decline in

production will release resources to buy assets, pushing pDt up. If the �oor � is imposed permanently, we

similarly have pdt = (1� ' (1� �)) e. The expected return on the asset when dt = D will then be

1 + rDt =
(1� �)

�
D + pDt+1

�
+ �

�
d+ pdt+1

�
pDt

= 1 +
(1� �)D + �d
(1� ' (1� �)) e

Increasing � thus reduces the expected return to buying the asset rDt . As for how increasing � a¤ects the

schedule of interest rates Rt (�), this is hard to summarize. But we show in Appendix C that the expected

return to lending R
D
declines with �. Intuitively, increasing � depresses demand for credit, and so should

lower interest rates. Summarizing, a permanent increase in � has the following e¤ects:

Proposition 9 Consider a permanent �oor �. The asset price pDt = (1�'(1��))e increases with �, while
the expected returns on the asset �rD = (1��)D+�d

(1�'(1��))e and the expected return to lending
�RD decrease with �.

Both the leverage restrictions above and the contractionary monetary policy in the previous section

depress entrepreneurial production. Tighter monetary policy does so by reducing the resources e0 agents

can invest, while leverage restrictions force poor entrepreneurs to operate below capacity. As a result, the

two interventions have the opposite e¤ects on asset prices and the return to savings. Nevertheless, both

tighter monetary policy and leverage restrictions can help discourage speculation. Let D denote the share

of assets purchased with leverage rather than directly by savers. Although leverage restrictions increase

the asset price pD, they also tend to reduce the share of assets purchased with debt D. Indeed, setting

� above �D will drive D to 0 given that no agent will borrow to buy assets in markets � � �D. More

generally, expected default costs are equal to ��DpD. Whether increasing � raises the deadweight loss

from default depends on how increasing � a¤ects D and pD, respectively. Our next result shows that under

certain conditions, increasing � will increase pD without changing D. Speci�cally, this will be the case if

the �oor � is already low and � isn�t too large so that D = 1, as well as if � is already high enough to

exceed �D so D = 0. In these cases, raising � will make agents worse o¤. But we also argue there exists

an intermediate value of � for which increasing � will decrease D enough to lower expected default costs

��DpD. Increasing � is thus ambiguous, and can in principle either increase or decrease welfare.

Proposition 10 There exist cuto¤s 0 � �0 < �1 < 1 in [0; 1) such that

1. If � < �0, increasing � leaves D = 1, increases expected default costs �D�pD, and leaves fewer

goods for cohorts to consume from date t = 1 on.

2. If � � �1, D = 0 and there is no default. Increasing � then leaves fewer goods for cohorts to consume
from date t = 1 on.

3. If �0 < � < �1, there exist values of � at which increasing � lowers D and expected default costs

�D�pD. In this case, increasing � while dt = D can be Pareto improving for large �.
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Our model thus shows that leverage restrictions can be counterproductive: They increase the total amount

leveraged speculators spend on the asset as well as expected default costs. Kim and Santomero (1988)

previously argued that leverage restrictions can lead to greater risk-taking. In their model, this was because

such restrictions encourage borrowers to opt for even riskier projects. Our model does not feature a range

of risky projects. Instead, our result stems from the fact in risk-shifting models there must be some

investment activity that cross-subsidizes speculation. If this other investment is particularly sensitive to

leverage restrictions, intervention may end up redirecting resources toward speculation. We anticipate that

the same would be true in risk-shifting models where speculators and less risky investors buy the same

asset. For example, if demand for housing by liquidity constrained home buyers was particularly sensitive

to leverage restrictions while the funds available for mortgage lending is relatively inelastic with respect to

interest rates, leverage restrictions might very well encourage more speculative activity.12

While leverage restrictions have ambiguous welfare e¤ects, in our model a threat to restrict leverage in

the future will unambiguously make things worse today. Recall that tighter monetary policy if dt+1 = D

will lower pDt+1, discouraging speculation at date t. By contrast, raising � at date t + 1 will increase p
D
t+1.

Regardless of how it a¤ects Dt+1, a higher p
D
t+1 encourages speculation at date t. This contrast highlights

how the two interventions a¤ect asset prices and interest rates in opposite ways.

That said, we should be clear that while tighter leverage restrictions generally reduce demand for credit

and lead to lower interest rates, the prediction of our model that this always leads to higher asset prices will

not as naturally generalize. Suppose we let the wealth and productivity of entrepreneurs follow a general

distribution n (w; y). Entrepreneurs with low productivity would act like savers while entrepreneurs with

high productivity would borrow to produce. An increase in � that lowers the return to saving could induce

some entrepreneurs who are on the margin to switch from lending out their wealth to borrowing in order to

produce. If enough entrepreneurs switch from lending to producing, the fall in lending and the increase in

demand for borrowing to produce could leave fewer resources to spend on the asset, and its price will fall.

We con�rm numerically that there exist distributions n (w; y) for which increasing � reduces pDt .
13

While increasing � can in principle dampen asset prices, in our model this will only be possible if there

is risk-shifting. When dt = d and there is no risk shifting, increasing � will raise pdt regardless of the

distribution n (w; y). To see this, recall when dt = d, the interest rate Rdt (�) is the same R
d
t for all �. This

common rate Rdt and the asset price p
d
t satisfy two equilibrium conditions similar to (3) and (4). First, since

12Two recent papers propose still other ways in which central bank policies intended to cool activity might be counterpro-

ductive. Hachem and Song (2018) show that forcing banks to hold more liquidity may paradoxically lead to more interbank

lending as large banks hold fewer reserves to hurt the small banks they compete with. Chen, Rhen, and Zha (2018) argue

contractionary monetary policy in China led to an increase in lending by shadow banks as a fall in deposits encouraged banks

to lend more to shadow banks to avoid liquidity coverage requirements.

13Even without relying on a more general distribution n (w; y), our results are in part due to our assumption that savers

only like to consume when old, and so their saving is inelastic with respect to the interest rate. If we modi�ed this, tighter

leverage constraints that reduce the returns to savings could lead agents to save less and asset prices would fall.
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all resources must be used to produce or buy the asset, we haveZ 1

Rd

Z 1

0

min

�
1;
w

�

�
n (w; y) dw dy + pdt =

Z 1

0

Z 1

0

wn (w; y) dw dy + e (23)

This de�nes Rdt as a function ��
�
pdt
�
of the price pdt which is increasing in p

d
t for a �xed � and decreasing

in � for a �xed pdt . Second, the interest rate on loans must equal the return on the asset, and so�
1 +Rdt

�
pdt = d+ pdt+1 (24)

Substituting in Rdt = ��
�
pdt
�
implies pdt+1 = ��

�
pdt
�
� d. Figure 5 illustrates the e¤ect of increasing �

graphically and shows that the steady state pd will rise. Intuitively, increasing � requires the interest rate

on loans to fall so that credit markets continue to clear even as demand for credit falls. Without risk, the

interest rate on loans and the return on the asset are equal, so the latter must fall. A lower return on the

asset implies its price is higher. With risk shifting, the interest rate on loans and the return on the asset

can di¤er, so it will be possible for interest rates on loans to fall while the return on the asset rises.

6 Conclusion

This paper analyzes policy in a risk-shifting model of asset prices. As in previous work on risk-shifting, our

model can capture many observable features of asset and credit booms and busts. The general equilibrium

framework we use allows us to go beyond this and analyze policy and welfare. We show that risk-shifting

leads to excessive lending that �nances socially costly speculative activity, creating a role for intervention.

We then study some of the proposed remedies against booms such as contractionary monetary policy and

leverage restrictions. In our model, tighter monetary policy increases interest rates, lowers asset prices, and

lowers the amount spent on assets. Leverage restrictions have the opposite e¤ect, lowering interest rates and

increasing asset prices. But they also discourage borrowing against assets. Both policies turn out to have

ambiguous welfare implications. Whether a policy improves welfare depends on how it a¤ects speculators vis-

a-vis the productive activities that cross-subsidize them. Neither intervention is optimal in our setting. Both

reduce the output available for agents, in contrast to cap on total lending that eliminates speculation without

a¤ecting output. Finally, we �nd that when default costs are large, risk shifting can occur without giving rise

to bubbles. This reveals that, given evidence of risk-shifting, policymakers contemplating intervening against

asset booms might not need to determine if asset prices exceed fundamentals to justify their intervention.

We focus on risk shifting because asset booms often feature opaque assets that make it is di¢ cult for

lenders to judge the risks from any given borrower. However, a large literature has analyzed asset booms

and bubbles without risk shifting. These models should not be viewed as competing explanations, since the

mechanisms they consider are complementary to the risk-shifting we study. For example, there is a large

literature showing bubbles can arise with fully rational agents because of dynamic ine¢ ciency as in Galí

(2014, 2017) or binding credit market frictions as in Martin and Ventura (2012), Hirano and Yanagawa

(2017), and Miao and Wang (2018). These papers all consider bubbles that burst stochastically. Since
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they feature a risk that asset prices collapse, these models can potentially give rise to risk-shifting. In

particular, this would occur if lenders are unsure what their borrowers are doing. For example, Bengui

and Phan (2018) combine risk-shifting and dynamic ine¢ ciency by assuming loans are pooled and lenders

cannot monitor individual borrowers. One can similarly combine risk-shifting and models of bubbles based

on borrowing constraints. The distortions we emphasize in our model would then have to be balanced

against the fact that overvalued assets may help relax borrowing constraints. A separate literature derives

bubbles by assuming agents disagree about the risky returns on assets, e.g. Scheinkman and Xiong (2003),

Hong, Scheinkman, and Xiong (2006), Simsek (2013), and Barberis, Greenwood, Jin, and Shleifer (2018).

Such di¤erences in beliefs are again compatible with uncertainty about the risks lenders are exposed to.

For example, we can allow savers in our model to hold di¤erent beliefs about the asset so that the most

optimistic agents buy assets while the least optimistic prefer to lend. Whether risk-shifting interacts with

disagreement in interesting ways remains an open question.

Finally, our model suggests several directions for future research on risk-shifting models of asset booms.

First, we assumed lenders su¤er a cost � when their borrowers default. In practice, the costs of collapsing

asset prices also depend on how agents respond when asset prices fall. To get at these channels would require

introducing �nancial intermediaries or borrowing constraints. These may have important implications for

how well interventions work. In terms of applications, we have described how our setup might have analogs

in the housing market. However, cross-subsidization in the housing market works di¤erently given all

borrowers buy housing. By contrast, in our model the safe activity does not involve buying an asset. This

raises the question of whether an intervention that shifts resources from illiquid home buyers to speculators

still drives house prices up as in our setting. Assuming speculators and safe investors both buy assets would

also make it easier to study the e¤ect of policies that a¤ect the supply of assets, e.g. changing zoning

restrictions in hot housing markets or using taxes to discourage construction. Finally, it is not obvious

how the policies we study fare in more general environments. One example is open economies. While we

argued a contractionary monetary policy raises interest rates and dampens asset prices, higher real rates

may attract larger capital in�ows. In that case, it is not clear whether asset prices would still fall. One

could consider an open economy version of our model along the lines of Galí and Monacelli (2005) to explore

such issues. Another issue is whether aggressive monetary easing when asset prices crash might exacerbate

risk-shifting by bailing out lenders. In our simple framework, the only relevant issue is how an intervention

a¤ects the maximal return on the asset. But in a richer model in which lenders can choose how much to

monitor and what contracts to o¤er, the way that policy interventions a¤ect asset prices after a crash may

lead lenders to behave in a way that encourages risk-shifting.
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Figure 1: Determination of equilibrium price pd with deterministic dividends 

 

The value 𝑝ௗ denotes the steady state for the dynamical system 𝑝௧ାଵ ൌ 𝜓ሺ𝑝௧ሻ.  Any path which 

begins away from 𝑝ௗ leads either to a negative price or a price above e, neither of which can 

occur in equilibrium.  Hence, the unique equilibrium is for the price to equal the steady state 

value 𝑝ௗ at all dates. 
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Figure 2: The share of loans used for speculation 𝛼௧
 as a function of default costs Φ 

 

When the cost of default falls below Φ∗, all assets are purchased by speculators who borrow, 

and the share of loans used for speculation 𝛼ௗ is equal to 𝑝/𝑒. When the cost of default 

exceeds Φ∗, savers purchase some of the asset directly, and the share of lending used for 

speculation falls, tending towards zero as the cost Φ tends to infinity. 
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Figure 3: Equilibrium prices 𝑝௧
 with delayed dividend increase 

 

The figure depicts the path of dividends and asset prices if dividends started out equal to d and jump 

to D at date T as long as we stay in the high regime.  Prices follow an explosive path until date T even 

as dividends remain unchanged.  From date T on, the price will equal 𝑝 for as long as we remain in 

the high regime.  When the state leaves the high regime, the price of the asset falls to 𝑝ௗ.    
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Figure 4: Interest rates as a function of share λ of investment that borrowers pay 

 

The figure depicts the equilibrium schedule of interest rates across different markets.  Interest 

rates are declining in the share 𝜆 of their projects that borrowers finance.  For 𝜆 ൏ Λ௧ the interest 
rate is falling in 𝜆, and for 𝜆  Λ௧ it is constant. 
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Figure 5: Effect of increasing floor λ with deterministic dividends 
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Appendix A: Proofs of Propositions

Proof of Proposition 1: In the text, we showed there is a unique deterministic equilibrium. Here we allow
for stochastic equilibrium paths for fpt; Rtg1t=0 and con�rm that the equilibrium is in fact deterministic.

First, note that for any date t, in equilibrium it must be the case that 0 < pt � e. If the price pt � 0 there
would be in�nite demand for the asset given its dividend d > 0 and there is free disposal. But the supply

of assets is �nite, so this cannot be an equilibrium. At the same time, the most any cohort can spend to

buy the assets is e. Let zt denote the return to buying the asset, i.e., zt � d+pt+1
pt

. This can be random if

pt+1 is random. Let Gt (z) denote the (possibly degenerate) distribution of the return zt. Since 0 < pt � e

for all t, the maximum return zmaxt is �nite, since zmaxt =
d+pmaxt+1

pt
� d+e

pt
<1, where pmaxt+1 is the maximum

possible realization of the price at date t+ 1.

The equilibrium satis�es two conditions. First, as in (3), all resources will be used either to buy assets

or to initiate production: Z 1

Rt

n (y) dy + pt = e (25)

The implies Rt = � (pt) where �0 (�) > 0. Second, the interest rate on loans Rt must satisfy

(1 +Rt) pt = d+ pmaxt+1 (26)

If the interest rate on loans 1 + Rt exceeded
d+pmaxt+1

pt
, no agent would want to buy assets, which cannot be

an equilibrium. If interest rate on loans 1 + Rt exceeded
d+pmaxt+1

pt
, agents could earn positive pro�ts from

borrowing, so demand for credit would be in�nite. Substituting Rt = � (pt) into (26) implies

pmaxt+1 = (1 + � (pt)) pt � d

Suppose pt > pd. Consider the sequence fep�g1�=t that comprises the upper support of prices at each date
given the history of previous prices, starting from pt. Formally, set ept = pt and de�ne

ep�+1 = (1 + � (ep� )) ep� � d
Since pt > pd, the sequence ept would shoot o¤ to in�nity and would exceed e in �nite time. This means
there is a state of the world in which the price exceeds e, which cannot be an equilibrium. So pt � pd.

Next, suppose pt < pd. Again, we can construct the sequence fep�g1�=t that comprises the upper support
of prices at each date given the history of previous prices, starting from pt. That is, we set ept = pt and then

ep�+1 = (1 + � (ep� )) ep� � d
Since pt < pd, the sequence ept would turn negative. Hence, there is a state of the world in which the price
is negative, which cannot be an equilibrium. The distribution of the price at date t is degenerate with full

support at pd. From (25), Rt = � (pt) is uniquely determined as well. �

31



Proof of Proposition 2: Below we �ll in some of the missing steps from the discussion in the text.

First, we need to show that at any date t in which dt = D, the return on the asset will be higher if

dt+1 = D. That is, we need to show that

pDt+1 +D > pd + d

Suppose pDt+1 + D � pd + d. Since D > d, this requires pDt+1 < pd. From (3), we know the equilibrium

interest rate on loans RDt+1 must equal �
�
pDt+1

�
. If pDt+1 < pd, then since �0 (�) > 0, we have

RDt+1 = �
�
pDt+1

�
< �

�
pd
�
= Rd

But then we would have �
1 +RDt+1

�
pDt+1 <

�
1 +Rd

�
pd = pd + d:

This means that if dt+1 = D, an agent who borrows to buy assets at date t + 1 can make positive pro�ts

if dt+2 = d. But then there would be in�nite demand for borrowing to buy assets, which cannot be an

equilibrium given supply of credit is �nite. Since this is inconsistent with equilibrium, it follows that

pDt+1 +D > pd + d.

The text establishes that the equilibrium interest rate on loans must equal the maximal return on the

asset, and so pDt = pD and RDt = �
�
pD
�
. The step that remains is to solve for

�
�Dt
	1
t=0
. For this, we use

the expected return to the asset, denoted rDt , and the expected return to lending, denoted R
D

t . The former

is given by

1 + rDt = (1� �)
�
1 + D

pD

�
+ �

�
d+pd

pD

�
� 1 + rD (27)

As for the expected return to lending, a fraction �Dt of lending is used to buy assets and the rest �nances

production. Since all of the proceeds from asset purchases accrue to the lender, the expected return to these

loans is just the expected return to buying an asset net of default costs, 1 + rD � ��. The remaining loans
that �nance production will be repaid in full, so the return on those loans is 1 +RD. This implies

1 + �RDt =
�
1� �Dt

� �
1 +RD

�
+ �Dt

�
1 + rD � ��

�
=

�
1� �Dt

� �
1 + D

pD

�
+ �Dt

�
1 + rD � ��

�
(28)

If R
D

t > rD, savers would prefer lending over buying assets. The only agents who would buy assets would

be those who borrow to do so, and so �Dt =
pD

e . If R
D

t = rD, savers would be indi¤erent between buying

assets and lending. This means �Dt can assume any value between 0 and pD

e . Finally, if R
D

t < rD, savers

would prefer buying assets over lending. No agent would borrow to buy assets, implying �Dt = 0. Hence,

the expected return to lending R
D

t and the share of lending used to buy assets �
D
t are jointly determined.

To solve for R
D

t and �Dt , consider �rst the case where �
D = pD

e . This can only be an equilibrium if

R
D

t � rD when �Dt =
pD

e , i.e., only if�
1� pD

e

�
D
pD
+ pD

e

�
rD � ��

�
� rD
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Rearranging this equation and substituting in for rD implies �Dt =
pD

e is an equilibrium only if

� �
�
e
pD
� 1
��

D+pD�d�pd
pD

�
� �� (29)

Next, consider the case where �Dt 2
�
0; p

D

e

�
. This can only be an equilibrium if R

D

t = rD when we evaluate

R
D

t at the relevant �
D
t . Since R

D

t is decreasing in �
D
t , this requires that R

D

t < rD when �Dt =
pD

e , or

� > �� (30)

In this case, the equilibrium value of �Dt is the one that equates R
D

t and r
D, which implies

�Dt =
D+pD�d�pd

D+pD�d�pd+�pD (31)

Finally, there cannot be an equilibrium in which �Dt = 0. This would require R
D

t � rD when �Dt = 0. But

�Dt = 0 implies R
D

t =
D
pD

> rD. Hence, the value of �Dt is unique and is either equal to pD

e or some value

between 0 and pD

e , depending on the cost of default �. �

Proof of Proposition 4: Here we �ll the missing steps in deriving the equilibrium at date 0 when there

is a quota. In the text, we argued that 1 + RD0 � pD+D
pD0

. Suppose 1 + RD0 strictly exceeded pD+D
pD0

. Then

no agent would borrow to buy assets knowing they would default. With agents only borrowing to produce,

lending would be safe and would yield a higher return than the asset. Savers would prefer to lend, but

under the quota can lend at most e�pD and must use the remaining pD to buy assets. Since only they buy
the asset, pD0 = pD. From the market clearing condition (3), we have RD0 = �

�
pD
�
= RD. But we know

1+RD = 1+ D
pD
, which contradicts our supposition that 1+RD0 > pD+D

pD0
. It follows that 1+RD0 =

pD+D
pD0

.

Combining this with (3) implies RD0 = RD and pD0 = pD. Hence, imposing a lending cap of e� pD at date
0 will not change the price of the asset or the interest rate on loans relative to the equilibrium without a

quota. Since savers spend at least pD to buy assets under the quota and the value of assets is pD, there can

be no borrowers who buy the asset, so �D0 = 0.

A similar logic can be applied to a quota of e � pD at all dates as long as dt = D. The market clearing

condition (3) remains unchanged at all dates. First, the argument that pDt+1 > pd for all t only relies on

the market clearing condition (16), and is true even if we introduce a quota. Next, to ensure demand for

borrowing is �nite, we need 1 + RDt � pDt+1+D

pDt
: Suppose 1 + RDt >

pDt+1+D

pDt
. In that case, no agent would

borrow to buy the asset for any � > 0, and savers would strictly prefer lending to buying assets. Because

of the quota, they would have to spend pD on the asset. Hence, pDt = pD, and from the market clearing

condition, RDt = �
�
pD
�
= RD. This would imply 1 +RD >

pDt+1+D

pD
. It follows that pDt+1 < pD. But this is

impossible, since the quota would require savers spend at least pD on the asset at date t+1 if dt+1 = D. The

contradiction implies 1+RDt =
pDt+1+D

pDt
. The equilibrium conditions are therefore the same as in Proposition

2. The unique equilibrium is given by
�
pDt ; R

D
t

�
=
�
pD; RD

�
for all t. The same argument as above implies

�Dt = 0 for all t. �
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Appendix B: Monetary Policy

This appendix introduces within-period production, a monetary authority, and nominal price rigidity into

our setup as in our discussion in Section 4. We set up the model and derive the results that underlie

Propositions 5 and 6 in the text.

B.1 Agent Types and Endowments

Our approach largely follows Galí (2014) in how we incorporate production, nominal price rigidity, and

monetary policy into an overlapping generations economy with assets. As in our benchmark model, agents

live two periods and care only about consumption when old. Each cohort still consists of two types �savers

who are endowed with resources but cannot produce intertemporally and entrepreneurs endowed with no

resources who can convert goods at date t into goods at date t+ 1. We continue to model entrepreneurs as

in the benchmark model, but we now assume savers are endowed with the inputs to produce goods rather

than with the goods themselves. This allows for an endogenous quantity of goods that can potentially vary

with the stance of monetary policy.

More precisely, we assume two types of savers, each of mass 1. Half are workers, endowed with 1 unit of

labor each who must choose how to allocate it. The other half are producers, endowed with the knowledge

of how to convert labor into output but not with labor itself.14 Producers set the price of the goods they

produce and then hire the labor needed to satisfy their demand. Although producers and entrepreneurs

both produce output, they di¤er in when and how they produce it. Producers born at date t convert labor

into goods at date t. Entrepreneurs then convert the goods producers created at date t into goods at date

t+ 1. Producers operate within the period; entrepreneurs operate across periods.

B.2 Production, Pricing, and Labor Supply

Workers allocate their one unit of labor to home and market production. Home production yields the same

good as the market, but using a technology h (`) that is concave in the amount of labor ` allocated to home

production. We assume h0 (0) = 1 and h0 (1) = 0 for reasons that will become clear below.

Workers who sell their labor on the market earn a wage Wt per unit labor. Their labor services are

hired by producers, whom we index by i 2 [0; 1]. Each producer can produce a distinct intermediate good
according to a linear technology. In particular, if producer i hires nit units of labor, she will produce

xit = nit units of intermediate good i. The di¤erent intermediate goods can then be combined to form �nal

14This setup borrows from Adam (2003) rather than Galí (2014). The latter assumes agents are homogeneous, selling labor

when young and hiring labor when old. We want income to only accrue to the young as in our benchmark model.
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consumption goods according to a constant elasticity of substitution (CES) production function available

to all agents. That is, given xit of each i 2 [0; 1], the amount of �nal goods Xt that can be produced is

Xt =
�R 1

0
x1��it di

� 1
1��

(32)

with � > 1. Let Pt denote the price of the �nal good and Pit denote the price of intermediate good i. At

these prices, the xit that maximize the pro�ts of a �nal goods producer solve

max
xit

Pt

�R 1
0
x1��it di

� 1
1�� �

R 1
0
Pitxitdi

The �rst-order condition with respect to xit yields

xit = Xt

�
Pit
Pt

�� 1
�

(33)

If we set Xt = 1, we can compute the price of the cost of the optimal bundle of intermediate goods

xit =
�
Pit
Pt

��1=�
needed to produce one unit of the �nal good:R 1

0
Pitxitdi =

R 1
0
P
1� 1

�
it P

1
�
t di

Since any agent can produce �nal goods, the price Pt must equal the per unit cost of producing a good in

equilibrium. Equating the two yields the familiar CES price aggregator:

Pt =
�R 1

0
P

��1
�

it di
� �
��1

(34)

Each intermediate goods producer chooses their price Pit to maximize expected pro�ts given demand (33)

and wage Wt. To allow producers to move either before or after the monetary authority, we condition

producer i�s choice on their information 
it when choosing their price. Each producer will set Pit to solve

max
Pit

E

"
(Pit �Wt)Xt

�
Pit
Pt

��1=������
it
#

The optimal price is then

Pit =
E [WtXtj
t]

(1� �)E [Xtj
t]
(35)

By symmetry, all producers will charge the same price, produce the same amount, and hire the same amount

of labor, i.e., nit = nt for all i 2 [0; 1]. The output of consumption goods is thus

Xt =
�R 1

0
n1��t di

� 1
1��

= nt

Workers receive (Wt=Pt)nt of these goods and producers get the remaining (1�Wt=Pt)nt. Workers also

produce goods at home. Their income is thus (Wt=Pt)nt + h (1� nt), which is maximized at

h0 (1� nt) =Wt=Pt (36)

By contrast, the total resources available to young agents is et = nt + h (1� nt), which is maximized at

h0 (1� nt) = 1

Our assumption that h0 (0) = 1 implies total resources are maximized when nt = 1 and all goods are

produced in the market, and et = nt + h (1� nt) is increasing in nt for all nt 2 [0; 1].
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B.3 Assets, Credit, and Money

Since agents want to consume when old, they will wish to save their earnings et = nt + h (1� nt). As in
the benchmark model, they can buy assets and make loans. Without money, this speci�cation would be

equivalent to our benchmark model, the only di¤erence being that the income of savers et which before was

exogenous and �xed is now endogenous and potentially time-varying. Equilibrium in the asset and credit

markets involves the same conditions as in the benchmark model. First, regardless of the income they earn,

the young will spend all of their resources either funding entrepreneurs or buying assets, and so we still haveZ 1

Rt

n (y) dy + pt = et

where pt is the real price of the asset and Rt is the real interest rate on loans. The interest rate Rt must

still ensure agents cannot earn pro�ts by borrowing and buying assets. When dt = d, this requires�
1 +Rdt

�
pdt = d+ pdt+1

and when dt = D, this requires �
1 +RDt

�
pDt = D + pDt+1

We can then use Rt and pt to solve for the expected return on loans:

Rt =

(
Rdt if dt = d

max
n
rDt ;

�
1� pDt

et

�
RDt +

pDt
et

�
rDt � ��

�o
if dt = D

(37)

where rDt is the expected real return to buying the asset. Below, we show that when prices are �exible or

money is absent altogether, the equilibrium real wage Wt=Pt will be constant over time. Employment nt
and total earnings of all savers et = nt + h (1� nt) will then also be constant. The reduced form of our

model in the absence of money thus coincides with our benchmark model.

To introduce money, we follow Galí (2014) in assuming money does not circulate in equilibrium. That is,

money is the numeraire, and Pt and Wt denote the price of goods and labor relative to money. However,

no agent actually holds money in equilibrium. The monetary authority announces a nominal interest rate

it at each date t. The monetary authority commits to pay this rate at date t + 1 to those who lend to it

(with money it can always issue), and will charge it to those who borrow from it with full collateral. This

is roughly in line with what central banks do in practice, paying interest on reserves and lending at the

discount window against collateral. To ensure money doesn�t circulate, the real return on lending to the

monetary authority must equal the expected return on savings. Let �t = Pt+1=Pt denote the gross in�ation

rate between dates t and t + 1. Since agents always lend to entrepreneurs, the expected return on savings

will equal Rt, the expected return on loans. This implies

1 + it =
�
1 +Rt

�
�t (38)

When the monetary authority changes the nominal interest rate it, either in�ation �t or the expected return

1 +Rt or both will have to adjust to ensure agents will neither borrow nor lend to the monetary authority.
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B.4 De�ning an Equilibrium

Given a path of nominal interest rates f1 + itg1t=0, an equilibrium consists of a path of prices fPt;Wt; pt; Rtg1t=0
and a path of employment fntg1t=0 such that agents behave optimally and markets clear. Collecting the
relevant conditions from above yields the following �ve equations for these �ve variables:

(i) Optimal pricing: Pt =
E [WtXtj
t]

(1� �)E [Xtj
t]
(ii) Optimal labor supply: h0 (1� nt) =Wt=Pt

(iii) Optimal savings:
R1
Rt
n (y) dy + pt = et

(iv) Credit market clearing: 1 +Rt =

8<:
D+pDt+1
pDt

if dt = D
d+pdt+1
pdt

if dt = d

(v) Money market clearing: �t =
1 + it

1 +Rt

where the expected return on loans Rt in the last condition is given by (37).

B.5 Equilibrium with Flexible Prices

We begin with the case where producers set their prices Pit after observing the wage Wt. This corresponds

to the case where prices are fully �exible, or alternatively where there is no money and so no sense in which

nominal prices are set in advance. Producers can deduce what other producers will do and the labor workers

will supply, they can perfectly anticipate total output Xt. Hence, their information set 
t = fWt; Xtg. It
follows that E [WtXtj
t] =WtXt and E [Xtj
t] = Xt. The optimal pricing rule (i) then implies

Pt =
Wt

1� �

The real wage is thus constant and equal to 1� �. Substituting this into (ii) yields

h0 (1� nt) = 1� � (39)

Since h (�) is concave, nt is equal to some constant n� for all t. It follows that et = n� + h (1� n�) is also
constant for all t. We can then use (iii) and (iv) to solve for pt and Rt as in the benchmark model, and then

use (37) to compute Rt. Finally, given Rt we can use the implied �t from (v) to derive fPtg1t=1 for any
initial value for P0. The initial price level P0 is indeterminate, in line with the Sargent and Wallace (1975)

result on the price level indeterminacy of pure interest rate rules. The nominal wage Wt = (1� �)Pt.

B.6 Equilibria with Rigid Prices

We now turn to the case where producers set the price of their intermediate good Pit before the monetary

authority moves. That is, producers set prices, the monetary authority sets 1 + it, and then producers hire

workers at a nominal wage Wt. This formulation implies prices are only rigid for one period.
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If monetary policy is deterministic, producers can perfectly anticipate the nominal interest rate and the

equilibrium nominal wage Wt, and so 
t = fWt; Xtg and Wt=Pt = 1� � as before.

Next, suppose monetary policy is contingent on some random variable, i.e., it = i (�t) where f�tg
1
t=0 is a

sequence of random variables. For simplicity, consider the case where �t is only random at t = 0, i.e.,

�0 =

(
H w/prob �

L w/prob 1� �
�t is deterministic for t = 1; 2; :::

From date t = 1 on, we know from the optimal price-setting condition (i) that Wt=Pt = 1 � �. It then

follows that nt = n� and et = e� � n� + h (1� n�) for all t � 1, and we can determine pt, Rt, and Rt for
t � 1 just as in the case where prices are �exible. All we need is to solve for the equilibrium at date 0.

We use a superscript � 2 fH;Lg to denote the value of a variable as for a given realization of �0. Assume
wlog that iH0 > iL0 . The optimal price setting condition (1) is now

�nH0
WH

0

P0
+ (1� �)nL0

WL
0

P0

�nH0 + (1� �)nL0
= 1� � (40)

That is, the output-weighted average real wage over the two values of � is equal to 1 � �. Optimal labor

supply (ii) then implies

h0
�
1� nH0

�
= min

n
WH

0

P0
; 1
o

h0
�
1� nL0

�
= min

n
WL

0

P0
; 1
o

These are three equations for four unknowns, meaning the set of all equilibria can be parameterized by a

single parameter. Wlog, we choose the real wage when � = H to be this parameter. The three equations

above yield values for WL
0 =P0, n

H
0 , and nL0 given WH

0 =P0. From these, we can deduce earnings e�0 =

n�0 + h
�
1� n�0

�
for each � 2 fH;Lg. We can then use (iii) and (iv) to derive p�0 and R

�
0 by solvingZ 1

R�
0

n (y) dy + p�0 = e�0 (41)�
1 +R�0

�
p�0 = D + pD (42)

and then compute the expected return on loans R
�

0 using (37), and, via (v), the in�ation rate �
�
0 for each

� 2 fH;Lg. As before, the price level P0 is indeterminate. Optimal pricing only restricts the average
real wage across states but not the real wage for each realization of �0, introducing an indeterminacy. The

equilibrium real wage can exceed 1�� for one realization of �0 if it falls below 1�� for the other realization.

The case where monetary policy has no e¤ect on real variables at date 0 remains an equilibrium. In this

case, WH
0 =P0 = WL

0 =P0 = 1 � �. But price rigidity expands the set of equilibria to include ones in which

real variables vary with the nominal interest rate. Since the nominal interest rate only serves as a signal to
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coordinate real activity but does not directly a¤ect it, there are equilibria in which WH
0 > WL

0 as well as

equilibria in which WH
0 < WL

0 .
15 Since higher nominal interest rates seem to be contractionary in practice,

we focus on equilibria in which WH
0 =P0 < 1 � � < WL

0 =P0, i.e., real wages are lower when the monetary

authority unexpectedly raises the nominal interest rate. In this case, from condition (ii) we know that a

higher nominal interest rate will be associated with lower employment (nH0 < n� < nL0 ) and hence lower

earnings (eH0 < e� < eL0 ). From (41), we can infer that R�0 = ��
�
p�0

�
where �H (x) > �L (x) for the same

value x. As is clear from Figure 1, this implies a higher nominal interest rate will be associated with a lower

real asset price (pH0 < pD < pL0 ). This also implies a higher real interest rate on loans (R
H
0 > RD > RL0 ).

The real expected return to buying assets will also be higher (rH0 > rD > rL0 ). However, whether the real

expected return to lending R
H

0 will be higher is ambiguous. (37) implies R
�

0 is either equal to r
�
0 or to a

weighted average of R�0 and r
�
0. In the latter case, although both terms are higher when � = H the weight

on r�0, which is p
�
0=e

�
0, can be higher or lower for � = H. These results are summarized in Proposition 5 in

the paper.

B.7 Redistribution and Welfare

We now argue that it will be possible to use redistribution to ensure that a monetary contraction is Pareto

improving. To do this, ignore monetary policy temporarily and think about the e¤ects of a lump sum tax

�0 on savers at date 0 that is given to the old at that date. The wealth of savers is e � �0. Our analysis

above implies dRD
0

d�0
< 0, i.e., impoverishing savers leads to a higher interest rate. From the market clearing

condition, it follows that 0 < dpD0
d�0

< 1. Hence, taxing savers and giving it to the old will make the old

strictly better o¤. Since the derivatives dpD0
d�0

and dRD
0

d�0
are independent of �, so the e¤ect of the tax will be

the same regardless of �. But from (14), when � is su¢ ciently large, a higher �0 will increase expected total

consumption of the young. Thus, a redistribution from savers to the old will increase welfare for su¢ ciently

large �. Intuitively, it is better to have the young give resources to the old directly than to lend them to

speculators who use them to buy assets from the old.

Since a lump sum tax �0 makes both the old and the young better o¤, it will also make both sides

better o¤ if we discourage the young from working and reduce total output, as long as the fall in output

is small. But this is exactly what contractionary monetary policy does. Hence, a redistribution combined

with contractionary monetary policy can be Pareto improving.

15One way to avoid such multiplicity is to assume dynamic monetary policy rules that are conditioned on past economic

variables. This allows a central bank to take actions that are unsustainable if a high interest rate today leads to certain

outcomes, eliminating equilibria with those outcomes. See Cochrane (2011) for a discussion of these issues.
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B.8 Promises of Future Intervention

Our last point concerns the e¤ects of a promise at date 0 to be contractionary at date 1 if the boom continues

into that date. In this case, �0 and �t for t � 2 are deterministic, while �1 = d1 2 fd;Dg. That is, we
assume producers set prices each period before dt is revealed. Solving for equilibrium at date 1 is identical

to how we solved for the equilibrium at date 0 when we assumed �0 was random. Consider equilibria in

which the real wage is lower if the boom continues, so

WD
1 =P1 < 1� � < W d

1 =P1:

This implies nD1 < n� < nd1 and so e
D
1 < e < ed1. In other words, if dividends fall and the boom ends,

monetary policy must be expansionary. By the same logic as above, such a policy would imply pD1 < pD

and pd1 > pd, as well as RD1 > RD and Rd1 < Rd. Turning back to date 0, conditions (iii) and (iv) implyZ 1

RD
0

n (y) dy + pD0 = e�
1 +RD0

�
pD0 = D + pD1

Comparative statics of this system with respect to pD1 reveals that pD0 < pD and RD0 < RD. That is,

while contractionary monetary policy at date 0 dampens pD0 but raises RD0 at date 0, a threat to enact

contractionary monetary policy at date 1 if dividends remain high will dampen both pD0 and R
D
0 at date 0.

These results are summarized in Proposition 6 in the paper.
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Appendix C: Macroprudential Regulation

In this appendix, we de�ne an equilibrium for an economy with multiple markets as in Section 5. We then

show that for an equilibrium in which all markets are active, various aspects of the equilibrium are uniquely

determined. We then discuss some comparative static results with respect to the set of active markets.

C.1 De�ning an Equilibrium

We begin with some notation. Let pt denote the price of the asset at date t. Given asset prices, we can

de�ne the return to buying the asset at date t as

zt � dt+1+pt+1
pt

The return zt can be random both because dt+1 might be uncertain (if dt = D) and because pt+1 might in

principle be stochastic. Let Gt (z) denote the (possibly degenerate) cumulative distribution of the return

zt, i.e., G (z) � Pr (zt � z). Let 1 + rmaxt denote the maximum possible return on the asset. As discussed

in the text, 1 + rmaxt is �nite, since rmaxt � D+2'e
(1�')e . We will use rt to denote the expected return to buying

the asset at date t, i.e.,

1 + rt �
Z 1+rmaxt

0

ztdGt (z)

We now de�ne variables for the di¤erent markets � 2 [0; 1) agents can borrow in. Let Rt (�) denote the
interest rate on loans in market �, so an agent who agrees to pay a share � of the project she undertakes

will promise to pay back 1 + Rt (�) for each unit she borrows. Since agents may default, let Rt (�) denote

what lenders expect to earn from lending in market � given the possibility of default. Finally, we represent

borrowing in markets with density functions fat (�) and f
p
t (�) for all � 2 [0; 1) such that the total amount

of resources borrowed to buy assets and to produce are given by
R
A
fat (�) d� and

R
A
fpt (�) d�, respectively.

Let ft (�) � fat (�) + f
p
t (�) denote the density of borrowing for any purpose in market �.

Representing the quantities agents borrow in each market as a density function ignores the possibility

that there may be equilibria in which agents borrow a positive mass of resources in certain markets. More

generally, we can allow for a set � � [0; 1) with countably many elements such that each market � 2 � is

associated with a positive mass of borrowing mx
t (�) > 0. The amount borrowed in any market � 2 [0; 1)n�

can still be represented with a density function. Heuristically, we can appeal to the Dirac-delta construction

and represent the amount borrowed in any market as if it were a density. That is, for any � 2 �, we set
the density fxt (�) = mx

t (�) �� (�), where �� (q) is the Dirac-delta function de�ned so that �� (q) = 0 for

q 6= 0 and
R 1
0
�� (q) dq = 1. This convention treats markets � 2 � as essentially having an in�nite density.

We will refer to a market � as inactive if ft (�) = 0 and active if ft (�) > 0 or if � 2 �.

Given these preliminaries, we de�ne an equilibrium as a path
�
pt; f

p
t (�) ; f

a
t (�) ; Rt (�) ; Rt (�)

	1
t=0

that

satis�es a series of conditions, (43)-(48), that ensure all markets clear when agents optimize.
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The �rst few conditions we describe stipulate that all agents act optimally. We begin with lenders.

Optimality requires that agents will only invest their wealth where the expected return is highest. Let Rt
denote the maximal expected return to lending in any market �, i.e.,

Rt � sup
�2[0;1)

Rt (�)

Optimal lending requires that agents lend in market �0 only if it they expect to earn Rt and if this rate

exceeds the expected return to buying the asset, i.e.,

ft
�
�0
�
> 0 only if Rt

�
�0
�
= Rt and Rt � rt (43)

Entrepreneurs must also act optimally. We �rst argue this means they should use their endowment to

produce. Recall entrepreneurs have productivity y� where y� > rmaxt � rt from (15), so producing is better

than buying assets. But y� must also exceed the expected return to lending Rt. For suppose Rt were

higher than y�. Since y� > rmaxt , then Rt must also exceed rmaxt . In that case, no agent would use their

endowment to buy assets, nor would any agent borrow to buy assets given the interest rate on loans in any

active market must be at least Rt. Yet assets must trade in equilibrium: Owners sell their assets whenever

the asset price is positive, while demand for the asset would be in�nite if its price were nonnegative. Since

production o¤ers the highest return, entrepreneurs should use their endowment w to produce.

Since entrepreneurs can leverage their endowment to produce at a larger capacity, we also need to char-

acterize their borrowing. If they borrow in market � where � < w, they can borrow enough to reach full

capacity. Optimality requires that there will be borrowing to produce in market �0 only if some entrepreneur

�nds it optimal to borrow in that market from all � 2 [0; 1], including � = 1 for no borrowing. This implies

fpt
�
�0
�
> 0 only if �0 2 arg max

�2[0;1]

(
[1 + y � (1� w) (1 +Rt (�))] if � � w

w

�
[1 + y � (1� �) (1 +Rt (�))] if � > w

)
for some w (44)

Finally, agents who borrow to buy assets must act optimally. They will agree to borrow in market

� 2 [0; 1) to buy assets only if doing so yields a higher expected return than lending out the same resources.
De�ne

xt (�) � (1 +Rt (�)) (1� �)

The expected pro�ts from borrowing in market � to buy one consumption unit�s worth of assets isZ 1

xt(�)

(zt � xt (�)) dG (zt) (45)

Agents will borrow in market � to buy assets only if (45) equals
�
1 +Rt

�
�, the return they could have

earned on any wealth that they use to buy assets. If (45) were lower than
�
1 +Rt

�
�, no agent would borrow

to buy assets. If (45) were higher than
�
1 +Rt

�
�, then no one would ever lend given they can borrow in

market �0, and so ft
�
�0
�
= 0. But this contradicts the fact that fat (�) > 0. Optimality implies

fat
�
�0
�
> 0 only if

Z 1

xt(�0)

�
zt � xt

�
�0
��
dG (zt) =

�
1 +Rt

�
�0 (46)
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Next, we require that savers use their entire endowment e to ensure consumption when old rather than

go to waste. Since entrepreneurs prefer to use their endowment w for production, all the resources used to

buy the asset must come from savers. This implies that e must be either lent to entrepreneurs to produce

or be spent on assets: Z 1

0

fpt (�) d�+ pt = e (47)

Finally, we turn to equilibrium beliefs. In any active market �0, lenders must expect the return on lending

Rt
�
�0
�
to conform with the actual fraction of borrowers who borrow in market �0 with the intent to produce

and to buy assets, respectively. That is,

Rt
�
�0
�
=
fpt
�
�0
�

ft
�
�0
� Rt ��0�+ fat

�
�0
�

ft
�
�0
� Etmin�Rt ��0� ; dt+1 + pt+1

pt
� 1
�
if ft

�
�0
�
> 0 (48)

In a market � 2 � with a positive mass of borrowing, the expression
fxt (�

0)
ft(�0)

will be replaced by mx
t (�)

mt(�)
.

Condition (48) does not impose any restrictions on expectations in inactive markets where ft
�
�0
�
= 0.

C.2 Solving for Equilibrium

We now proceed to solve for an equilibrium. As in the text, we restrict attention to equilibria in which all

markets � 2 [0; 1) are active. Such equilibria are natural given we focus on the e¤ects of interventions to
shut down markets. Our �rst result characterizes the schedule of interest rates in such an equilibrium.

Proposition C1: In an equilibrium where all markets are active, there exists a value �t 2 [0; 1] such
that the equilibrium interest rate schedule will be given by

1 +Rt (�) =

( ext(�)
1�� if � 2 [0;�t)
1 +Rt if � 2 [�t; 1)

(49)

where ext (�) is the value of x that solvesZ 1+rmaxt

z=x

(z � x) dGt (z) =
�
1 +Rt

�
� (50)

The schedule of interest rates Rt (�) is a decreasing and continuous function of � for � 2 [0;�t].

Proof of Proposition C1: Our proof proceeds as two lemmas.

Lemma C1: In an equilibrium where all markets are active, 1 + Rt (�) = max
n ext(�)
1�� ; 1 +Rt

o
, whereext (�) equals the x that solves (50) and Rt is the expected return to lending in any market �.

Proof of Lemma C1: Equilibrium condition (46) holds that agents are either indi¤erent between lending
their wealth and using it as a down payment in some market � to buy assets, or else they strictly prefer to
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lend their wealth. That is, for all � 2 [0; 1), we haveZ 1+rmaxt

z=xt(�)

(z � xt (�)) dGt (z) �
�
1 +Rt

�
� (51)

In the latter case, since no agent borrows to buy the asset, we know that Rt (�) = Rt. This is one candidate

for the interest rate in market �. The other candidate is any value of Rt (�) which ensures (51) holds with

equality. We now argue that is exactly one such candidate.

Consider the expression
R 1+rmaxt

z=x
(z � x) dGt (z). It is strictly decreasing in x, it tends to +1 as x! �1

and to 0 as x! 1+rmaxt . Hence, for any � 2 [0; 1) and any Rt � 0, there exists a unique x 2 (�1; 1+rmaxt ]

for which Z 1+rmaxt

z=x

(z � x) dGt (z) =
�
1 +Rt

�
� (52)

Denote ext (�) as the unique solution to equation (52). If the LHS of (52) represents the payo¤ to borrowing
to buy an asset, the expression ext (�) would correspond to the debt obligation of an agent who borrows
in market �, i.e. ext (�) would equal (1 +Rt (�)) (1� �). Hence, the unique interest rate that ensures (51)
holds with equality is given by

1 +Rt (�) =
ext (�)
1� �

Thus, there are two candidate expressions for the equilibrium interest rate in any market �, namely ext(�)
1��

and Rt. To show that 1 + Rt (�) = max
n
1 +Rt;

ext(�)
1��

o
, consider �rst a value of � for which ext(�)

1�� >

1 + Rt. We want to argue that in this case,
ext(�)
1�� is the only possible equilibrium interest rate. SinceR 1+rmaxt

z=x
(z � x) dGt (z) is decreasing in x, it follows thatZ 1+rmaxt

z=(1+Rt)(1��)

�
z � (1 +Rt) (1� �)

�
dGt (z) >

Z 1+rmaxt

z=ext(�) (z � ext (�)) dGt (z) = �1 +Rt��
Since the equilibrium interest rate Rt (�) must satisfy (51), we cannot Rt (�) = Rt. The only possible

equilibrium for these values of � is 1 + Rt (�) =
ext(�)
1�� . In other words, for any � such that

ext(�)
1�� > 1 + Rt,

the equilibrium interest rate must leave agents just indi¤erent leveraging their wealth and borrowing to

speculate in market � and lending out the same wealth and earning an expected return of Rt.

Next, consider a value of � for which ext(�)
1�� < 1+Rt. In this case,

ext(�)
1�� cannot be an equilibrium interest

rate for market �, since it would mean the interest rate on loans in market is lower than the return lenders

can earn elsewhere. That cannot be true in equilibrium. Hence, if ext(�)1�� < 1 + Rt, the only one of the two

candidates that can be an equilibrium is Rt (�) = Rt. Given that
ext(�)
1�� < 1 +Rt, we can conclude that the

expected payo¤ from borrowing to buy the asset and defaulting if the return is low is worse than lending

at the safe rate Rt, so no agent will borrow to buy assets in market �. This establishes the lemma. �

Our second lemma establishes that ext(�)
1�� is a weakly decreasing and continuous function of �. Combined

with Lemma C1, this implies there exists a cuto¤ �t such that Rt (�) = Rt for � � �t.
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Lemma C2: In any equilibrium where all markets are active, ext(�)1�� is nonincreasing and continuous in �.

Proof of Lemma C2: The function ext (�) corresponds to the value of x which solves (50). Note that even
though the distribution Gt (z) can contain mass points, the integral

R 1+rmaxt

z=x
(z � x) dGt (z) is continuous

in x and so ext (�) is a continuous function of �. However, ext (�) may exhibit kinks. To show that ext (�) is
decreasing, it will su¢ ce to show that its directional derivatives are nonpositive for all � 2 [0; 1). Totally
di¤erentiating (50) with respect to � implies

dext (�)
d�

= � 1 +RtR 1+rmaxtext(�) dGt (z)

For any � where ext (�) is a mass point of Gt (z), lim�0!�+
R 1+rmaxtext(�0) dGt (z) 6= lim�0!��

R 1+rmaxtext(�0) dGt (z).

Nevertheless, both lim�0!�+
dext(�0)
d�0 and lim�0!��

dext(�0)
d�0 are negative, so ext (�) is strictly decreasing in �.

But we want to show that ext(�)
1�� is decreasing in � and not just ext (�).

De�ne eRt (�) � ext(�)
1�� � 1. By construction, eRt (�) is continuous in � with possible kink-points. Di¤eren-

tiating the equation ext (�) = (1� �) (1 + eRt (�)) implies
dext (�)
d�

= �(1 + eRt (�)) + (1� �) d eRt (�)
d�

Rearranging and using the expression for dext(�)
d� above yields

d eRt (�)
d�

=
1

1� �

�
1 + eRt (�) + dext (�)

d�

�

=
1

1� �

241 + eRt (�)� 1 +RtR 1+rmaxtext(�) dGt (z)

35
=

1

(1� �)
R 1+rmaxtext(�) dGt (z)

"
(1 + eRt (�))Z 1+rmaxt

ext(�) dGt (z)�
�
1 +Rt

�#
(53)

We want to argue that the expression in brackets is negative. There are two possible cases. First, supposeeRt (�) < Rt. Then

(1 + eRt (�))Z 1+rmaxt

ext(�) dGt (z) <
�
1 +Rt

� Z 1+rmaxt

ext(�) dGt (z)

� 1 +Rt

In that case, we have d eRt(�)
d� < 0 from (53) regardless of the direction we take the derivative.

Next, suppose eRt (�) � Rt. Recall that ext (�) is the value of x that solves (52). Substituting in ext (�) =
(1 + eRt (�))(1� �), we can rewrite (52) as

Z 1+rmaxt

ext(�)
h
z �

�
1 + eRt (�)�i dGt (z) = �

"�
1 +Rt

�
�
Z 1+rmaxt

ext(�)
�
1 + eRt (�)� dGt (z)#
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The RHS of the equation above has the opposite sign as d eRt(�)
d� . Hence, we can establish that d

eRt(�)
d� � 0 if

we can show that Z 1+rmaxt

ext(�)
h
zt �

�
1 + eRt (�)�i dGt (z) � 0

Here, we use the fact that ex (�) = (1 + eR (�))(1� �) to rewrite the LHS of (52) evaluated at x = ext (�) asZ 1+rmaxt

ext(�) (z � ext (�)) dG (z) = Z 1+rmaxt

ext(�) (1� �) [zt � (1 + eRt (�))]dG (z) + Z 1+rmaxt

ext(�) �ztdG (z)

Note that when eR (�) > Rt, we must have ext (�) > 0. When the equilibrium interest rate in market �

exceeds Rt, some agents who borrow in market � must default, since the only way the expected return to

lending in market � can equal Rt in this case is if some agents default. Hence, there must be some values

of z for which an agent who borrows in market � to buy assets defaults. But given the equilibrium price of

the asset cannot be negative and the dividend d > 0, the lower support of z is bounded below by 0.

Armed with this observation, we can rewrite (52) as

�
1 +Rt

�
� =

Z 1+rmaxt

ext(�) (1� �)
h
zt � (1 + eRt (�))i dG (z) + Z 1+rmaxt

ext(�) �ztdG (z) (54)

�
Z 1+rmaxt

ext(�) (1� �)
h
zt � (1 + eRt(�))i dG (z) + Z 1+rmaxt

0

�ztdG (z)

=

Z 1+rmaxt

ext(�) (1� �) [zt � (1 +Rt)] dG (z) + (1 + rt)� (55)

The inequality in the second row uses the fact that ext (�) � 0 whenever eRt (�) > Rt. But in an equilibrium

where all markets are active, we must have R
D

t � rDt , i.e. since any saver can buy an asset, the return on

savings Rt is at least as large as the return to buying an asset rt. This implies

0 �
�
Rt � rt

�
� � (1� �)

Z 1+rmaxt

ext(�) (zt � (1 +Rt)) dG (z)

We have therefore con�rmed that
R 1+rmaxtext(�) (zt � (1 +Rt)) dG (z) � 0. It follows that all directional deriva-

tives d eRt(�)
d� are nonnegative as claimed. �

From Lemmas C1 and C2, de�ne �t as either 1 or the minimum value in [0; 1] for which Rt (�) = Rt. It

follows that Rt (�) > Rt for � < �t and Rt (�) = Rt for all � � �t. This establishes the proposition. �

We can use the schedule of interest rates in Proposition C1 to determine how much entrepreneurs should

produce and in which markets to borrow if they do.

Proposition C2: In an equilibrium where all markets are active, entrepreneurs with wealth w will borrow
1� w units to produce, in a market with an interest rate equal to Rt (w).
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Proof of Proposition C2: Consider an entrepreneur with wealth w. If she borrows in a market � where
� � w, she can produce at full capacity and would only need to put down �

�
1�w
1��

�
resources to borrow

1� w to reach full capacity. This would earn her an expected pro�t of

1 + y� � (1 +Rt (�)) (1� w)

This value is maximized by choosing � to minimize Rt (�). From Proposition C1, we know Rt (�) is weakly

decreasing in � and is therefore maximized at � = w.

Next, suppose she borrows in a market � where � > w. In that case, she could not produce at full

capacity. Since y� > rmaxt = Rt (0) � Rt (�) for all � 2 [0; 1), it will be optimal to borrow enough to

produce at the maximal capacity possible. For � > w, this maximum is w
� . Her pro�ts would thus equal

w

�
(1 + y� � xt (�)) (56)

where recall xt (�) = (1� �) (1 +Rt (�)) is the amount a borrower is required to repay per each unit of
resource she borrows. Since Rt (�) = Rt for all � 2 (�t; 1), there would be no bene�t to going to market
� > �t: She would have to produce less at the same interest rate as in market �t. The only case that

remains is the interval of markets � 2 [w;�t]. In that case, we can di¤erentiate pro�ts in (56) to get

d

d�

�w
�
(1 + y� � xt (�))

�
= � w

�2

�
(1 + y� � xt (�)) + �

dxt (�)

d�

�
= � w

�2

"
(1 + y� � x (�))�

�
�
1 +Rt

�R 1+rmaxt

x
dGt (z)

#

= � w

�2
R 1+rmaxt

x
dGt (z)

"Z 1+rmaxt

x

(1 + y� � xt (�)) dGt (z)� �
�
1 +Rt

�#

Since y� > D+2'e
(1�')e > rmaxt , we have

d

d�

�w
�
(1 + y� � xt (�))

�
< � w

�2
R 1+rmaxt

x
dGt (z)

"Z 1+rmaxt

x

(z � xt (�)) dGt (z)� �
�
1 +Rt

�#

But for � � �t, the expression in brackets is equal to 0. Hence, borrowing in a market with � > w will

be strictly dominated by borrowing in the market with � = w. At the optimum, each entrepreneur borrow

1� w at a rate of Rt (w). �

Proposition C3: In an equilibrium where all markets are active, the equilibrium price of the asset will

be given by pt = (1� ') e

Proof of Proposition C3: Condition (47) implies that all the resources of the young in cohort t will be
used to either produce or to buy assets. From Proposition C2, we know that all entrepreneurs will produce

at capacity, so the total amount used to produce is given byZ 1

0

(2'e) dw = 2'e
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This implies

pt + 2'e = (1 + ') e

and so pt = (1� ') e as claimed. �

Propositions C1-C3 did not involve any restrictions on the distribution of the return zt =
pt+1+dt+1

pt
. But

given Proposition 3 and the process for dividends, we can determine the distribution of this return to obtain

a sharper characterization. When dt = d, the return on the asset 1 + rt will have a degenerate distribution

with full mass at d
(1�')e . Substituting this into (50) reveals that ext (�) = (1� �)

�
1 + d

(1�')e

�
for all �,

that d eR(�)
d� = 0 for all �, and the cuto¤ �t = 0. Hence, when all markets are active, Rt (�) = Rt =

d
(1�')e

for all � 2 [0; 1) as described in the text. One equilibrium in which all markets are active if it entrepreneurs

with wealth w borrow in market � = w. But other equilibria in which all markets are active also exist.

Next, when dividends dt follow the regime-switching process between d and D and at date t we have

dt = D, the return zt would have a two-point distribution:

zt =

(
1 + D

(1�')e w/prob 1� �
1 + d

(1�')e w/prob �

In this case, equation (52) which de�nes ext (�) reduces to
(1� �)

�
1 +

D

(1� ') e � ext (�)
�
=
�
1 +R

D

t

�
�

or

ext (�) = 1 + D

(1� ') e �
1 +R

D

t

1� � � (57)

From this we can derive the implied interest rate 1 + eRDt (�) in market � while dt = D:

1 + eRDt (�) =
1

1� �

"
1 +

D

(1� ') e �
1 +R

D

t

1� � �

#

� 1� ��
1� �

where � �
�
1+R

D
t

�
=(1��)

1+D=((1�')e) . Since the return on savings is at least as large as the return to buying the asset,

1 +R
D

t � 1 + rDt

= 1 +
(1� �)D + �d
(1� ') e

> (1� �)
�
1 +

D

(1� ') e

�
This means � > 1, which in turns implies the interest rate on loans eRDt (�) is strictly decreasing in � for
� > 0, in line with what we discuss in the text and depict in Figure 3.
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Recall that, by de�nition, �Dt is the minimum value of � at which eRDt (�) = 1 + R
D

t . We can therefore

solve for �Dt by setting � = �
D
t in (57) and equating ext ��Dt � with 1 +RDt , i.e. by setting

1
1��Dt

h
1 + D

(1�')e �
�
1 +R

D

t

�
�Dt
1��

i
= 1 +R

D

t

Rearranging, we have

�Dt =
1��

�
�
1+R

D
t

� � D
(1�')e �R

D

t

�
(58)

Since RDt (�) is decreasing in � for � 2 [0;�Dt ), Proposition C2 implies only borrowers with wealth w borrow
in market � = w for w 2 [0;�Dt ). Hence, f

p
t (�) = 2'e for � 2 [0;�Dt ). By contrast, f

p
t (�) is indeterminate

for � 2 [�Dt ; 1). However, we know that f
p
t

�
�Dt
�
> 0, since borrowers with wealth w = �Dt will have to

borrow in this market to borrow 1� w. As for the amount borrowed to buy assets, fat (�), we can deduce

fat (�) for � 2 [0;�Dt ] from RDt (�), R
D

t , and f
p
t (�) using (48). For � > �Dt , the fact that

dRD
t (�)
d� < 0 at

� = �Dt , combined with the fact that
dRD

t (�)
d� < 0 for � > �Dt from Lemma C2, implies that no agent would

want to borrow to buy assets. So fat (�) = 0 for all � � �Dt .

Finally, we need to solve for R
D

t . Consider the return on all forms of savings in this economy. First,

savings are used to �nance production by entrepreneurs, which yields savers a payo¤ ofZ 1

0

�
1 +RDt (w)

�
(1� w) (2'e) dw

Second, savings are used to buy assets, directly or indirectly through loans. The expected earnings from

these investments equal
�
1 + rDt

�
pDt . From this, we must net out expected default costs. We use Dt to

denote the fraction of spending on assets that is �nanced with some debt. These purchases will result in

default if returns are low. Since default is proportional to the size of the borrower�s project, expected default

costs equal �Dt �p
D
t = �Dt � (1� ') e. These payo¤s must add up to (1 +R

D

t )e, i.e.,

(1 +R
D

t )e =
�
1 + rD � �Dt �

�
(1� ') e+

Z 1

0

�
1 +RDt (w)

�
(1� w) (2'e) dw (59)

We also need an equation to characterize Dt . When the expected return to lending R
D

t exceeds the expected

return to buying the asset rD, only agents who borrow will buy the asset. In that case, Dt = 1, and we can

solve for 1+R
D

t by plugging in 
D
t = 1 in (59). When R

D

t = rD, then Dt would have to ensure that R
D

t is

indeed equal to rD, where we know the latter is equal to (1��)D+�d
(1�')e . We can combine these two conditions

into a single equation:

1 +R
D

t = max

�
1 + rD;

�
1 + rD � ��

�
(1� ') +

Z 1

0

�
1 +RDt (w)

�
(1� w) (2') dw

�
(60)

Equation (60) ensures that when R
D

t > rD, we must have Dt = 1, and when R
D

t = rD, the value of Dt
must equate the two returns. Since rD is time invariant, the solutions to these equations, R

D
and D, are

also time invariant. Given a value for R
D
, we can solve for the time invariant cuto¤ �D as the smallest

value of � for which RD (�) = R
D
. This completes the characterization of an equilibrium when all markets

are active.
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C.3 Comparative Statics with a �oor

Finally, we consider equilibria where all markets above some �oor � are active. These results correspond to

Propositions 9 and 10 in the text. The �rst result concerns how the equilibrium changes with �.

Proof of Proposition 9: In the text, we derive the equilibrium values pD and rD are show that they

are increasing and decreasing in �, respectively. Here, we show that R
D
is decreasing in �. Recall that in

equilibrium, R
D � rD, i.e. the return on savings must be at least as high as the return agents can earn

from buying the asset. We need to show that R
D
is decreasing in � when R

D
> rD.

When R
D
> rD, we have D = 1, and the equilibrium conditions for R

D
and �D are given by two

equations. First, since �D corresponds to the minimum value of � for which RD (�) = R
D
, we know from

(57) that

1 +R
D
=

1

1� �D
h
1 + D

(1�(1��)')e �
�
1 +R

D
�

�D

1��

i
(61)

Second, using the same approach to compute the return on savings as before, we have a similar equation

for R
D
as in (59):

1 +R
D

= (1� ' (1� �))
�
1 + rD � ��

�
+

2'

Z 1

0

h
min

n
w
� ; 1

o
� w

i �
1 +RD (max fw; �g)

�
dw (62)

If R
D
> rD, we argue that the �oor � must be below the cuto¤�D. For suppose � � �D. Then all markets

where agents might default will be shut down. But without default, the expected return on lending and the

expected return on the asset must be equal to ensure both the credit market and asset market clear. Since

� < �D, we can expand the integral term in (62) into the sum of three distinct terms:Z 1

0

h
min

n
w
� ; 1

o
� w

i �
1 +RD (max fw; �g)

�
= (1 +R (�))

�
1

�
� 1
�Z �

0

wdw +Z �D

�

(1 +R (w)) (1� w) dw +
�
1 +R

D
�Z 1

�D
(1� w) dw

We then use the fact that 1+RD (�) = 1
1��

�
1 + D

(1�(1��)')e �
�
�
1+R

D
t

�
1��

�
to evaluate the three terms above:

(1 +R (�))

�
1

�
� 1
�Z �

0

wdw =
h
1 + D

(1�(1��)')e � �
�
1+R

D

1�� � 1
�i �
2

(63)Z �D

�

(1 +R (w)) (1� w) dw =

Z �D

�

�
1 + D

(1�(1��)')e �
w
�
1+R

D
t

�
1��

�
dw (64)

�
1 +R

D
�Z 1

�D
(1� w) dw =

1

2

�
1 +R

D
� �
1� �D

�2
(65)

We can write (61) and (62) more compactly as

h1

�
R
D
;�D

�
= 0

h2

�
R
D
;�D

�
= 0
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Totally di¤erentiating this system of equations gives us the comparative statics of the equilibrium R
D
and

�D with respect to any variable a as"
@h1
@R

D
@h1
@�D

@h2
@R

D
@h2
@�D

#"
dR

D
=da

d�D=da

#
=

"
�@h1

@a

�@h2
@a

#

Di¤erentiating (61) and (62) using expressions (63)-(65) yields

@h1
@R

D = 1� �D + �D

1��
@h1
@�D

= �(1+R
D
)

1��
@h2
@R

D = 1 + '
h

1
1��

�
�D
�2 � �1� �D�2i @h2

@�D
= 0

When we evaluate comparative statics with respect to �, we now have"
dR

D
=d�

d�D=d�

#
=

"
@h1
@R

D
@h1
@�D

@h2
@R

D
@h2
@�D

#�1 "
dh1
d�
dh2
d�

#

=
'

�

24 0 �
1��

�
1 +R

D
�

1 + '
(�D)

2

1�� � '
�
1� �D

�2 �
�
1� �D + �D

1��

�
3524 � D

(1�(1��)')2e

� 2D(1+�D')
(1�(1��)')2e � (1 + ��)

35
where � = �(1+R

D
)

1��

�
1 + '

(�D)
2

1�� � '
�
1� �D

�2�
> 0. It follows that

dR
D

d�
= �'

�
1 + '

�
1

1� �
�
�D
�2 � �1� �D�2���1 " 2D

�
1 + �D'

�
(1� (1� �)')2 e

+ (1 + ��)

#
< 0

Since R
D
is decreasing in � whether R

D
> rD or R

D
= rD, the claim follows. �

Proposition 10 concerns how changing � a¤ects the expected costs of default D�pD. Since we already

know pD is increasing in �, any changes in expected default costs occur entirely through D. Our next

result argues that there exists cuto¤s �0 and �1 such that dD=d� = 0 when � < �0 or � > �1. When

�0 < � < �1, we only claim it must be decreasing for some � in this interval.

Proof of Proposition 10: De�ne

� (�) =
R
D

(1� (1� �)')

Using the fact that dR
D

d� < 0, we have

d� (�)

d�
=
dR

D
=d�� '� (�)

1� (1� �)' < 0

Since

R
D
=rD = [(1� �)D + �d] � (�)

it follows that the ratio R
D
=rD is decreasing in �. Hence, there exists a value �0 � 0 such that R

D
> rD

for � < �0 and R
D
= rD for � � �0. Since R

D
> rD when � < �0, then D = 1 for � < �0. It follows that
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expected default costs �D�pD = ��pD are increasing in � in this region. A higher � for � < �0 reduces

the amount entrepreneurs produce and increases the foregone output when dividends fall. Each cohort will

therefore be left with fewer goods to consume.

We next turn to the case where � � �0. Here, we know R
D
= rD. Substituting this into (61) yields�

1� �D
� �
1 + rD

�
=
h
1 + D

(1�(1��)')e �
�D

1��
�
1 + rD

�i
which, upon rearranging,

�D = (1��)(D�d)
(1�(1��)')e+(1��)D+�d

From this, we can conclude that �D � � if

(1��)(D�d)
(1�(1��)')e+(1��)D+�d � �

or, upon rearranging, if

(1� �) (D � d) � � [(1� (1� �)') e+ (1� �)D + �d] (66)

The RHS of (66) is a quadratic in � with a positive coe¢ cient on the quadratic term. The inequality is

satis�ed when � = 0 and violated when � = 1. Hence, there exists a cuto¤ �1 2 (0; 1) such that �D > �

if � 2 [0;�1) and �D < � if � 2 (�1; 1). By de�nition, �0 is the smallest value of � � 0 for which setting
� � �0 ensures R

D
= rD. By contrast, �1 is the smallest value of � � 0 for which setting � � �1 ensures

that no agent borrows to speculate in any market above �. But in that case, all lending is riskless, and we

know that the equilibrium interest rate on loans will equal the return on the asset. Hence, �1 � �0. To

show that the inequality is strict, recall that when � = 0, we know that D > 0 since some agents borrow

to buy the asset. But D is continuous in �, and we know that D = 0 when � � �1. Hence, there must be
some value of � 2 [0;�1) for which D < 1. But D < 1 i¤ R

D
= rD. It follows that �1 > �0.

When � > �1 no agent will borrow to buy the asset, so D = 0. Expected default costs are 0, and so the

only e¤ect of increasing � is to reduce production. This will leave fewer goods for each cohort to consume.

Finally, we turn to the case where �0 < � < �1. We do not analyze this case in general. However, when

�D = �, the interest rate in all active markets would equal R
D
, since the only active markets are those

with � � � = �D. Since � � �0, we know that R
D
= rD and so the interest rate in all active markets is

rD. The equilibrium condition that determines D is given by

�
1 + rD

�
= (1� (1� �)')

�
1 + rD � D��

�
+ 2'

Z 1

0

h
min

n
w
� ; 1

o
� w

i �
1 +RD (max fw; �g)

�
dw

= (1� (1� �)')
�
1 + rD � D��

�
+ 2'

�
1 + rD

� Z 1

0

h
min

n
w
� ; 1

o
� w

i
dw

= (1� (1� �)')
�
1 + rD � D��

�
+ 2'

�
1 + rD

�
[�=2 + (1� �)� 1=2]

= 1 + rD � D (1� (1� �)')��
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Hence, when � = �1, we have D = 0. For � < �1, however, D > 0, sinceZ 1

0

�
1 +RD (max fw; �g)

� h
min

n
w
� ; 1

o
� w

i
dw

will be strictly greater than 1
2

�
1 + rD

�
(1� �). Hence, in the limit as � " �1, we have dD=d� < 0 expected

default costs �D�pD must be decreasing in � since this expression goes from a positive value to 0.

To show that this can generate a Pareto improvement, observe that increasing � while dividends are high

will make the initial old at date 0 better o¤ given pD0 increases. Cohorts born after dividends have fallen

will be una¤ected if � is only increased while dividends are high. Cohorts who are born while dividends are

high expect to consume the dividends from the asset net of default costs E [dt+1]���DpDt as well as the
output produced by entrepreneurs. If � is su¢ ciently large and ' is small, we can promise these agents a

higher expected consumption. �
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