THE ENERGY SUPPLY CHAIN: AN ASEAN PERSPECTIVE

Ruth Banomyong (PhD) Head, Dept. of International Business, Logistics & Transport ruth@banomyong.com

Agenda

- Introduction
- Issues in the ASEAN Energy Supply Chain
 - Inbound Supply Chain: The case of Krabi Power plant (Thailand)
 - Outbound Supply Chain: The ASEAN Grid
- Summary

ASEAN Members

ASEAN Plan of Action for Energy Cooperation 2010-2015 (APAEC)

The objective of APAEC 2010-2015 is to enhance energy security, accessibility and sustainability for the ASEAN region with due consideration to health, safety and environment through accelerated implementation of action plans, including, but not limited to:

- ASEAN Power Grid
- Trans-ASEAN Gas Pipeline
- Coal and Clean Coal Technology
- Renewable Energy
- Energy Efficiency and Conservation
- Regional Energy Policy and Planning
- Civilian Nuclear Energy

ASEAN Energy Supply Chain Issues

Transportation and Distribution

- Supply Chain Network Configuration and redesign, including location of production, storage, and distribution sites
- Sufficiency and reliability of transport, handling equipment, and distribution system
- Modal choice selection and transport promotion

- Inbound Supply Chain

- Exploration of natural resource
- Ensuring security of supply to cope with energy scarcity

Management issues

- Improvement of supply chain efficiency and new production technologies
- Balancing demand and supply, including policy to storage input and output and inventory policy
- Liberalization of market access of goods and services
- Environmental issues

Inbound Supply Chain: The case of Krabi Power Plant

- Electricity generation in Thailand will not be sufficient in the next decade
- New coal power plant is being designated in Krabi province in the South of Thailand (800 MWx2)
- Source of coal: Indonesia
- Issues:
 - inbound supply chain from potential mines to power plant site
 - Design of logistics system appropriate to power plant requirements
 - Environment & Community

Coal Transport from Kalimantan to Krabi

Potential anchorage site(s)

Inbound Supply Chain: Before production

Option A

10,000 DWT barge from Indonesia

Option A

10,000 DWT self propelled barges

Intermediate coal transfer terminal

Klong Rua Intermediate Coal Terminal

Klong Rua Intermediate Coal Terminal

Intermediate Terminal with Concrete Deck on Piles structure (40m x 220m or 8,800sqm

- 1. Sea Going Barges or SGB (8,000-12,000 DWT) transport coal from Indonesia
- 2. Intermediate coal terminal
- 3. Loading equipment to load/unload coal from SGB to River Going Barges (RGB)
- 4. RGB transport coal to Krabi coal power plant
- 5. Krabi power plant quay
- 6. Unload coal from RGB and transfer to stock pile 15

Intermediate coal terminal capacity

- Coal Discharge capability from SGB and RGB loading
 10,000 ton/day for phase 1 x 330 days = 3.3 million ton/year
 - > 20,000 ton/day for phase 2 x 330 days = 6.6 million ton/year
- Required coal consumption
 - > Phase 1: 2.65 million ton/year
 - Phase 2: 5.3 million ton/year
- Loading equipment capability 1200 tons/hour
 - > 2 Traveling Bucket Continuous Self-Unloader (CSU)

or

> 1 CSU and 1 Traveling Crane

Continuous Unloader Bucket Wheel Unloader

<u>Grab-Type Unloader :</u>

Travelling Cargo Crane in seaport

THAMMASA1 BUSINESS SCHOOL

Equipment Layout@intermediate terminal

Option B: Geared vessels

Option B: Geared vessel inbound supply chain activities USINESS SCHOO **Small Barges Small Barges** Stock Haulage Stock Mine Haulage Discharging **River/Sea** Loading Krabi Pla Terminal Anchorage Anchorage (Lanta / Koh Yao)

- 1. 50,000-60,000 DWT vessels from Indonesia
- 2. Loading/Unloading equipment from vessel to RGB
- 3. RGB used to transport coal to Krabi power plant
- 4. Krabi power plant quay
- 5. Unload coal from RGB and transfer to stock pile

Geared vessel

Geared vessel

- Loading/Unloading equipment
 ➢ Supramax vessel preferred as usually have own gear with 4 25-30 MT cranes
 ➢ 10 15 CBM Grapple
- Suggested loading/Unloading rate
 On average 4 cranes can load/unload 560 tons/hour or 13,440 ton/day
 >10,000 ton/day for phase 1 x 330 days = 3.3 million ton/year

> 20,000 ton/day for phase 2 x 330 days = 6.6 million ton/year

Option C: Gearless Vessel inbound supply chain activity Image: Stock Small Barges Mine Stock Haulage Stock River/Sea Loading Anchorage Haulage Krabi Plant

- 1. 100,000-200,000 DWT vessels from Indonesia
- 2. Loading/Unloading equipment from vessel to RGB
- 3. RGB used to transport coal to Krabi power plant
- 4. Krabi power plant quay
- 5. Unload coal from RGB and transfer to stock pile

Floating Crane

28

Cranes on Floating Terminal

29

Floating crane capability

- Loading/Unloading Equipment & recommended charge/discharge rate
 Floating Crane
 - 12 15,000 ton/day/crane (500 625 ton/hour)
 - if 2 cranes then 24 30,000 ton/day

Access to Krabi Power Plant

Bottlenecks in the access river

Taylor-made design of river going barges

Recommended engines

1) deck-mounted navigators Azimuth Thruster

2 Azimuth Thrusters

Coal terminal at Krabi Power Plant

Coal terminal basin

Quay at Krabi Power Plant

THAMMASAT BUSINESS SCHOOL

THE OUTBOUND SUPPLY CHAIN

Progress on ASEAN Interconnection Projects

As of June 2011

Earliest COD

Brunei grid

Cambodia Grid

Indonesian National Grid

Lao PDR electricity grid

GRID SYSTEM IN PENINSULAR MALAYSIA

Myanmar

Singapore

Vietnam

48

International Grid Connection

• Neighbour to Neighbour Link

 Direct connection between neighbouring countries such as Thailand buying electricity from Lao PDR

Linkage through Common Backbone

- Establishment of a regional grid, electricity can be bought from other connected countries without being neighbour (Singapore buying electricity from Lao PDR)
- Each country sell excess electricity to neighbouring countries as it is a commodity that cannot be stored thus reducing the need for new power plants and reducing environmental impact.

Buying Electricity...

- Traditionally electricity could be bought through a power purchase agreement (PPA). This is where the buyer would agree on the volume (MW) to be bought, the date of buying as well as the agreed upon buying rate.
- The other type of buying agreement are based upon on "Future Trading" where a control centre need to be established in order to arrange for the distribution and settlements of electricity within and between countries.
- This type of buying agreement does not exist yet within ASEAN

Buying Electricity in Thailand

Procedure for Foreign Power Purchase Implementation

* A Committee appointed by the Government of each neighbouring country to coordinate with the Thai Committee

The Energy Charter

- The energy charter is a multilateral agreement focusing on enhancing energy security, guarantee investment in energy projects, developing gridline, etc.
- Countries that are involved in energy trade are signatory to the charter.
- ASEAN member countries are not signatories to this charter.
- The concept of regional gridline cannot therefore be implemented in ASEAN.
- Only physical connections between neighbouring countries will exist.

Summary

- 1) ASEAN countries need to consider becoming signatories to the "energy charter" in order to be able to trade electricity according to international standards
- 2) Each ASEAN country should establish a "National Grid Company" in order to develop the business of power trading under a liberalised environment.
- 3) Each ASEAN countries should support the "National Grid Company" or the National Transmission System Operator in each ASEAN country to establish an ASEAN level related institution.
- 4) If ASEAN is serious about the regional grid then the PPA should be abolished in order to establish a real ASEAN energy market with "spot" and "future" prices under the tutelage of an ASEAN Regional Grid Control Centre responsible for the distribution of electricity in ASEAN